Xiaoli Tan

Title(s):

Professor
Materials Science and Engineering

Office

2220bh Hoover
528 Bissell Rd.
Ames, IA 500111096

Information

Academic Experience

  • 2013-present – Professor, Iowa State University
  • 2008-2013- Associate Professor, Iowa State University
  • May-Aug., 2008 – Guest Professor, Technical University at Darmstadt, Germany
  • 2002-2008 – Assistant Professor, Iowa State University

Teaching

  • Mat E 215 Introduction to Materials Science and Engineering I
  • Mat E 272 Principles of Materials Science and Engineering
  • Mat E 319 Mechanics of Structure and Materials
  • Mat E 321 Introduction to Ceramic Science
  • Mat E 418 Mechanical Behavior of Materials
  • Mat E 433 Advanced Electronic Materials
  • MSE 590 Ferroelectric and Piezoelectric Ceramics
  • MSE 630 Physical Properties of Materials

Honors and Awards

  • 2020: Postdoc Xinchun Tian received the ISU Postdoctoral Research Excellence Award
  • 2020: Graduate student Zhongming Fan received the Zaffarano Prize for Graduate Student Research, the highest research award at ISU
  • 2019: Applied Physics Letters cover graphics of May 27, 2019, issue
  • 2018: Journal of the American Ceramic Society outstanding journal reviewer
  • 2018: Graduate student Zhongming Fan received the Research Excellence Award, ISU
  • 2016: Graduate student Xiaoming Liu received MSE Rohit K. Trivedi Best Paper Award, ISU
  • 2015: Graduate student Xiaoming Liu received the Research Excellence Award, ISU
  • 2015: Graduate student, Hanzheng Guo, received the Zaffarano Prize for Graduate Student Research, the highest research award at ISU
  • 2014: Graduate student Hanzheng Guo received the MSE Rohit K. Trivedi Best Paper Award, ISU
  • 2014: Graduate student Hanzheng Guo received Research Excellence Award, ISU
  • 2013: Graduate student, Hanzheng Guo, received the Go-For-The-Gold Award at MSE, ISU
  • 2013: Graduate student, Cheng Ma, received The Zaffarano Prize for Graduate Student Research, the highest research award at ISU
  • 2012: Journal of the American Ceramic Society Associate Editor Recognition for outstanding contributions
  • 2012: Graduate student, Cheng Ma, received Research Excellence Award, ISU
  • 2011: Journal of the American Ceramic Society Associate Editor Recognition for outstanding contributions
  • 2011: Graduate student Joshua Frederick was the winner of the ISU competition for the Midwestern Association of Graduate Schools Distinguished Master Thesis
  • 2011: Graduate student Cheng Ma received MSE Rohit K. Trivedi Best Paper Award, ISU
  • 2011: IEEE Senior Member
  • 2010: Journal of the American Ceramic Society Associate Editor Recognition for outstanding contributions
  • 2008: Graduate student Xiaohui Zhao received MSE Rohit K. Trivedi Best Paper Award, ISU
  • 2008: ISU Award for Early Achievement in Research, ISU
  • 2007: Young Engineering Faculty Research Award, College of Engineering, ISU
  • 2007: MSE Excellence in Research Award, Mater. Sci. & Eng., ISU
  • 2004: NSF CAREER Award
  • 2001: Phi Kappa Phi

Education

  • Ph. D. Materials Science and Engineering, University of Illinois at Urbana-Champaign, 2002

Interest Areas

  • Electric field in-situ TEM technique
  • Lead-free piezoelectric crystals and ceramics
  • Phase transformation in ferroelectrics
  • Magnetoelectric multiferroic compounds
  • Nanostructured electroceramics
  • Ferroelectric thin films
  • Mechanical behavior of materials

Publications

Free PDFs of Selected Publications *=Corresponding Author

  • 156. X.C. Tian, S. Yazdanparast, G. Brennecka, and X. Tan*, “In situ TEM study of dielectric breakdown in copper oxides.” IEEE Transactions on Devices and Materials Reliability 20, 609-612 (2020). DOI: 10.1109/TDMR.2020.3015398.
  • 155. X.C. Tian, G. Brennecka, and X. Tan*, “Direct observations of dielectric breakdown in TiO2 single nanocrystals.” ACS Nano 14, 8328-8334 (2020). DOI: 10.1021/acsnano.0c02346.
  • 154. D. Wang, Z.M. Fan, G. Rao, G. Wang, Y. Liu, C. Yuan, T. Ma, D. Li, X. Tan, Z. Lu, A. Feteira, S. Liu, C. Zhou, S.J. Zhang, “Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design.” Nano Energy 76, 104944/1-9 (2020). DOI: 10.1016/j.nanoen.2020.104944.
  • 153. Z.M. Fan, T. Ma, J. Wei, T.Q. Yang, L. Zhou, and X. Tan*, “TEM investigation of the domain structure in PbHfO3 and PbZrO3 antiferroelectric perovskites.” Journal of Materials Science 55, 4953-4961 (2020). DOI: 10.1007/s10853-020-04361-8.
  • 152. Z.M. Fan, S.J. Zhang, and X. Tan*, “Phase-composition dependent domain responses in (K0.5Na0.5)NbO3-based piezoceramics.” Journal of the European Ceramic Society 40, 1217-1222 (2020). DOI: 10.1016/j.jeurceramsoc.2019.11.046.
  • 151. Z.M. Fan and X. Tan*, “A comparative study of the polarization degradation mechanisms during electric cycling in (Bi1/2Na1/2)TiO3-based relaxors.” Scripta Materialia 178, 334-338 (2020). DOI: 10.1016/j.scriptamat.2019.11.061.
  • 150. H. Liu, L.L. Fan, S.D. Sun, K. Lin, Y. Ren, X. Tan, X. Xing, and J. Chen, “Electric-field-induced structure and domain texture evolution in PbZrO3-based antiferroelectric by in-situ high-energy synchrotron X-ray diffraction.” Acta Materialia 184, 41-49 (2020). DOI: 10.1016/j.actamat.2019.11.050.
  • 149. X.C. Tian, C. Cook, W. Hong, T. Ma, G. Brennecka, and X. Tan*, “In situ TEM study of the amorphous-to-crystalline transition during dielectric breakdown in TiO2 film.” ACS Applied Materials & Interfaces 11, 40726-40733 (2019). DOI: 10.1021/acsami.9b08146.
  • 148. C.H. Hong, H.Z. Guo, X. Tan, J.E. Daniels, and W. Jo, “Polarization reversal via a transient relaxor state in nonergodic relaxors near freezing temperature.” Journal of Materiomics 5, 634-640 (2019). DOI: 10.1016/j.jmat.2019.06.004.
  • 147. T. Ma, Z.M. Fan, B. Xu, T.H. Kim, P. Lu, L. Bellaiche, M.J. Kramer, X. Tan*, and L. Zhou, “Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics.” Physical Review Letters 123, 217602 (2019). DOI: 10.1103/PhysRevLett.123.217602.
  • 146. T. Ma, Z.M. Fan, X. Tan, and L. Zhou, “Atomically resolved domain boundary structure in PbZrO3-based antiferroelectric ceramics.” Applied Physics Letters 115, 122902 (2019). DOI: 10.1063/1.5115039.
  • 145. P. Mohapatra, Z.M. Fan, J. Cui, and X. Tan*, “Relaxor antiferroelectrics with ultrahigh efficiency for energy storage applications.” Journal of the European Ceramic Society 39, 4735-4742 (2019). DOI: 10.1016/j.jeurceramsoc.2019.07.050.
  • 144. Y. Yousry, K. Yao, X. Tan, A.M. Moahmed, Y. Wang, S. Chen, and S. Ramakrishna, “Structure and high-performance of lead-free (K0.5Na0.5)NbO3 piezoelectric nanofibers with surface-induced crystallization at lowered temperature.” ACS Applied Materials & Interfaces 11, 23503-23511 (2019). DOI: 10.1021/acsami.9b05898.
  • 143. G. Wang, Z.M. Fan, S. Murakami, Z. Lu, D.A. Hall, D.C. Sinclair, A. Feteira, X. Tan, J.L. Jones, A. Kleppe, D. Wang, and I.M. Reaney, “Origin of the large electrostrain in BiFeO3–BaTiO3 based lead-free ceramics.” Journal of Materials Chemistry A 7, 21254-21263 (2019). DOI: 10.1039/c9ta07904a.
  • 142. X.C. Tian, T. Ma, L. Zhou, G. Brennecka, and X. Tan*, “In situ TEM study of the transitions between crystalline Si and nonstoichiometric amorphous oxide under bipolar voltage bias.” Journal of Applied Physics 125, 245304 (2019). DOI: 10.1063/1.5100310.
  • 141. Z.M. Fan, F. Xue, G. Tutuncu, L.Q. Chen, X. Tan*, “Interaction dynamics between ferroelectric and antiferroelectric domains in a PbZrO3-based ceramic.” Physical Review Applied 11, 064050 (2019). DOI: 10.1103/PhysRevApplied.11.064050.
  • 140. Z.M. Fan and X. Tan*, “Dual-stimuli in-situ TEM study on the nonergodic/ergodic crossover in the 0.75(Bi1/2Na1/2)TiO3–0.25SrTiO3 relaxor.” Applied Physics Letters 114, 212901 (2019). DOI: 10.1063/1.5093510. Cover graphics article of May 27 issue, 2019.
  • 139. M.M. Vopson, X. Tan, E. Namvar, M. Belusky, S.P. Thompson, V. Kuncser, F. Plazaola, I. Unzueta, and C.C. Tang, “Sub-lattice polarization states in antiferroelectrics and their relaxation process.” Current Applied Physics 19, 651-656 (2019). DOI: 10.1016/j.cap.2019.03.009.
  • 138. Z.M. Fan, L. Zhou, T.H. Kim, J. Zhang, S.T. Zhang, and X. Tan*, “Mechanisms of enhanced thermal stability of polarization in lead-free (Bi1/2Na1/2)0.94Ba0.06TiO3/ZnO ceramic composites,” Physical Review Materials 3, 024402/1-10 (2019). DOI: 10.1103/PhysRevMaterials.3.024402.
  • 137. G. Wang, J. Li, X. Zhang, Z.M. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X. Tan, D. Wang, and I.M. Reaney, “Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity,” Energy & Environmental Science, published online, 2019. DOI: 10.1039/c8ee03287d.
  • 136. C.H. Hong, Z.M. Fan, X. Tan, C.W. Ahn, Y. Shin, and W. Jo, “Role of sodium deficiency on the relaxor properties of Bi1/2Na1/2TiO3–BaTiO3,” Journal of the European Ceramic Society 38, 5375-5381 (2018). DOI: 10.1016/j.jeurceramsoc.2018.08.006.
  • 135. D. Wang, Z.M. Fan, W. Li, D. Zhou, A. Feteira, G. Wang, S. Murakami, S. Sun, Q. Zhao, X. Tan, and I.M. Reaney, “High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3–BaTiO3 ceramics,” ACS Applied Energy Materials 1, 4403-4412 (2018). DOI: 10.1021/acsaem.8b01099.
  • 134. S. Murakami, D. Wang, A. Mostaed, A. Khesro, A. Feteira, D.C. Sinclair, Z.M. Fan, X. Tan, and I.M. Reaney, “High strain (0.4%) Bi(Mg2/3Nb1/3)O3–BaTiO3–BiFeO3 lead-free piezoelectric ceramics and multilayers,” Journal of the American Ceramic Society 101, 5428-5442 (2018). DOI: 10.1111/jace.15749.
  • 133. A. Patterson, H. Nagata, X. Tan, J.E. Daniels, M. Hinterstein, R. Ranjan, P. Groszewicz, W. Jo, and J.L. Jones, “Relaxor-ferroelectric transitions: sodium bismuth titanate derivatives,” MRS Bulletin 43, 600-606 (2018). DOI: https://doi.org/10.1557/mrs.2018.156.
  • 132. S. Trolier-McKinstry, S.J. Zhang, A.J. Bell, and X. Tan, “High-performance piezoelectric crystals, ceramics and films,” Annual Reviews of Materials Research 48, (2018). DOI: 10.1146/annurev-matsci-070616-124023.
  • 131. Z.M. Fan and X. Tan*, “In-situ TEM study of the aging micromechanisms in a BaTiO3-based lead-free piezoelectric ceramic,” Journal of the European Ceramic Society 38, 3472-3477 (2018). DOI: 10.1016/j.jeurceramsoc.2018.03.049.
  • 130. Z.M. Fan, J. Koruza, J. Rödel, and X. Tan*, “An ideal amplitude window against electric fatigue in BaTiO3-based lead-free piezoelectric materials,” Acta Materialia 151, 253-259 (2018). DOI: 10.1016/j.actamat.2018.03.067
  • 129. D. Wang, Z.M. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, and I.M. Reaney, “Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density,” Journal of Materials Chemistry A 6, 4133-4144 (2018). DOI: 10.1039/c7ta09857j.
  • 128. N. Novak, F. Weyland, S. Patel, H. Guo, X. Tan, J. Rödel, and J. Koruza, “Interplay of conventional with inverse electrocaloric response in (Pb,Nb)(Zr,Sn,Ti)O3 antiferroelectric materials,” Physical Review B 97, 094113 (2018). DOI: 10.1103/PhysRevB.97.094113.
  • 127. S. Patel, F. Weyland, X. Tan, and N. Novak, “Tunable pyroelectricity around the ferroelectric/antiferroelectric transition,” Energy Technology, online 2017. DOI: 10.1002/ente.201700411.
  • 126. X. Tan*, Z.P. Xu, X.M. Liu, and Z.M. Fan, “Double hysteresis loops at room temperature in NaNbO3-based lead-free antiferroelectric ceramics,” Materials Research Letters 6, 159-164 (2018). DOI: 10.1080/21663831.2017.1419994.
  • 125. Z.M. Fan, C. Zhou, X.B. Ren, and X. Tan*, “Domain disruption and defect accumulation during unipolar electric fatigue in a BZT-BCT ceramic,” Applied Physics Letters 111, 252902 (2017). DOI: 10.1063/1.5008619.
  • 124. M.M. Vopson and X. Tan, “Nonequilibrium polarization dynamics in antiferroelectrics,” Physical Review B 96, 014104 (2017). DOI: 10.1103/PhysRevB.96.014104.
  • 123. Z.M. Fan, X.M. Liu, and X. Tan*, “Large electrocaloric responses in [Bi1/2(Na,K)1/2]TiO3-based ceramics with giant electro-strains,” Journal of the American Ceramic Society 100, 2088-2097 (2017). DOI: 10.1111/jace.14777.
  • 122. T.Y. Li, X.J. Lou, X.Q. Ke, S.D. Cheng, S.B. Mi, X.J. Wang, J. Shi, X. Liu, G.Z. Dong, H.Q. Fan, Y.Z. Wang, and X. Tan, “Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics,” Acta Materialia 128, 337-344 (2017). DOI: 10.1016/j.actamat.2017.02.037.
  • 121. Z.P. Xu, Z.M. Fan, X.M. Liu, and X. Tan*, “Impact of phase transition sequence on the electrocaloric effect in Pb(Nb,Zr,Sn,Ti)O3 ceramics,” Applied Physics Letters 110, 082901/1-4 (2017). DOI: 10.1063/1.4976827.
  • 120. M.M. Vopson, G. Caruntu, and X. Tan, “Polarization reversal and memory effect in anti-ferroelectric materials,” Scripta Materialia 128, 61-64 (2017). DOI: 10.1016/j.scriptamat.2016.10.004.
  • 119. M.M. Vopson and X. Tan, “Four-state anti-ferroelectric random access memory,” IEEE Electron Device Letters, 37, 1551-1554 (2016). DOI: 10.1109/LED.2016.2614841.
  • 118. X.M. Liu and X. Tan*, “Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics,” Journal of Applied Physics 120, 034102 (2016). DOI: 10.1063/1.4958853.
  • 117. H.Z. Guo, X.M. Liu, F. Xue, L.Q. Chen, W. Hong, and X. Tan*, “Disrupting long-range polar order with an electric field,” Physical Review B 93, 174114/1-9 (2016). DOI: 10.1103/PhysRevB.93.174114.
  • 116. X.M. Liu and X. Tan*, “Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics,” Advanced Materials 28, 574-578 (2016). DOI: 10.1002/adma.201503768.
  • 115. W.X. Sun, H.C. Wu, X. Tan, M.R. Kessler, and N. Bowler, “Silanized-silicon/epoxy nanocomposites for structural capacitors with enhanced electrical energy storage capability,” Composites Science and Technology 121, 34-40 (2015). DOI: 10.1016/j.compscitech.2015.10.022.
  • 114. X.M. Liu, and X. Tan*, “Suppression of the antiferroelectric phase during polarization cycling of an induced ferroelectric phase,” Applied Physics Letters 107, 072908 (2015). DOI: 10.1063/1.4929322.
  • 113. M. Zakhozheva, L.A. Schmitt, M. Acosta, H.Z. Guo, W. Jo, R. Schierholz, H-J Kleebe, and X. Tan, “Wide compositional range in situ electric field investigations on lead-free  Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramic,” Physical Review Applied 3, 064018 (2015). DOI: 10.1103/PhysRevApplied.3.064018.
  • 112. H.Z. Guo and X. Tan*, “Direct observation of the recovery of an antiferroelectric phase during polarization reversal of an induced ferroelectric phase,” Physical Review B 91, 144101/1-6 (2015). DOI: 10.1103/PhysRevB.91.144104.
  • 111. H.Z. Guo, X. Tan*, and S.J. Zhang, “In situ TEM study on the microstructural evolution during electric fatigue in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramic,” Focus Issue on In-situ and Operando Characterization of Materials in Journal of Materials Research 30, 364-372 (2015). DOI: 10.1557/jmr.2014.228.
  • 110. H.Z. Guo, X.M. Liu, J. Rödel, and X. Tan*, “Nanofragmentation of ferroelectric domains during polarization fatigue,” Advanced Functional Materials 25, 270-277 (2015). DOI: 10.1002/adfm.201402740.
  • 109. B.K. Voas, T.M. Usher, X.M. Liu, S. Li, J.L. Jones, X. Tan, V.R. Cooper, and S.P. Beckman, “Special quasirandom structures to study the (K0.5Na0.5)NbO3 random alloy.” Physical Review B 90, 024105/1-6 (2014). DOI: 10.1103/PhysRevB.90.024105.
  • 108. H.Z. Guo, B.K. Voas, S.J. Zhang, C. Zhou, X.B. Ren, S.P. Beckman, and X. Tan*, “Polarization alignment, phase transition and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3,” Physical Review B 90, 014103/1-10 (2014). DOI: 10.1103/PhysRevB.90.014103.
  • 107. X.M. Liu, H.Z. Guo, and X. Tan*, “Evolution of structure and electrical properties with lanthanum content in [(Bi1/2Na1/2)0.95Ba0.05]1-xLaxTiO3,” Journal of the European Ceramic Society 34, 2997-3006 (2014). DOI: 10.1016/j.jeurceramsoc.2014.03.017. 
  • 106. H.Z. Guo, C. Zhou, X.B. Ren, and X. Tan*, “Unique single-domain state in a polycrystalline ferroelectric ceramic,” Physical Review B – Rapid Communications 89, 100104(R) (2014). DOI: 10.1103/PhysRevB.89.100104.
  • 105. C.S. Daily, W.X. Sun, M.R. Kessler, X. Tan, and N. Bowler, “Modeling the interphase of a polymer-based nanodielectric,” IEEE Transactions on Dielectrics and Electrical Insulation 21, 488-496 (2014).
  • 104. Y.H. Xu, W. Hong, Y.J. Feng, and X. Tan*, “Antiferroelectricity induced by electric field in NaNbO3-based lead-free ceramics,” Applied Physics Letters 104, 052903 (2014). DOI: 10.1063/1.4863850.
  • 103. S.E. Young, H.Z. Guo, C. Ma, M.R. Kessler, and X. Tan*, “Thermal analysis of phase transitions in perovskite electroceramics,” Journal of Thermal Analysis and Calorimetry 115, 587-593 (2014). DOI: 10.1007/s10973-013-3363-1.
  • 102. Y.H. Xu, H.Z. Guo, X.M. Liu, Y.J. Feng, and X. Tan*, “Effect of Ba content on the stress-sensitivity of the antiferroelectric to ferroelectric phase transition in (Pb,La,Ba,)(Zr,Sn,Ti)O3 ceramics,” Journal of the American Ceramic Society 97, 206-212 (2014). DOI: 10.1111/jace.12585.
  • 101. X. Tan*, S.E. Young, Y.H. Seo, J.Y. Zhang, W. Hong, and K.G. Webber, “Transformation toughening in an antiferroelectric ceramic,” Acta Materialia 62, 114-121 (2014). DOI: 10.1016/j.actamat.2013.09.038.
  • 100. C. Ma*, H.Z. Guo, and X. Tan*, “A new phase boundary in (Bi1/2Na1/2)TiO3–BaTiO3 revealed via a novel method of electron diffraction analysis,” Advanced Functional Materials 23, 5261-5266 (2013). DOI: 10.1002/adfm.201300640.
  • 99. X.M. Liu, and X. Tan*, “Crystal structure and electrical properties of lead-free (1-x)BaTiO3–x(Bi1/2A1/2)TiO3 (A = Ag, Li, Na, K, Rb, Cs) ceramics,” Journal of the American Ceramic Society 96, 3425-3429 (2013). DOI: 10.1111/jace.12494.
  • 98. X. Tan*, S.E. Young, Y.H. Seo, J.Y. Zhang, W. Hong, and K.G. Webber, “Transformation toughening in an antiferroelectric ceramic,” Acta Materialia 62, 114-121 (2014). DOI: 10.1016/j.actamat.2013.09.038.
  • 97. H.Z. Guo, S.J. Zhang, S.P. Beckman, and X. Tan*, “Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics,” Journal of Applied Physics 114, 154102/1-8 (2013). DOI: 10.1063/1.4825213.
  • 96. X.C. Pang, Y.J. He, B.B. Jiang, J. Iocozzia, L. Zhao, H.Z. Guo, J. Liu, M. Akinc, N. Bowler, X. Tan, and Zhiqun Lin, “Block copolymer/ferroelectric nanoparticle nanocomposites,” Nanoscale 5, 8695-8702 (2013). DOI: 10.1039/C3NR03036A.
  • 95. Y.G. Yao, Z.M. Sun, Y.C. Ji, Y.D. Yang, X. Tan and X.B. Ren, “Evolution of the tetragonal to rhombohedral transition in (1-x)(Bi1/2Na1/2)TiO3–xBaTiO3 (x £ 7%),” Science and Technology of Advanced Materials 14, 035008/1-8 (2013). DOI: 10.1088/1468-6996/14/3/035008.
  • 94. W.X. Sun, W.Z. Sun, M.R. Kessler, N. Bowler, K.W. Dennis, R.W. McCallum, Q. Li, and X. Tan*, “Multifunctional properties of cyanate ester composites with SiO2 coated Fe3O4 fillers,” ACS Applied Materials & Interfaces 5, 1636-1642 (2013). DOI: 10.1021/am302520e.
  • 93. H.Z. Guo, C. Ma, X.M. Liu, and X. Tan*, “Electrical poling below coercive field for large piezoelectricity,” Applied Physics Letters 102, 092902/1-4 (2013). DOI: 10.1063/1.4794866.
  • 92. R. Dittmer, K.G. Webber, E. Aulbach, W. Jo, X. Tan, and J. Rödel, “Electric field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 under uniaxial stress,” Acta Materialia 61, 1350-1358 (2013). DOI: 10.1016/j.actamat.2012.11.012.
  • 91. S.E. Young, J.Y. Zhang, W. Hong, and X. Tan*, “Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitors,” Journal of Applied Physics 113, 054101/1-6 (2013). DOI: 10.1063/1.4790135.
  • 90. R. Dittmer, K.G. Webber, E. Aulbach, W. Jo, X. Tan, and J. Rödel, “Optimal working regime of lead-zirconate-titanate for actuation applications,” Sensors and Actuators A 189, 187-194 (2013). DOI: 10.1016/j.sna.2012.09.015.
  • 89. J. Liu, N. Bowler, H. Guo, X. Pang, X. Tan, M. Akinc, and Z. Lin, “Dynamics of polystyrene-block-poly(methylmethacrylate) (PS-b-PMMA) diblock copolymers and PS/PMMA blends: A dielectric study,” Journal of Non-Crystalline Solids 359, 27-32 (2013). DOI: 10.1016/j.jnoncrysol.2012.09.015.
  • 88. H.Z. Guo, Ya. Mudryk, M.I. Ahmad, X.C. Pang, L. Zhao, M. Akinc, V.K. Pecharsky, N. Bowler, Z.Q. Lin, and X. Tan*, “Structure evolution and dielectric behavior of polystyrene capped barium titanate nanoparticles,” Journal of Materials Chemistry 22, 23944-23951 (2012). DOI: 10.1039/c2jm35600g.
  • 87. C. Ma, H. Guo, S.P. Beckman, and X. Tan*, “Creation and destruction of morphotropic phase boundaries through electrical poling: A case study of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoelectrics,” Physical Review Letters 109, 107602/1-5 (2012). DOI: 10.1103/PhysRevLett.109.107602.
  • 86. W. Sun, J.E. De León, C. Ma, X. Tan*, and M.R. Kessler, “Novel Si/cyanate ester nanocomposites with multifunctional properties,” Composites Science and Technology, 72, 1692-1696 (2012). DOI: 10.1016/j.compscitech.2012.06.023.
  • 85. X. Tan*, “Chapter 14: In situ TEM with electrical bias on ferroelectric oxides,” in In-Situ Electron Microscopy, G. Dehm, J. Howe, and J. Zweck, eds. Wiley-VCH, Weinheim, Germany, 2012. ISBN: 978-3-527-31982-4.
  • 84. M. Marsilius, J. Frederick, W. Hu, X. Tan*, T. Granzow, and P. Han, “Mechanical confinement: An effective way of tuning properties of piezoelectric crystals,” Advanced Functional Materials 22, 797-802 (2012). DOI: 10.1002/adfm.201101301.
  • 83. T. Sareein, W. Hu, X. Tan*, and R. Yimnirun, “The morphotropic phase boundary in the (1-x)PbZrO3–x[0.3Bi(Zn1/2Ti1/2)O3–0.7PbTiO3] perovskite solid solution,” Journal of Materials Science 47, 1774-1779 (2012). DOI 10.1007/s10853-011-5961-2.
  • 82. T. Sareein, P. Baipaywad, W. Chaiammad, A. Ngamjarurojana, S. Ananta, X. Tan, and R. Yimnirun, “Dielectric aging behavior in A-site hybrid-doped BaTiO3 ceramics,” Current Applied Physics 11, S90-S94 (2011). DOI: 10.1016/j.cap.2011.03.018.
  • 81. W. Hu, X. Tan*, and K. Rajan, “Piezoelectric ceramics with compositions at the morphotropic phase boundary in the BiFeO3–PbZrO3–PbTiO3 ternary system,” Journal of the American Ceramic Society 94, 4358-4363 (2011). DOI: 10.1111/j.1551-2916.2011.04715.x.
  • 80. X. Tan*, C. Ma, J. Frederick, S. Beckman, and K. Webber, “The antiferroelectric « ferroelectric phase transition in lead-containing and lead-free perovskite ceramics,” invited feature article in the Journal of the American Ceramic Society 94, 4091-4107 (2011). DOI: 10.1111/j.1551-2916.2011.04917.x.
  • 79. C. Ma, and X. Tan*, “In situ transmission electron microscopy study on the phase transitions in lead-free (1-x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics,” Journal of the American Ceramic Society 94, 4040-4044 (2011). DOI: 10.1111/j.1551-2916.2011.04670.x.
  • 78. S.J. Zhang, H.J. Lee, C. Ma, and X. Tan, “Sintering effect on microstructure and properties of (K,Na)NbO3 ceramics,” Journal of the American Ceramic Society 94, 3659-3665 (2011). DOI: 10.1111/j.1551-2916.2011.04833.x.
  • 77. E.A. Stefanescu, X. Tan, Z. Lin, N. Bowler, and M.R. Kessler, “Multifunctional fiberglass-reinforced PMMA-BaTiO3 structural/dielectric composites,” Polymer 52, 2016-2024 (2011). DOI: 10.1016/j.polymer.2011.02.050.
  • 76. J. Frederick, X. Tan*, and W. Jo, “Strains and polarization during antiferroelectric-ferroelectric phase switching in Pb0.99Nb0.02[(Zr0.57Sn0.43)1-yTiy]0.98O3 ceramics,” Journal of the American Ceramic Society 94, 1149-1155 (2011). DOI: 10.1111/j.1551-2916.2010.04194.x.
  • 75. X. Zhao, and X. Tan*, “Dielectric and ferroelectric properties of  (1-x)Pb(Mg1/3Nb2/3)O3–xPbZrO3 ceramics with cation order,” Journal of Advanced Dielectrics 1, 99-106 (2011). DOI: 10.1142/S2010135X11000136.
  • 74. A.A. Bokov, B.J. Rodriguez, X. Zhao, J.-H. Ko, S. Jesse, X. Long, W. Qu, T.H. Kim, J.D. Budai, A.N. Morozovska, S. Kojima, X. Tan, S.V. Kalinin, and Z.-G. Ye, “Compositional disorder, polar nanoregions and dipole dynamics in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics,” an invited review article in Zeitschrift fuer Kristallographie 226, 99-107 (2011). DOI: 10.1524/zkri.2011.1299.
  • 73. W. Hu, X. Tan*, and K. Rajan, “BiFeO3–PbZrO3–PbTiO3 ternary system for high Curie temperature piezoceramics,” Journal of the European Ceramic Society 31, 801-807 (2011). DOI:10.1016/j.jeurceramsoc.2010.11.015
  • 72. W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, and J. Rödel, “Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics,” Journal of Applied Physics 109, 014110 (2011). DOI: 10.1063/1.3530737.
  • 71. X. Tan*, J. Frederick, C. Ma, W. Jo, and J. Rödel, “Can electric field induce an antiferroelectric phase out of a ferroelectric phase?” Physical Review Letters105, 255702/1-4 (2010). DOI: 10.1103/PhysRevLett.105.255702.
  • 70. C. Ma, X. Tan*, E. Dul’kin, and M. Roth, “Domain structure–dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics,” Journal of Applied Physics 108, 104105/1-8 (2010). DOI: 10.1063/1.3514093.
  • 69. E.A. Stefanescu, X. Tan, Z. Lin, N. Bowler, and M.R. Kessler, “Multifunctional PMMA-ceramic composites as structural dielectrics,” Polymer 51, 5823-32 (2010). DOI: 10.1016/j.polymer.2010.09.025.
  • 68. J. Kling, X. Tan, H.-J. Kleebe, H. Fuess, W. Jo, and J. Rödel, “In situ transmission electron microscopy of electric field-triggered reversible domain formation in Bi-based lead-free piezoceramics,” Rapid Communication in Journal of the American Ceramic Society 93, 2452-55 (2010). DOI: 10.1111/j.1551-2916.2010.03778.x.
  • 67. C. Ma, and X. Tan*, “Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics,” Fast Track Communication in Solid State Communications 150, 1497-1500 (2010). DOI: 10.1016/j.ssc.2010.06.006.
  • 66. C. Ma, and X. Tan*, “Morphotropic phase boundary and electrical properties of lead-free (1-x)BaTiO3-xBi(Li1/3Ti2/3)O3 ceramics,” Journal of Applied Physics 107, 124108/1-6 (2010). DOI: 10.1063/1.3437215.
  • 65. W. Hu, X. Tan*, and K. Rajan, “Combinatorial processing libraries for bulk BiFeO3–PbTiO3 piezoelectric ceramics,” Applied Physics A: Materials Science & Processing 99, 427-31 (2010). DOI: 10.1007/s00339-010-5574-7.
  • 64. X. Tan*, J. Frederick, C. Ma, E. Aulbach, M. Marsilius, W. Hong, T. Granzow, W. Jo, and J. Rödel, “Electric-field-induced phase transition in mechanically confined antiferroelectric Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3,” Physical Review B 81, 014103/1-5 (2010). DOI: 10.1103/PhysRevB.81.014103.
  • 63. E. Dul’kin, E. Mojaev, M. Roth, O. Khamman, and X. Tan, “Acoustic emission and dielectric studies of phase transitions within the morphotropic phase boundary of xPb(Zr1/2Ti1/2)O3–(1-x)Pb(Ni1/3Nb2/3)O3 relaxor ferroelectrics,” Applied Physics Letters 95, 252903/1-3 (2009).
  • 62. C. Ma, J.-Q. Yan, K.W. Dennis, R.W. McCallum, and X. Tan*, “Synthesis, thermal stability and magnetic properties of the Lu1−xLaxMn2O5 solid solution,” Journal of Solid State Chemistry 182, 3013-3020 (2009).
  • 61. X. Tan*, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.J. Kleebe, and J. Rödel, “Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics,” Journal of Applied Physics 106, 044107/1-7 (2009).
  • 60. J. Chen, X. Tan, W. Jo, and J. Rödel, “Temperature dependence of piezoelectric properties of high-Tc Bi(Mg1/2Ti1/2)O3-PbTiO3,” Journal of Applied Physics 106, 034109/1-7 (2009).
  • 59. C. Ma, J.-Q. Yan, K.W. Dennis, A. Llobet, R.W. McCallum, and X. Tan*, “Effect of oxygen content on the magnetic properties of multiferroic YMn2O5+d,” Journal of Physics: Condensed Matter21, 346002/1-5 (2009).
  • 58. O. Khamman, X. Tan*, R. Yimnirun, and S. Ananta, “Ferroelectric properties of (1-x) Bi(Zn1/2Ti1/2)O3−xPbZrO3 ceramics,” Journal of Materials Science 44, 4321-4325 (2009).
  • 57. F. Chao, N. Bowler, X. Tan, G. Liang, M.R. Kessler, “Influence of absorbed moisture on the properties of BaTiO3/cyanate ester composites,” Composites Part A 40, 1266-1271 (2009).
  • 56. X. Zhao, W. Qu, X. Tan*, A.A. Bokov, Z.-G. Ye, “Influence of long-range cation order on relaxor properties of doped Pb(Mg1/3Nb2/3)O3 ceramics,” Physical Review B 79, 144101/1-12 (2009).
  • 55. O. Khamman, X. Tan*, S. Ananta, and R. Yimnirun, “The morphotropic phase boundary and electrical properties of (1-x)Pb(Zn1/2W1/2)O3−xPb(Zr0.5Ti0.5)O3 ceramics,” Journal of Materials Science 44, 1868-1872 (2009).
  • 54. W. Qu, X. Tan*, and P. Yang, “In-situ transmission electron microscopy study on Nb-doped Pb(Zr0.95Ti0.05)O3 ceramics,” an invited article for the special issue of In-Situ Electron Microscopy Methods in Microscopy Research and Technique 72, 216-222 (2009).
  • 53. C. Ma, J.-Q. Yan, K.W. Dennis, R.W. McCallum, and X. Tan*, “Size-dependent magnetic properties of high oxygen content YMn2O5 multiferroic nanoparticles,” Journal of Applied Physics 105, 033908/1-6 (2009).
  • 52. X. Tan*, W. Jo, T. Granzow, J. Frederick, E. Aulbach, and J. Rödel, “Auxetic behavior under electrical loads in an induced ferroelectric phase,” Applied Physics Letters 94, 042909/1-3 (2009).
  • 51. W. Qu, X. Tan*, N. Vittayakorn, S. Wirunchit, and M.F. Besser, “High temperature phases in the 0.98PbZrO3–0.02Pb(Ni1/3Nb2/3)O3 ceramic,” Journal of Applied Physics, 105, 014106/1-5 (2009).
  • 50. X. Zhao, W. Qu, and X. Tan*, “Zr-modified Pb(Mg1/3Nb2/3)O3 with long range cation order,” Journal of the American Ceramic Society, 91, 3031-3038 (2008).
  • 49. D. White, X. Zhao, M. F. Besser, and X. Tan*, “Structure and properties of (1- x)Pb(Mg1/2W1/2)O3−xPb(Zr0.5Ti0.5)O3 solid solution ceramics,” Journal of Materials Science, 43, 5258-5264 (2008).
  • 48. S. Wongsaenmai, S. Ananta, X. Tan, R. Yimnirun, “Dielectric and ferroelectric properties of lead indium niobate ceramic prepared by wolframite method,” Ceramics International, 34, 723-726 (2008).
  • 47. S. Wongsaenmai, X. Tan, S. Ananta, and R. Yimnirun, “Dielectric and ferroelectric properties of fine grains Pb(In1/2Nb1/2)O3–PbTiO3 ceramics,” Journal of Alloys and Compounds, 454, 331-339 (2008).
  • 46. X. Long, A.A. Bokov, Z.-G. Ye, W. Qu, and X. Tan, “Enhanced ordered structure and relaxor behavior of 0.98Pb(Mg1/3Nb2/3)O3-0.02La(Mg2/3Nb1/3)O3 single crystals,” Journal of Physics: Condensed Matter, 20, 015210-1-7 (2008).
  • 45. X. Tan*, R. Wongmaneerung, and R.W. McCallum, “Ferroelectric and magnetic properties of Pb(Fe2/3W1/3)O3-based multiferroic compounds with cation order,” Journal of Applied Physics, 102, 104114-1-6 (2007).
  • 44. W. Qu, X. Zhao, and X. Tan*, “Evolution of nanodomains during the electric field-induced relaxor to normal ferroelectric phase transition in a Sc-doped Pb(Mg1/3Nb2/3)O3 ceramic,” Journal of Applied Physics, 102, 084101-1-8 (2007).
  • 43. C.C. Huang, D.P. Cann, X. Tan, and N. Vittayakorn, “Phase transitions and ferroelectric properties in BiScO3-Bi(Zn1/2Ti1/2)O3-BaTiO3 solid solutions,” Journal of Applied Physics, 102, 044103-1-5 (2007).
  • 42. S. Wongsaenmai, W. Qu, S. Ananta, R. Yimnirun, and X. Tan*, “Effect of Ba-substitution on the structure and properties of Pb0.8Ba0.2[(In1/2Nb1/2)1-xTix]O3,” Applied Physics A, 88, 757-61 (2007).
  • 41. R. Yimnirun, X. Tan, S. Ananta, and S. Wongsaenmai, “Preparation of fine-grain lead indium niobate ceramics with wolframite precursor method and resulting electrical properties,” Applied Physics A, 88, 323-28 (2007).
  • 40. R. Wongmaneerung, X. Tan*, R.W. McCallum, S. Ananta, and R. Yimnirun, “Cation-, dipole-, and spin-order in Pb(Fe2/3W1/3)O3-based magnetoelectric multiferroic compounds,” Applied Physics Letters, 90, 242905 (2007).
  • 39. H. He, and X. Tan*, “A comparative study of the structure and properties of Sn-modified lead zirconate titanate ferroelectric and antiferroelectric ceramics,” Journal of the American Ceramic Society, 90, 2090-94 (2007).
  • 38. H. He, and X. Tan*, Raman spectroscopy study of the phase transitions in Pb0.99Nb0.02[(Zr0.57Sn0.43)1-yTiy]0.98O3 ceramics, Journal of Physics: Condensed Matter, 19, 136003-1-13 (2007).
  • 37. X. Zhao, W. Qu, X. Tan*, A. Bokov and Z.-G. Ye, Electric field-induced phase transitions in (111)-, (110)-, and (100)-oriented Pb(Mg1/3Nb2/3)O3 single crystals, Physical Review B, 75, 104106-1-12 (2007).
  • 36. W. Qu, X. Tan*, R. W. McCallum, D. P. Cann, and E. Ustundag, Room temperature magnetoelectric multiferroism through cation ordering in complex perovskite solid solutions, Journal of Physics: Condensed Matter, 18, 8935-42 (2006).
  • 35. W. Qu, X. Zhao, and X. Tan*, In situ transmission electron microscopy study of the nanodomain growth in a Sc-doped lead magnesium niobate ceramic, Applied Physics Letters, 89, 022904-1-022904-3 (2006).
  • 34. N. Vittaykorn, C. Puchmark, G. Rujijanagul, X. Tan, D.P. Cann, Piezoelectricproperties of (1-x)Pb(Zr1/2Ti1/2)O3–xPb(Zn1/3Nb2/3)O3 ceramics prepared by the columbite-(wolframite) precursor method, Current Applied Physics, 6, 303-06 (2006).
  • 33. N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M.A. Marquardt, and D.P. Cann, Dielectric properties and morphotropic phase boundaries in the xPb(Zn1/3Nb2/3)O3-(1-x) Pb(Zr0.5Ti0.5)O3 pseudo-binary system, Journal of Electroceramics, 16, 141-49 (2006).
  • 32. X. Zhao, W. Qu, H. He, N. Vittayakorn, and X. Tan*, “Influence of cation order on the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics,” Journal of the American Ceramic Society 89, 202-09 (2006).
  • 31. W. Qu, and X. Tan*, “Texture control and ferroelectric properties of Pb(Nb,Zr,Sn,Ti)O3 thin films prepared by chemical solution method,” Thin Solid Films 496, 383-88 (2006).
  • 30. S. Aygun, X. Tan, D.P. Cann, and J.P. Maria, “Effects of processing conditions on the dielectric properties of CaCu3Ti4O12,” Journal of Electroceramics 15, 203-08 (2005).
  • 29. M.J. Kramer, D.J. Sordelet, A.F. Bastarows, X. Tan, and S.B. Biner, “Absence of crystallization during cylindrical indentation of a Zr-based metallic glass,” Journal of Non-crystalline Solids 351, 2159-65 (2005).
  • 28. H. He, and X. Tan*, Electric field-induced transformation of incommensurate modulations in antiferroelectric Pb0.99Nb0.02[(Zr1-xSnx)1-yTiy]0.98O3, Physical Review B, 72, 024102-1-10 (2005).
  • 27. X. Tan*, H. He, J.K. Shang, In situ TEM studies of electric field-induced phenomena in ferroelectrics, an invited review in the In situ TEM Focus Issue of Journal of Materials Research, 20, 1641-53 (2005).
  • 26. R.B. Gall, N. Ashmore, M.A. Marquardt, X. Tan, D.P. Cann, Synthesis, microstructure, and electrical properties of the delafossite compound CuGaO2, Journal of Alloys and Compounds, 391, 262-66 (2005).
  • 25. N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, and D.P. Cann, The morphotropic phase boundary and dielectric properties of the xPb(Zr1/2Ti1/2)O3 -(1-x)Pb(Ni1/3Nb2/3)O3 binary solid solution, Journal of Applied Physics, 96, 5103-5109 (2004).
  • 24. H. He, and X. Tan*, In situ transmission electron microscopy study of the electric field-induced transformation of incommensurate modulations in a Sn-modified lead zirconate titanate ceramic, Applied Physics Letters, 85, 3187-3189 (2004).
  • 23. X. Tan*, and J.K. Shang, Intersection of a-domains in the c-domain matrix driven by electric field in tetragonal ferroelectric crystal, Journal of Applied Physics, 96, 2805-2810 (2004).
  • 22. N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D.P. Cann, Influence of processing conditions on the phase transition and ferroelectric properties of the Pb(Zn1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 ceramics, Materials Science and Engineering: B, 108, 258-265 (2004).
  • 21. X. Tan*, and J.K. Shang, Partial dislocations at domain intersections in a tetragonal ferroelectric crystal, Journal of Physics: Condensed Matter, 16, 1455-66 (2004).
  • 20. X. Tan*, and J.K. Shang, Field-induced domain interpenetration in tetragonal ferroelectric crystal, Journal of Applied Physics, 95, 635-39 (2004).
  • 19. N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D.P. Cann, Perovskite phase formation and ferroelectric properties of the PNN-PZN-PZT ternary system, Journal of Materials Research, 18, 2882-2889 (2003).
  • 18. X. Tan, T. Du, and J.K. Shang, Piezoelectric in-situ transmission electron microscopy technique for direct observations of fatigue damage accumulation in constrained metallic thin films, Applied Physics Letters, 80, 3946-48 (2002).
  • 17. X. Tan, and J.K. Shang, In-situ transmission electron microscopy study of electric-field-induced grain-boundary cracking in lead zirconate titanate, Philosophical Magazine A, 82, 1463-78 (2002).
  • 16. X. Tan, Z. Xu, and J.K. Shang, In-situ transmission electron microscopy observations of electric-field-induced domain switching and microcracking in ferroelectric ceramics, Materials Science & Engineering A, A314, 157-61 (2001).
  • 15. J.K. Shang, and X. Tan, Indentation-induced domain switching in Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal, Acta Materialia 49, 2993-99 (2001).
  • 14. J.K. Shang, and X. Tan, A maximum strain criterion for electric-field-induced fatigue crack propagation in ferroelectric ceramics, Materials Science & Engineering A301, 131-39 (2001).
  • 13. X. Tan, Z. Xu, J.K. Shang, and P. Han, Direct observations of electric field-induced domain boundary cracking in oriented piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal, Applied Physics Letters, 77, 1529-31 (2000).
  • 12. Z. Xu, X. Tan, P. Han, and J. K. Shang, In situ transmission electron microscopy study of electric-field-induced microcracking in single crystal 0.66Pb(Mg1/3Nb2/3)O3-0.34PbTiO3, Applied Physics Letters, 76, 3732-34 (2000).
  • 11. X. Tan, and J.K. Shang, Crack deflection in relaxor ferroelectric PLZT under inclined cyclic electric field, Scripta Materialia 43, 925-28 (2000).
  • 10. X. Tan*, N. Munroe, Z. Fathi, and R. Garard, Firing of bauxite extrudates in a variable frequency microwave furnace, Journal of Microwave Power and Electromagnetic Energy 33, 31-35 (1998).
  • 9. X. Tan*, H. Guo, H. Gu, C. Laird, and N. Munroe, Cyclic deformation behavior of high purity titanium single crystals: II. microstructure and mechanism, Metallurgical and Materials Transactions 29A, 513-18 (1998).
  • 8. X. Tan*, H. Gu, C. Laird, and N. Munroe, Cyclic deformation behavior of high purity titanium single crystals: I. orientation dependence of stress-strain response, Metallurgical and Materials Transactions 29A, 507-12 (1998).
  • 7. Z. F. Zhang, H. Gu, and X. Tan, Low-cycle fatigue behavior of commercial-purity titanium, Materials Science and Engineering A252, 85-92 (1998).
  • 6. Z. F. Zhang, H. Gu, and X. Tan, Influence of low cycle fatigue on deformation twins in commercial purity titanium, Journal of Materials Science Letters 17, 211-14 (1998).
  • 5. X. Tan, H. Gu, and N. Munroe, Orientation dependence of slip and twinning in HCP metals, Scripta Materialia 36, 1383-86 (1997).
  • 4. X. Tan, and H. Gu, Fatigue crack initiation in high purity titanium crystals,International Journal of Fatigue 18, 329-33 (1996).
  • 3. X. Tan, and H. Gu, Stacking faults in fatigued titanium single crystals, Scripta Metallurgica et Materialia 33, 1977-80 (1995).
  • 2. X. Tan, H. Gu, and Z. Wang, Cyclic deformation features in high purity titanium bicrystals, Materials Science and Engineering A196, 45-52 (1995).
  • 1. X. Tan, H. Gu, S. Zhang, and C. Laird, Loading mode dependence of deformation microstructure in high purity titanium single crystal oriented for difficult glide, Materials Science Engineering A189, 77-84 (1994).

Grants and Contracts

  • PI: Novel ceramic capacitors with ultrahigh energy density and efficiency. DOE EERE-AMO, $2,494,875, 07/01/2020–06/30/2023
  • PI: Dielectrics under extreme electric fields: In situ studies on nanoscale mechanisms. DOE-BES, $675,000, 09/15/2017–07/14/2020
  • PI: Nanoscale phase transition in free-standing dielectric thin foils. NSF-DMR, $396,171, 07/01/2017–06/30/2020
  • PI: AGEP-GRS supplemental funding for “Nanoscale insight into electric fatigue of lead-free piezoelectric ceramics”. NSF-DMR, $63,969, 07/01/2016–06/30/2017
  • PI: Nanoscale insight into electric fatigue of lead-free piezoelectric ceramics, NSF-DMR, $462,802, 07/01/2015–06/30/2019
  • PI: AGEP-GRS supplemental funding for “Nanoscale insight into electric fatigue of lead-free piezoelectric ceramics,” NSF-DMR, $60,000, 07/01/2015–06/30/2016
  • PI: Nanoscale mechanism of dielectric breakdown, Iowa Energy Center, $142,200, 07/01/2015–09/30/2016
  • Co-PI: Materials for extreme environments, ISU College of Engineering, $150,000, 07/01/2015–06/30/2017
  • Co-PI: Transfomative research on advanced thermal technology, ISU College of Engineering, $150,000, 07/01/2015–06/30/2017
  • PI: Mechanics of multi-responsive ceramics for electrical capacitors with high power/energy density, NSF-CMMI, $327,530, 10/01/2010–09/30/2013.
  • PI: Origin of the electric field-induced strain in lead-free piezoelectric ceramics, NSF-DMR, $520,000, 10/01/2010–09/30/2014.
  • Co-PI: Multifunctional polymer matrix composites, NASA-EPSCoR, $700,508, 09/01/2009–08/31/2012.
  • Co-PI: Design and development of novel hierarchically ordered block copolymer-magnetoelectric particle nanocomposites, US-Air Force Office of Scientific Research, $600,000, 06/01/2009-05/31/2012.
  • PI: Design and fabrication of flexible piezoelectric composites for NDE applications up to 150°C, US-AFOSR through CNDE at ISU, $254,477, 10/01/2008-06/30/2010.
  • Co-PI: Combinatorial and high throughput discovery of high temperature piezoelectric ceramics, U.S. Air Force Office of Scientific Research, $633,174, 04/01/2008-10/31/2011.
  • Co-PI: REU site: Materials education and research on far-from-equilibrium materials, processes, structures, and properties, NSF, DMR, $273,000. 04/15/2008-04/14/2011.
  • PI: Coupled phenomena in magnetoelectric multiferroics, Materials and Engineering Physics, Ames Laboratory, U.S. DOE, $750,000, 10/01/2007-09/30/2010.
  • Co-PI: Investigation of structure/properties relationships in thermally cycled novel xPZT-(1-x)PNN relaxor ferroelectrics, United States-Israel Binational Science Foundation, $123,027, 10/01/2007–09/30/2010.
  • PI: TEM Study of PZT95/5 (1.5Nb) Ceramics, Sandia National Laboratories, $59,873, 04/01/2007-09/30/2007.
  • Co-PI: Acquisition of a wide frequency, impedance, and temperature range impedance spectrometer for materials research and education, Roy J. Carver Trust Foundation, $472,896, 01/01/2007–12/30/2007.
  • PI: Searching for single phase compounds with strong spontaneous polarization and magnetization at room temperature, Short Term Innovative Research Program, the Army Research Office, $49,000, 09/01/2006–05/31/2007.
  • PI: Coupled phenomena in multiferroics, Seed Fund from the Materials and Engineering Physics Program, Ames Laboratory; $235,400, 10/01/2006–09/30/2007.
  • Co-PI: Multiscale study of domain mechanics, Seed Fund from the Materials and Engineering Physics Program, Ames Laboratory; $50,000, 08/01/2005?06/30/2006.
  • PI: Direct observations of the dynamic evolution of nanoscale features in ferroelectric thin films: An in situ transmission electron microscopy study, Petroleum Research Fund, the American Chemical Society; $35,000; 09/01/2005-8/31/2007.
  • PI: CAREER: The evolution of polar nanoregions and its coupling with cation-ordered domains in Pb(B’B”)O3 relaxor ferroelectrics, NSF, DMR-Ceramics; $400,000; 08/01/2004-07/30/2009.
  • Co-PI: Acquisition of a comprehensive high temperature and high purity glove box materials processing facility for education and research, NSF, DMR-IMR; $200,000; 08/15/2003-08/14/2004.
  • PI: Chemical solution deposition of ferroelectric thin films for in situ transmission electron microscopy study, University Research Grant, ISU; $15,970; 07/01/2003-06/30/2004.
  • PI: Hot press processing and in situ transmission electron microscopic study of high-density, high-purity lead zirconate titanate ceramics, Process Science Initiative Program, Ames Laboratory, U.S. DOE, $70,000; 10/01/2002-9/30/2003.

Graduate Students

  • Binzhi Liu (PhD)
  • Pratyasha Mohapatra (PhD, co-advisor)

Graduated PhD students

  • Zhongming Fan (Jul. 2019, Advisor)
  • Xiaoming Liu (Sep. 2015, Advisor)
  • Yonghao Xu (Mar. 2015, visiting PhD student)
  • Hanzheng Guo (Jul. 2014, Advisor)
  • Cheng Ma (Aug. 2012, Advisor)
  • Wei Hu (Aug. 2011, Advisor)
  • Meagen A. Gillispie (Aug. 2006, Co-advisor)
  • Hui He (Aug. 2007, Advisor)
  • Xiaohui Zhao (Dec. 2008, Advisor)
  • Weiguo Qu (Dec. 2008, Advisor)

Graduated MS students

  • Daniel Sommer (July 2017, Advisor)
  • Samuel E Young (May 2013, Advisor)
  • Weixing Sun (Aug. 2012, Advisor)
  • Joshua Frederick (Jul. 2010, Advisor)

Undergraduate research assistants

  • Ethan Chaffee, 2019-2020
  • Odin Taylor, 2019-2020
  • Joshua McLeod, 2018
  • Kathleen Wilcox, 2016-2018
  • Amy Kurr, 2015
  • Benjamin Trieu, 2014
  • Alexa Oser, 2013
  • Deon Ploessl, 2013
  • Cynthia Biggs, 2012-2013
  • Daniel Hastings, 2012
  • Skylar Conn, 2012
  • Alexandra Skora, 2011
  • Samuel Young, 2011
  • Ryan Gebhardt, 2009
  • Daniel Marincel, 2009
  • Emily Decker, 2008-2009
  • Daniel White, 2007-2008
  • Fabian Stolzenburg, 2007-2009
  • Matthew Cromwell, 2007
  • Roshnika Fernando, 2007
  • Charlotte Stewart-Sloan, 2006
  • Eric Patterson, 2006
  • Pylin Sarobol, 2005
  • Natalie Schlesselman, 2005
  • Martin Gran, 2003
  • Ping Kuang, 2002-2003

Departments

Affiliations

Interests

Loading...