
Dennis Vigil
Title(s):
Professor, Associate Department Chair
Office
3037 Sweeney
618 Bissell Rd.
Ames, IA 50011-1098
Information
Links
Education
Interest Areas
Research Projects
- Kinetics of Aggregation and Breakage: Examples of coagulation, clustering, aggregation, breakage, and fragmentation are ubiquitous in nature and play an important role in processes as diverse as nanoparticle synthesis, blood coagulation, polymerization, crystallization, aerosol dynamics, and even galactic clustering. We are particularly interested in extending aggregation theory by developing new analytical solutions and numerical methods to solve population balance equations. We are also developing methods for obtaining aggregation and breakage rate kernels used in macroscopic descriptions of aggregation from molecular simulations such as molecular and Brownian dynamics.
- Coagulation, breakage and phase separation of droplets in non-Newtonian liquid-liquid suspensions. We are developing computational tools for prediction of coagulation, breakage and phase separation during the manufacture, packaging, and storage of topical ointments and creams.
- Experimental and simulation-based validation of breakage rate kernels for liquid-liquid droplet columns: We are using optical methods to observe droplet breakage events in a von Karman box under conditions of homogeneous isotropic turbulence. We are also comparing the breakage data with VOF simulation predictions.
- Reactive Precipitation: The production of nanoparticles with well-controlled properties is an important and difficult materials synthesis problem. Such processes often employ reactive precipitation in a batch, semi-batch, or a continuous-flow microreactor, and the interaction between mixing, nucleation, growth, and agglomeration is complex. We are using computational fluid dynamics coupled with mathematically tractable population balance equations to develop accurate models for predicting particle properties.
- Vibration-induced Mobilization of Oil Trapped in Porous Media: The development of methods for mobilizing residual organic liquids trapped in porous media is becoming increasingly important as world demand for oil increases and because of the need to remediate aquifers degraded by slow-dissolving organic contaminants. Low-frequency elastic wave stimulation is one such technique, but until recently the lack of a mechanistic understanding of the effects of vibration on mobilization of oil ganglia has prevented the method from being applied predictably in the field. In conjunction with our geophysicist collaborator, Prof. Igor Beresnev, we have developed a capillary-physics explanation to explain vibration-induced mobilization of trapped non-wetting organic fluids in porous media and have carried out bench-scale experiments to validate this mechanism. However, many issues remain unresolved before vibration-based mobilization techniques can be optimized and implemented reliably in the field, including delineating the effects of pore geometry, as well as the roles of viscous forces, surface wetting, and droplet breakup. We are currently working to extend our theory to account for these other factors through the use of mathematical analysis, computational fluid dynamics simulations, and flow visualization experiments.
- Novel Photobioreactors: Microalgae-based production of transportation fuel has become a high priority on the national research agenda because of the potential that this technology possesses for replacing non-renewable fuels and reducing greenhouse gas emissions. While much attention has been focused on developing elite strains of microorganisms for this purpose, perhaps the largest barrier to large-scale implementation of algae-based biorefineries are the process engineering challenges related to efficiently delivering light and nutrients to these microorganisms and harvesting desired products. We are working on novel photobioreactors that have the potential for simultaneously increasing biofuel production rates and separating biofuel products while minimizing energy utilization.
- Multiphase Couette-Taylor Flow: The vortex structure in a Couette-Taylor (CT) cell has applications to a variety of chemical processing problems, such as emulsion polymerization and extraction. For example, CT flow can be used to closely approximate a plug-flow reactor for sufficiently large rotation rates and annular gap widths. The optimization of these systems requires a fundamental understanding of the effect of various operational parameters on the hydrodynamic structure and mixing characteristics. Although there has been much progress in the understanding of homogeneous CT flow, relatively little is known about the behavior of multiphase CT flow. We are working to overcome this gap for liquid-liquid systems through the use of particle image velocimetry experiments and CFD calculations.
Publications
- M. Legg, M. Ramezani, R. D. Vigil, and M. G. Olsen, Experimental investigation of the evolution of bubble size distribution, number density, and shape in a semi-batch gas-liquid Taylor vortex reactor, AIChE J (2020). doi:10.1002/aic.17003
- C. C. Campbell, M. G. Olsen, and R. D. Vigil, Droplet size distributions in liquid-liquid semi-batch Taylor vortex flow, AIP Advances, 10, (2020). doi:10.1063/5.0018065.
- C. C. Campbell, M.G. Olsen, and R.D. Vigil, Jet breakup regimes in liquid-liquid Taylor vortex flow, International Journal of Multiphase Flow, 131, 103401 (2020). doi:10.1016/j.ijmultiphaseflow.2020.103401.
- C. C. Campbell, M. G. Olsen, and R. D. Vigil, Flow regimes in two-phase hexane/water semibatch vertical Taylor vortex flow, Journal of Fluids Engineering, 141, 111203 (2019). doi:10.1115/1.4043493.
X. Gao, B. Kong, and R. D. Vigil, Simulation of algal photobioreactors: recent developments and challenges, Biotechnology Letters, 40, 1311-1327 (2018). doi:10.1007/s10529-018-2595-3
X. Gao, B. Kong, and R. D. Vigil, Multiphysics simulation of algal growth in an airlift photobioreactor: Effects of fluid mixing and shear stress, Bioresource Technology, 251, 75-83 (2018). doi:10.1016/j.algal.2017.03.028
P. Rudnicki, X. Gao, B. Kong, and R. D. Vigil, A comparative study of photosynthetic unit models for algal growth rate and fluorescence prediction under light/dark cycles, Algal Research, 24, 227-236 (2017). doi:10.1016/j.algal.2017.03.028
X. Gao, B. Kong, and R. D. Vigil, Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Eulerian approach, Algal Research, 24, 1-8 (2017). doi:10.1016/j.algal.2017.03.009
M. Ramezani, M. Legg, A. Haghighat, Z. Li, R. D. Vigil, and M.G. Olsen, Experimental investigation of the effect of ethyl alcohol surfactant on oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor, Chemical Engineering Journal, 319, 288-296 (2017). doi:10.1016/j.cej.2017.03.005
X. Gao, B. Kong, and R. D. Vigil, Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach, Bioresource Technology, 224, 523-530 (2017). doi:10.1016/j.biortech.2016.10.080
X. Gao, B. Kong, and R. D. Vigil, CFD Simulation of Bubbly Turbulent Taylor-Couette Flow, Chinese Journal of Chemical Engineering, 24, 719-727 (2016). doi:10.1016/j.cjche.2016.01.013
X. Gao, B. Kong, and R. D. Vigil, Characteristic time scales of mixing, mass transfer, and biomass growth in a Taylor vortex algal photobioreactor, Bioresource Technology, 198, 283-291(2015). doi:10.1016/j.biortech.2015.09.013
X. Gao, B. Kong, M. Ramezani, M. G. Olsen, and R. D. Vigil, An Adaptive Model for Gas-Liquid Mass Transfer in a Taylor Vortex Reactor, International Journal of Heat and Mass Transfer, 91, 433-445 (2015). doi:10.1016/j.ijheatmasstransfer.2015.07.125
M. Ramezani, B. Kong, X. Gao, M. G. Olsen, and R. D. Vigil, Experimental measurement of oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex reactor, Chemical Engineering Journal, 279, 286-296 (2015). doi:10.1016/j.cej.2015.05.007
X. Gao, B. Kong, and R. D. Vigil, CFD investigation of bubble effects on Taylor-Couette flow patterns in the weakly turbulent vortex regime, Chemical Engineering Journal, 270, 508-518 (2015). doi:10.1016/j.cej.2015.02.061
B. Kong and R. D. Vigil, Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model. Bioresource Technology, 158, 141-148 (2014). doi:10.1016/j.biortech.2014.01.052
B. Kong and R. D. Vigil, Light-limited continuous culture of Chlorella vulgaris in a Taylor vortex reactor. Environmental Progress & Sustainable Energy, 32, 884-890 (2013). doi: 10.1002/ep.11834
B. Kong, J. Shanks, and R.D. Vigil, Enhanced algal growth rate in a Taylor vortex reactor. Biotechnology & Bioengineering, 11, 2140-2149 (2013). doi:10.1002/bit.24886
I. Beresnev, W. Gaul, and R.D. Vigil, Direct pore-level observation of permeability increase by seismic waves. Geophysical Review Letters, 38, L21812 (2011). doi:10.1029/2011GL049481
I. Beresnev, W. Gaul, and R. D. Vigil, Thickness of residual wetting film in liquid-liquid displacement. Physical Review E, 84, 026327 (2011). doi: 10.1103/PhysRevE.84.026327
I. Beresnev, W. Gaul, and R. D. Vigil, Forced instability of core-annular flow in capillary constrictions. Physics of Fluids, 23, 072105 (2011). doi: 10.1063/1.3607472
G. Pranami, M. H. Lamm, and R. D. Vigil, Molecular dynamics simulations of fractal aggregate diffusion. Physical Review E, 82, 051402 (2010). doi: 10.1103/PhysRevE.82.051402
J. C. Cheng, R. D. Vigil, and R. O. Fox, A Competitive Aggregation Model for Flash NanoPrecipitation. Journal of Colloid and Interface Science, 351, 330-342 (2010).
I. A. Beresnev, W. Li, and R. D. Vigil, Condition for breakup of non-wetting fluids in sinusoidally constricted capillary channels. Transport in Porous Media, 80, 581-604 (2009).
R. D. Vigil, On equilibrium solutions of aggregation-fragmentation problems. Journal of Colloid and Interface Science, 336, 642-647 (2009). doi: 10.1016/j.jcis.2009.04.061
T. Mokhtari, A. Chakrabarti, C. M. Sorensen, C. Cheng, and D. Vigil, The effect of shear on colloidal aggregation and gelation studied using small-angle light scattering. Journal of Colloid and Interface Science, 327, 216-223 (2008). doi: 10.1016/j.jcis.2008.08.017
S. Markutsya, S. Subramaniam, R. D. Vigil, and R. O. Fox, On Brownian dynamics simulation of nanoparticle aggregation. Industrial & Engineering Chemistry Research, 47, 3338-3345 (2008).
R. D. Vigil, I. Vermeersch, and R. O. Fox, Destructive aggregation: Aggregation with collision-induced breakage. Journal of Colloid and Interface Science, 302, 149-158 (2006).
I. A. Beresnev, R. D. Vigil, W. Li, W. D. Pennington, R. D. Turpening, P. P. Iassonov, and R. P. Ewing, Elastic waves push organic fluids from reservoir rock. Geophysical Research Letters, 32, p. L13303 (2005).
L. Wang, M. D. Olsen, and R. D. Vigil, Reappearance of azimuthal waves in turbulent Taylor-Couette flow at large aspect ratio. Chemical Engineering Science, 60, 5555-5568 (2005).
W. Li, R. D. Vigil, I. A. Beresnev, P. Iassonov, and R. Ewing, Vibration-induced mobilization of trapped oil ganglia in porous media: Experimental validation of a capillary physics mechanism. Journal of Colloid and Interface Science, 289, 193-199 (2005).
L. Wang, R. D. Vigil, and R. O. Fox*, CFD simulation of shear-induced aggregation and breakage in turbulent Taylor-Couette flow. Journal of Colloid and Interface Science, 285, 167-178 (2005).
L. Wang, D. L. Marchisio, R. D. Vigil, and R. O. Fox*, CFD simulation of aggregation and breakage processes in laminar Taylor-Couette flow. Journal of Colloid and Interface Science, 282, 380-396 (2005).
D. L. Marchisio, R. D. Vigil, and R.O. Fox*, Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chemical Engineering Science, 58, 3337-3351 (2003).
D. L. Marchisio, J. T. Pikturna, R. O. Fox*, R. D. Vigil, and A. A. Barresi, Quadrature method of moments for population balance equations. American Institute of Chemical Engineers Journal, 49, 1266-1276 (2003).
D. L. Marchisio, R. D. Vigil, and R. O. Fox*, Quadrature method of moments for aggregation breakage processes. Journal of Colloid and Interface Science, 258, 322-334 (2003).
M. Fontenot and R. D. Vigil*, Pore-scale study of non-aqueous phase liquid dissolution in porous media using laser-induced fluorescence. Journal of Colloid and Interface Science, 247, 481-489 (2002).
X. Zhu and R. D. Vigil*, Banded liquid-liquid Taylor-Couette-Poiseuille flow. American Institute of Chemical Engineers Journal, 47, 1932-1940 (2001).
X. Zhu, R. J. Campero, and R. D. Vigil*, Axial mass transport in liquid-liquid Taylor-Couette-Poiseuille flow. Chemical Engineering Science, 55, 5079-5087 (2000).
N. Kumar, T. S. King, and R. D. Vigil*, A portal model for structure sensitive hydrogen adsorption on Ru-Ag/SiO2 catalysts. Chemical Engineering Science, 55, 4973-4979 (2000).