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Abstract

We have studied DRAM-level prefetching for the fully
buffered DIMM (FB-DIMM) designed for multi-core proces-
sors. FB-DIMM has a unique two-level interconnect structure,
with FB-DIMM channels at the first-level connecting the mem-
ory controller and Advanced Memory Buffers (AMBs); and
DDR2 buses at the second-level connecting the AMBs with
DRAM chips. We propose an AMB prefetching method that
prefetches memory blocks from DRAM chips to AMBs. It uti-
lizes the redundant bandwidth between the DRAM chips and
AMBs but does not consume the crucial channel bandwidth.
The proposed method fetches K memory blocks of L2 cache
block sizes around the demanded block, where K is a small
value ranging from two to eight. The method may also re-
duce the DRAM power consumption by merging some DRAM
precharges and activations. Our cycle-accurate simulation
shows that the average performance improvement is 16%
for single-core and multi-core workloads constructed from
memory-intensive SPEC2000 programs with software cache
prefetching enabled; and no workload has negative speedup.
We have found that the performance gain comes from the re-
duction of idle memory latency and the improvement of chan-
nel bandwidth utilization. We have also found that there is only
a small overlap between the performance gains from the AMB
prefetching and the software cache prefetching. The average
of estimated power saving is 15%.

1 Introduction
Multicore processors require high memory bandwidth be-

cause they multiply off-chip memory traffic, but it is challeng-
ing to meet the demand because off-chip memory bandwidth is
limited by processor pin bandwidth [2]. The interconnect be-
tween the processor chip and the DRAM chips may have to be
re-engineered to address the challenge. Fully Buffered DIMM
(FB-DIMM) is a recent effort that uses narrow, high-speed
memory channels with conventional DDR2 DRAM chips. It
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allows a processor to connect more memory channels and thus
provides higher memory bandwidth. Meanwhile, it uses exist-
ing DDR2/DDR3 DRAM to avoid the high cost of adopting
a new type of DRAM. From the viewpoint of memory sub-
system design, FB-DIMM is an interesting subject for design
optimization. It has a unique, two-level interconnect structure:
The first level is a set of narrow, high-speed FB-DIMM mem-
ory channels and the second level is a larger set of conventional
DDR2 buses1. The memory module of FB-DIMM looks like
a conventional DRAM DIMM (Dual-Inline Memory Module)
but with the addition of an Advanced Memory Buffer (AMB).
The AMB provides the interface between an FB-DIMM chan-
nel and the DDR2 DRAM chips on the module. It converts
the commands and data between the FB-DIMM channel for-
mat and the DDR2 format. The aggregate bandwidth of all
DDR2 buses is greater than the FB-DIMM channel bandwidth
when more than one FB-DIMM is connected to each channel.
This redundancy of bandwidth can be utilized to improve the
performance of a FB-DIMM memory subsystem.

We have studied DRAM-level prefetching for FB-DIMM
that prefetches memory blocks from DRAM chips to AMB.
We call it AMB prefetching hereafter. Prefetching at this level
has a unique advantage: It does not consume the crucial chan-
nel bandwidth to the processor chip. By contrast, conventional
prefetching to processor-level caches or memory controller
may incur excessive memory traffic on the memory channels
if the prefetching is not accurate, which will degrade the per-
formance of multi-core processors. Our method works as fol-
lows: The AMB is extended to include a small SRAM cache of
a few kilobytes; upon a demand memory request, the memory
controller will fetch K memory blocks of the L2 cache block
size around the demanded block with the demanded block in-
cluded, where K is a small number. The DRAM interleaving is
carefully revised to preserve this spatial locality at the DRAM
level and meanwhile to allow memory access concurrency.

Many hardware and software methods of cache prefetch-
ing [23] have been proposed. They can prefetch data close to
the CPUs, but most of them require redundant memory band-

1Future FB-DIMM will also support DDR3 bus and DRAM.



width which is less available in multi-core processors than in
single-core processors. They may also cause cache pollution,
which further increases memory traffic. Cached DRAM [9]
adds a small SRAM cache inside DRAM chips as a prefetch
buffer. It utilizes the huge bandwidth (hundreds of GB/s) in-
side the DRAM chips to explore the spatial locality: If one
memory block is accessed, all other memory blocks in the
same page will be prefetched in a single DRAM operation.
The disadvantage is that it requires changes to the DRAM in-
ternal structure and external interface, but the price of DRAM
is very sensitive to any of such changes. The AMB prefetching
is somewhat between the cached DRAM and cache prefetch-
ing: It does not consume the crucial memory bandwidth to
the processor or memory controller and does not require any
change to the DRAM chips. Although the reduction of idle
memory access latency is not as much as cache prefetching, it
is still significant: In a regular setting of FB-DIMM, the idle
memory access latency to the memory controller is reduced
from 63ns to 33ns (see Section 4). Nevertheless, for mem-
ory intensive applications the idle memory access latency is
a relatively small component when compared to the memory
queueing delay, so the actual performance gain must be care-
fully evaluated by cycle-accurate simulation.

We have found that the AMB prefetching improves the per-
formance of memory-intensive applications significantly. Our
simulation results show that the AMB prefetching can improve
the performance of SPEC-based memory-intensive workloads
by 16% on average. Our analysis indicates that the perfor-
mance gain comes from both the reduction of idle memory la-
tency and the improvement of bandwidth utilization. The use
of AMB cache reduces the accesses to the DRAM chips and
therefore reduces bank conflicts, which are a major source of
inefficient utilization of memory bandwidth. We have quan-
tified the gains from the two sources, and found that the gain
from better bandwidth utilization is more than that of idle la-
tency reduction for multi-core processors.

We have made the following contributions in this study:
• We have thoroughly studied DRAM-level prefetching for

FB-DIMM. We show that this type of prefetching is a
different class when compared with cached DRAM or
conventional cache prefetching, and prefetching at this
level is surprisingly effective even with software cache
prefetching enabled.

• We have proposed a region-based AMB prefetching
method and have thoroughly evaluated its performance
and analyzed the performance gain. We show that the
performance gain is from both the idle latency reduction
and the improved utilization of memory bandwidth.

• We show that DRAM-level prefetching works well with
the existence of software cache prefetching, and their per-
formance are very complementary.

• We have also evaluated the power saving by the proposed
AMB prefetching and showed that it may save DRAM
energy significantly. This energy saving is extra to the
energy saving from the performance improvement.

The rest of this paper is organized as follows. Section 2 in-
troduces the background of the FB-DIMM. Section 3 describes
the proposed AMB prefetching. Section 4 describes the exper-
imental environment and Section 5 presents the performance
results and analyzes the performance gain of AMB prefetch-
ing. The related work is discussed in Section 6. Finally, Sec-
tion 7 concludes this study.

2 Properties of Fully-Buffered DIMM

Fully-Buffered DIMM (FB-DIMM) is designed to scale
with multi-core processors in both memory bandwidth and
capacity. Today, a DDR2 memory channel using DDR2-
800 chips can provide 6.4GB/s bandwidth. However, be-
cause of the stub bus structure of DDR2 and DDR3 channels,
they can hardly maintain the signal integrity without reducing
the number of memory devices (DRAM chips) and the wire
length [24]. In other words, the maximum memory capacity
per channel may have to drop with the increase of bandwidth.
Furthermore, DDR2 or DDR3 channels use a large number of
pins (240 pins for DDR2 DIMM used in desktop computers),
which limits the number of channels that can be put on a moth-
erboard.

Figure 1: The structure of fully-buffered DIMM with one channel, n
DIMMs and eight DRAM chips per DIMM. The memory controller
is able to connect at least six channels, and each channel may connect
up to eight DIMMs.

Figure 1 shows the structure of FB-DIMM with one chan-
nel connecting n DIMMs. It has a two-level interconnect
structure, the FB-DIMM channel and the DDR2 buses on the
DIMMs2. The AMB (Advanced Memory Buffer) is a key
component in this interconnect structure. The memory con-
troller links to those AMBs through a narrow but high fre-
quency point-to-point bus, forming a daisy chain. Figure 1
shows only one channel connected to the memory controller;
in real systems, multiple channels can be connected to a single
controller. The DRAM chips on a DIMM are connected to the
DIMM’s AMB; they are not directly connected to the channel
bus. The narrow bus runs at a much higher frequency than the
DDR2/DDR3 bus, significantly reducing the number of pins
needed per memory channel. The number of pins per channel
is 69 with a default configuration. In addition, the point-to-
point, daisy-chain connection allows a FB-DIMM channel to

2Unlike in conventional DDR2 memory, here one bus only connects a sin-
gle set of DRAM chips.



support more DIMMs at the cost of increased latency. More
channels and more DIMMs per channel mean the FB-DIMM
technology can support higher memory capacity. Meanwhile,
the use of AMB leaves the DRAM chips unchanged.

The FB-DIMM channel interconnect has two unidirectional
links, southbound link and northbound link, which operate in-
dependently. The southbound link has ten logical signals and
may carry memory commands and data to be written; and the
northbound link typically has fourteen logical signals and car-
ries the read data returned from the DIMMs. Each logical
signal is carried by a pair of wires using differential signal-
ing. The memory controller schedules the commands and data
transfers on both links. During each memory cycle, the south-
bound link can transfer three commands or one command and
16-byte write data; and the northbound link can transfer 32-
byte read data. The maximum bandwidth of the northbound
link matches that of one DDR2 channel. In the future, the FB-
DIMM will support DIMMs using DDR3 channel. A point
worth noting is that the overall bandwidth of a FB-DIMM
channel is higher than that of a DDR2 channel because the
write bandwidth is extra.

The AMB is a small logic component attached to each
DIMM and sits between the memory controller and DRAM
chips. It receives commands and data from the FB-DIMM
channel; and then determines whether the commands and data
are for its memory devices or not. If yes, the AMB will trans-
late the commands and data from the FB-DIMM channel for-
mat to the internal DDR2/DDR3 format; otherwise, it will for-
ward the commands and data to the next AMB or the memory
controller along the FB-DIMM channel. An important feature
of the FB-DIMM is that it has variable read latency (VRL).
The minimum latency of accessing a given DIMM depends on
its logic distance from the memory controller. In other words,
a DIMM close to the memory controller may provide return
data in a shorter latency than a remote DIMM. The FB-DIMM
can also be configured to not supporting the VRL feature. In
that case, every DIMM has a fix minimum read latency, which
is the latency of the farthest DIMM.

3 AMB Prefetching — DRAM-Level Prefetch-
ing for FB-DIMM

In this section, we first discuss the working principles of
AMB prefetching and then describe the design of a region-
based AMB prefetching.

3.1 Working Principles of AMB Prefetching

The AMB prefetching prefetches memory blocks from
DRAM chips to a small cache attached to the Advanced Mem-
ory Buffer. In FB-DIMM, the bandwidth of northbound link
(for read) matches the bandwidth between the AMB and mem-
ory chips of a single DIMM, and the bandwidth of southbound
link (for write) is half of that of northbound link. In a FB-
DIMM channel with multiple DIMMs, the aggregate DIMM-
level bandwidth is significantly higher than the channel band-
width. For example, if a FB-DIMM channel has four DIMMs
with DDR2 chips of 800MT/s (Mega Transfers/second) speed,

the aggregate bandwidth between AMBs and memory chips
is 6.4GB/s × 4 = 25.6GB/s. In comparison, the north-
bound bandwidth is 6.4GB/s; and the southbound bandwidth
is 3.2GB/s, which means the total bandwidth of FB-DIMM
channel is 9.6GB/s.

The benefit of AMB prefetching is twofold: AMB prefetch-
ing shortens the idle memory access latency for AMB-cache
hit and improves the utilization of the FB-DIMM channels.
The idle memory access latency is the time to serve a memory
request when the memory subsystem is idle; in other words,
there is no queueing delay. A DRAM access typically involves
up to three DRAM operations: precharge, activation (row ac-
cess), and data access (column access). If a request hits in
the AMB cache, there is no need for those DRAM operations,
and thus the latency is reduced. In a typical setting, which is
used as default in our experiment, the minimum idle latency
without the AMB cache is the 63ns, and is reduced to 33ns
with the AMB cache. The utilization of channel is also im-
proved because the AMB cache reduces the access frequency
to the DRAM and therefore reduces the DRAM bank conflicts,
which are a major source of inefficiency in the utilization of
memory bandwidth. If an access hits in the AMB cache, the
data can be transferred immediately. By contrast, in the orig-
inal FB-DIMM, every access will fall into the DRAM chips.
If that requires DRAM precharge and/or activation, the FB-
DIMM channel may have to idle.

The working principle of the AMB prefetching is some-
what close to that of cached DRAM [9]: It utilizes the spa-
tial locality in the memory access stream. It is known that the
accesses to the memory subsystems, being filtered by caches,
have little temporal locality but good spatial locality [26]. It
is also known that a small cache may well utilize this local-
ity [10, 7, 12, 27]. Therefore, the AMB cache does not have to
be large. We find that an AMB cache of a few KBs is sufficient.

3.2 The Design of A Region-Based AMB Prefetching

Figure 2: The data layout of four-way cacheline interleaving and FB-
DIMM AMB prefetching.

For simplicity, hereafter AMB prefetching refers to this par-
ticular region-based prefetching method that we designed for
FB-DIMM. The full design of AMB prefetching includes the



following changes: (1) the addition of a small prefetch buffer,
called AMB cache, to each AMB; (2) a tag structure in the
memory controller to trace prefetched data; (3) an extension
to the AMB to issue multiple pipelined column access com-
mands, which are normal DRAM column access operations,
to fetch data from DRAM to the AMB-cache; and finally (4)
an extension to the AMB to return data directly from its AMB-
cache.

The region-based prefetching is a particular way to predict
the prefetching addresses [13]. Our AMB prefetching may
fetch up to K cachelines on a single memory read request,
where K is a small number (ranging from two to eight in our
experiments). Basically, the physical memory access space is
divided into regions of the same size of K cachelines. For
each demand read request, i.e. memory request generated by
demand cache miss from the processor, the memory controller
will send a special column access command to the AMB. The
AMB will first issue a column access command to DRAM for
the demanded data, and then send k − 1 column access com-
mands to DRAM for the prefetching data.

The AMB prefetching requires certain DRAM interleav-
ing schemes. A DRAM interleaving scheme determines how
memory addresses are laid out onto channels, DIMMs and
DRAM banks. Each DIMM may have multiple ranks. Each
rank consists of multiple DRAM chips, which are ganged to-
gether to form a 64-bit logic data path. Only one of the
ranks can be accessed at a time. Each DRAM chip usually
have four or eight internal DRAM banks, and therefore each
DIMM has four or eight logic DRAM banks formed by physi-
cal DRAM banks distributed onto the chips belonging to the
same rank. All physical DRAM banks in a logic DRAM
bank are precharged, activated or column accessed at the same
time. Hereafter DRAM bank refers to a logic DRAM bank
if not mentioned otherwise. Two types of DRAM interleav-
ing are commonly used: cacheline interleaving and page inter-
leaving. With cacheline interleaving, consecutive cachelines
in the physical memory address space are laid out onto the
channels, DIMMs, ranks and DRAM banks sequentially with
wraparound. It is good for exploiting memory access currency
among cachelines. Page interleaving is similar except that it
uses page as the interleaving granularity; here the page size is
the page size of a physical DRAM chip multiplied by the num-
ber of DRAM chips per rank. Page interleaving is good for ex-
ploiting spatial locality: If two cachelines being accessed are
mapped to one DRAM bank, only one precharge and activation
is needed.

We use a multi-cacheline interleaving scheme for AMB
prefetching to exploit both spatial locality and memory ac-
cess concurrency. In this scheme, the interleaving granular-
ity is K cachelines. When one cacheline (precisely a memory
block of cacheline size) is fetched, the other K − 1 cache-
lines in the same region, which are mapped to the same logic
DRAM bank, are transferred to the AMB cache without ex-
tra DRAM precharge and activation. A conventional cache-
line interleaving would map consecutive cachelines onto dif-

ferent DRAM banks or DIMMs, and therefore incur multiple
DRAM precharges and activations. Figure 2 shows an exam-
ple of the four-way cacheline interleaving scheme in a two-
channel system with a single rank per DIMM, two DIMMs per
rank and four internal banks per DIMM. Here four consecutive
cachelines make a group that is mapped to the same DRAM
page; and the continuous groups are mapped to different chan-
nels and banks in a round-robin way. Assume that the AMB
prefetching is applied and the demanded request is on block
six, the corresponding group which includes blocks four, five
and seven will be prefetched. The AMB prefetching may also
be used with page interleaving, also shown in Figure 2. If the
demanded request is on block N, blocks N-1, N+1 and N+2
will be prefetched into the prefetch buffer as long as they are
in the same page. Note that the open page mode should be used
with page interleaving, but the close page mode should be used
with cacheline interleaving or multi-cacheline interleaving. In
practice, the close page mode is widely used because it has
lower implementation complexity.

Figure 3: Structure of AMB prefetching for FB-DIMM system.

Figure 3 shows the overall structure of AMB prefetching.
AMB is a relatively large chip and it is feasible to add a small
SRAM cache as a prefetch buffer. The memory controller
holds the tag part of the cache and the AMBs hold the data
part. In our default configuration, each AMB cache holds 64
cachelines of 64 bytes each and 4KB in total. The tags and
status bits of all AMB cache contents are stored in a prefetch
information table at the memory controller. When a new read
request arrives, the memory controller checks to see if it hits in
the corresponding AMB cache (the data has been prefetched).
If it hits, the memory controller sends a special fetch command
to the AMB; and the AMB will return the data from its cache.
If it misses, the memory controller will send a command to
the AMB to fetch a group of K cachelines. The demanded
cacheline will be fetched first and forwarded to the controller;
and the other prefetched cachelines will be stored in the AMB-
cache. The memory controller updates the prefetch informa-
tion table accordingly. This design does not require any change
to the physical connection between the memory controller and
the AMB, but only some changes to the command protocol.
In the original FB-DIMM, the memory controller sends com-
mands to the AMB in packets; this design will add a few new
encodings to the command packet and logics at the AMB to
respond to those new commands. There is no change to the



DRAM chips. This design does not change the burst length
of the DDR2 bus on each DIMM: The AMB simply issues
multiple, column accesses to the DRAM chips; and the mul-
tiple data transfers on the DDR2 bus are fully pipelined. The
AMB-cache replacement policy is FIFO; LRU is not suitable
for AMB cache because a hit block may be cached in the pro-
cessor and will not be accessed soon. If in a DRAM bank the
currently active DRAM page gets replaced, its cachelines may
stay in the AMB cache until they are replaced.

4 Experimental Methodology

4.1 Simulation Environment

We use M5 [1] as the base simulator and extend the mem-
ory part for simulating multi-channel FB-DIMM with DDR2
memory devices. Software prefetch is supported by M5 and
used in our experiments. The memory simulator uses a cycle-
driven framework that is able to model the memory access
reordering. It also simulates the details of FB-DIMM north-
bound and southbound links, isolated command and data buses
inside FB-DIMM, and shared command and data bus for
DDR2 channel. The simulated memory controller uses the
hit-first policy [18] to reorder pending memory requests, un-
der which row buffer hits are scheduled prior to row buffer
misses. In addition, read requests are scheduled before write
requests unless the number of outstanding write requests is
above a certain threshold. Table 1 shows the major parame-
ters of the pipeline and the memory subsystem; and Table 2
further shows the major parameters of DRAM operations.

Parameters Values

# of proc. cores 1/2/4/8
Proc. speed 4 GHz
Pipeline 8-issue, 21-stage
FUs 6 IntALU, 2 IntMult, 4 FPALU, 2 FPMult
Issue queue 64 entries
ROB 196 entries
Phy. reg. 228 Int, 228 FP
LQ/SQ 32 LQ entries, 32 SQ entries
Branch predictor Hybrid, 8k global + 2K local, 16-entry RAS,

4K-entry and 4-way BTB

L1 caches (per
core)

64KB Inst/64KB Data, 2-way, 64B line, hit
latency: 1 cycle Inst/3-cycle Data

L2 cache (shared) 4MB, 4-way, 64B line, 15-cycle hit latency
MSHR entries Inst:8, Data:32, L2:64
Memory 2/4/8 logic channel, 2 physical channels/logic

channel,
2/4/8 DIMMs/physical channel, 4
banks/DIMM

Channel band-
width

667MT/s (Mega Transfers/second),
DDR2/FB-DIMM-DDR2

Memory buffer 64 entries
Memory con-
troller overhead

12ns

Table 1: Simulator parameters.

4.2 Workload Construction

In our experiments, each processor core is single-threaded
and runs a distinct application. From the SPEC2000 bench-
mark suite [22], we select twelve memory-intensive programs:
wupwise, swim, mgrid, applu, vpr, equake, facerec, lucas,

Para. Value Meaning (delay of)

tRP 15ns PRE to ACT to same bank
tRCD 15ns ACT cmd to RD cmd to the same bank
tCL 15ns RD cmd to RD DATA
tRC 54ns ACT cmd to ACT cmd to the same bank
tRRD 9ns ACT cmd to ACT cmd or PRE cmd to

PRE cmd to different banks
tRPD 9ns RD cmd to PRE cmd
tWTR 9ns WR DATA end to RD cmd
tRAS 39ns ACT cmd to PRE cmd for reads
tWL 12ns WR cmd to WR data bus cycles
tWPD 36ns WR cmd to PRE cmd

Table 2: DRAM parameters.
fma3d, parser, gap and vortex. We construct the multiprogram-
ming workloads randomly from these selected applications,
which are shown in Table 3. Each workload is named with
a format of number of applications–X (workload index). For
example, the workload 2C-1 consists of two applications, wup-
wise and swim. We exclude two memory intensive programs,
art and mcf. Program art has very low miss rate with 4MB
cache and very high miss rate with 2MB cache [8], therefore
its cache miss rate will become unpredictable in our settting.
Program mcf has very low IPC and its relative performance
gain or loss may bias the overall performance gain or loss.

Group Name Benchmarks
2-core 2C-1 wupwise, swim

2C-2 mgrid, applu
2C-3 vpr, equake
2C-4 facerec, lucas
2C-5 fma3d, parser
2C-6 gap, vortex

4-core 4C-1 wupwise, swim, mgrid, applu
4C-2 vpr, equake, facerec, lucas
4C-3 fma3d, parser, gap, vortex
4C-4 wupwise, mgrid, vpr, facerec
4C-5 fma3d, gap, swim, applu
4C-6 equake, lucas, parser, vortex

8-core 8C-1 wupwise, swim, mgrid, applu, vpr, equake,
facerec, lucas

8C-2 wupwise, swim, mgrid, applu, fma3d, parser,
gap, vortex

8C-3 vpr, equake, facerec, lucas, fma3d, parser,
gap, vortex

Table 3: The makeup of workloads.
It is infeasible to run SPEC applications to the completion

in simulation, especially for multi-core workloads. We use the
simulation points suggested by SimPoint 3.0 [19] to control
the simulation time. The simulation stops when one processor
core commits 100 million instructions, the length of a simu-
lation point. We use the SMTspeedup [21] as the metrics to
compare the performance of multi-core execution. It is calcu-
lated as SMT speedup =

∑n
i=1(IPCcmp[i]/IPCsingle[i]), where

n is the number of cores, IPCcmp[i] is the IPC of the program
running on the ith core and IPCsingle[i] is the IPC of the same
program running on the single-core environment.

5 Performance Evaluation and Analysis

We first compare the performance of FB-DIMM and DDR2
briefly as FB-DIMM is a new design. We then present the per-



formance of AMB prefetching, compare several of its variants,
and analyze the sources of performance gain, and then evaluate
the power saving from AMB prefetching.

In the default setting, the FB-DIMM memory subsystem
consists of four memory channels (DDR2 or FB-DIMM) with
data rate of 667MT/s per channel, four DIMMs per channel
and four banks per DIMM, with two memory channels ganged
together to form a logic channel. For the DDR2 memory
and FB-DIMM without prefetching, the cacheline interleaving
with the close page mode is used. For FB-DIMM with AMB
prefetching, multi-cacheline interleaving with the close page
mode is used. Software prefetching to the processor cache
is enabled in the default setting. VRL is not used with FB-
DIMM. We did experiment with VRL and found that the per-
formance improvement from the AMB prefetching is very sim-
ilar to that without VRL; the result is not presented due to the
space limit.

5.1 Comparison of FB-DIMM and DDR2 DRAM

We first compare the performance of FB-DIMM with
DDR2. (A recent study [6] has evaluated FB-DIMM in detail.)
Figure 4 shows the SMT speedup of the workloads with DDR2
and FB-DIMM, using single-threaded execution with DDR2
as the reference points. Thus, the SMT speedup for single-
threaded execution with DDR2 is 1.0. Both of the DDR2 and
FB-DIMM configurations have four channels with compara-
ble bandwidth; the FB-DIMM bandwidth is slightly higher be-
cause the FB-DIMM channel has dedicate data path for mem-
ory writes. Overall, the FB-DIMM system performs compa-
rably or slightly worse than the DDR2 system on single-core
and dual-core processors. The average loss is 1.5% and 0.6%,
respectively. However, the FB-DIMM performs better on four-
core and eight-core processors; the average gain is 1.1% and
6.0%, respectively. Those observations are not surprising: FB-
DIMM has longer idle latency than DDR2 but has higher band-
width and may utilize its bandwidth more efficiently.

Figure 5: The average of utilized bandwidth vs. the average latency
for DDR2 and FB-DIMM.

Memory latency and bandwidth utilization. Figure 5
shows the average utilized bandwidth (the X axis) and the
average latency (the Y axis) observed in the simulation. We
present the utilized bandwidth (or bandwidth usage) instead of
bandwidth utilization because the FB-DIMM and the DDR2
have different total peak bandwidth. The results show that
the average latency is shorter on the FB-DIMM than on the

DDR2 for multi-core configurations. For example, the average
of utilized bandwidth is the highest with the eight-core work-
loads, with 17.1GB/s for FB-DIMM and 16.0GB/s for DDR2.
The average latency of FB-DIMM is only 146ns, compared
with the 155ns average latency of DDR2. As expected, the
single-core workloads utilize much less bandwidth, with only
4.2GB/s on average for both FB-DIMM and DDR2 configura-
tions. The average latency is 62ns and 60ns, respectively. The
observed average latency of FB-DIMM is slightly higher than
that of DDR2, since the idle latency of FB-DIMM is higher
and single-core workloads have relatively low memory-level
parallelism. For workloads whose utilized bandwidth is high,
e.g. 2C-1, 2C-2, 4C-1, 4C-3, 4C-5 and all three 8-core work-
loads, the FB-DIMM system achieves better performance than
the DDR2 system. All three 8-core workloads utilize more
than 14GB/s bandwidth, and their performance on FB-DIMM
is 6.0% better.

Performance of FB-DIMM with varying data rates and
numbers of channel. Figure 6 presents the overall perfor-
mance by varying the data channel rate and the number of
memory channels (hereafter channel refers to logic channel),
which also changes the total memory bandwidth. As expected,
the overall system performance improves as the memory band-
width increases. The above mentioned observations still ap-
ply: On average, the DDR2 performs slightly better for single-
core and dual-core workloads; and the FB-DIMM performs
better for four-core and eight-core workloads. The figure also
quantifies the performance gain of increasing the data rate and
the number of channels. For example, the gain by increasing
the data rate from 533MT/s to 667MT/s is 12.7% on the FB-
DIMM (FBD) for single-core workloads, and jumps to 20.5%
for four-core workloads. The gain by increasing the number
of channels from one to two is 8.8%, and another 5.1% from
two to four, for single-core workloads. The improvement for
eight-core workloads, however, is 75.1% from one channel to
two channels and 49.0% from two to four.

Worth noting is that FB-DIMM scales much better than
the DDR2/DDR3 memories with the increase of data rate
and number of channels. As the data rate increases, it is in-
creasingly challenging to maintain the signal integrity of the
DDR2/DDR3 bus. On the other hand, FB-DIMM can support
up to eight DIMMs at high data rate because of the point-to-
point communication between AMBs; and a FB-DIMM chan-
nel requires much less pins (about 70 pins vs. 240 of DDR2),
making it possible (or cheaper) to use more channels.

5.2 Overall Performance of AMB Prefetching and Perfor-
mance Analysis

Overall performance. Figure 7 shows the overall perfor-
mance improvements by using AMB prefetching. The default
configuration is used: two FB-DIMM logical channels, four-
cacheline interleaving, 64 AMB cache blocks of 64 bytes each,
fully associated AMB cache, and software cache prefetching
turned on. The reference points used in the SMT speedup are
the individual programs’ execution times on single-core pro-
cessor with two-channel DDR2 memory. The overall improve-



Figure 4: SMT speedup of 1-, 2-, 4- and 8-core execution with memory systems of DDR2 and FB-DIMM.

Figure 6: Bandwidth impact on performance.

Figure 7: Performance of AMB-Prefetching (FBD:/FBD-AP: FB-DIMM without/with AMB prefetching).

ment is significant: The average improvement, measured by
the average SMT speedup of FB-DIMM with AMB prefetch-
ing over the average SMT speedup of FB-DIMM without
AMB prefetching, is 16.0%, 19.4%, 16.3% and 15.0% for
single-, dual-, four- and eight-core workloads, respectively.
The maximum improvement on dual-, four- and eight-cores
are 30.7%, 25.1% and 19.7%, respectively. Considering the
relatively simple changes by AMB prefetching to the whole
system, this degree of improvement is significant. Worth not-
ing is that the AMB prefetching also improves the performance
for the single-core workloads; and unlike the conventional FB-
DIMM, it is always better than DDR2 3.

Prefetch coverage and efficiency. Figure 8 shows the
prefetch coverage and efficiency (accuracy). The prefetch cov-
erage is defined as coverage = #prefetch hit/#read. Prefetch

3The figure cannot show the direct comparison between FB-DIMM with
DDR2 except for single-core workloads.

efficiency is defined as efficiency = #prefetch hit/#prefetch.
Our data show that the AMB prefetching has high coverage.
The theoretical upper bound of prefetch coverage for four-
cacheline interleaving is 75%. The AMB prefetching achieves
around 50% prefetch coverage for those configurations with
four-cacheline interleaving. As one might expect, increasing
the prefetch buffer size and associativity can improve both
the prefetch coverage and efficiency. However, increasing the
prefetching ratio K (and the interleaving size) has negative
impact on the prefetch efficiency but positive impact on the
prefetch coverage.

Quantifying the sources of performance gain. There are
two major sources of the performance gain from the AMB
prefetching: The reduction of idle memory latency and the im-
provement of channel bandwidth utilization. For each DRAM
access, the idle latency in the memory subsystem in the de-
fault configuration is 63ns: 12ns for memory controller over-



Figure 8: AMB-prefetch coverage and efficiency for varying number of cachelines in a region (#CL), number of blocks in the AMB cache (#entry)
and set associativity (Set). The default setting is with #CL=2, #entry=64 and full set associativity. The bars with #CL=4, #entry=64 and Set=Full
are identical and are shown for completeness.

head, 3ns for channel command delay, 15ns for activation (row
access), 15ns for column access, 6ns for channel data trans-
fer delay, and 3ns × 4 = 12ns for the extra delay at the four
AMBs. For each AMB hit, the idle latency is 33ns, i.e. 30ns
less for eliminating activation and column access. Worth not-
ing is that the CPU sees longer latency due to on-chip cache
processing. If two accesses fall onto the same DRAM bank
but to different pages, they cause bank conflicts and the two
DRAM activations must be separated by 54ns. If there are no
enough memory requests to fill this gap (nine requests needed
in the default configuration), the channel will have to idle and
the channel bandwidth utilization is reduced. Bank conflicts
appear in single-core setting because many applications have
multiple access streams; and the degree of conflict increases
with the number of cores.

Figure 9: Decomposition performance gain.

We want to see how much performance is from the latency
reduction and how much is from the bandwidth utilization im-
provement. To quantify the effects, we design another set of
experiments in which each AMB-cache hit has the same idle
latency as an AMB-cache miss; however, the DRAM bank is
not activated. In other words, the AMB cache does not re-
duce the idle latency but only bank conflicts. We call it AMB
Prefetching with Full Latency. Figure 9 compares its average
performance (shown as FBD-APFL) with FB-DIMM (FBD)
and FB-DIMM with AMB prefetching (FBD-AP). The differ-
ence between FBD and FBD-APFL indicates the performance
gain for better bandwidth utilization, and the difference be-
tween FBD-APFL and FBD-AP indicates the gain for idle la-
tency reduction. The gains are 8.2%, 10.1%, 8.5% and 9.2%
from better bandwidth utilization, and 7.1%, 8.5%, 7.2% and
5.3% for idle latency reduction, for single-, dual-, four-, and
eight-core workloads, respectively. The gains from the two

sources are comparable. For eight cores, the gain from better
bandwidth utilization is higher than that of latency reduction,
which is expected because the processor is now more affected
by bandwidth than latency.

Figure 10: The average of utilized bandwidth vs. average latency for
FB-DIMM with and without AMB prefetching.

AMB-prefetching and FB-DIMM channel bandwidth uti-
lization. Figure 10 compares the average of utilized band-
width of FB-DIMM with (FBD-AP) and without (FBD) AMB
prefetching. For every workload, the utilized bandwidth of
FBD-AP is significantly higher than FBD, and the latency is
significantly shorter.

5.3 Sensitivity of AMB-Prefetching Performance to Con-
figuration Variants

The default configuration of AMB prefetching uses fully
associative and 64 cache lines (4KB) for prefetch buffer with
four-cacheline interleaving. Figures 11 shows how the per-
formance changes when the set associativity, prefetch buffer
size and the granularity of cacheline interleaving vary. The
number of prefetched cachelines is the same as the granular-
ity of cacheline interleaving. All performance data are nor-
malized to that of the default setting. The first three bars of
each group has the interleaving size (#CL) increasing from
two to eight. As the results show, single- and dual-core work-
loads get higher performance with more cachelines prefetched
per demand access. However, for four- and eight-core work-
loads, four-cacheline interleaving yields the best performance.
A larger prefetch size means a possibly higher prefetch hit rate,
but also longer waiting time for on-demand accesses.

The middle three bars of each group show the performance



Figure 11: Sensitivity analysis.

with three prefetch sizes, 32, 64 and 128 cachelines, with four-
cache interleaving and full associativity. The performance re-
sults are close. This indicates that 32 (2KB) or 64 (4KB) are
large enough for those workloads.

As one might expect, the fully-associative buffer has the
highest performance. However, the two-way associativity can
achieve above 98% performance of that of the full associativ-
ity. The direct mapping does not work well, though, and only
achieves 95.3%,90.5%,87.4% and 87.0% performnace of that
of the full associativity for single-, two-, four- and eight-core
workloads. In practice, we may use the two-way and four-way
set associativity for power saving at the memory controller if
that is a concern. Worth noting is that the set associativity only
affects the power consumption of the tag structure stored at
the memory controller, but not that of the AMB cache struc-
ture. From the cache design perspective, the AMB cache uses
sequential access for the tag and data parts.

5.4 AMB Prefetching and Software Cache Prefetching

An important question is how the AMB prefetching works
with existing cache prefetching methods. Since there are a
large volume of hardware and software prefetching methods,
and the evaluation of those methods is complex by itself, we
choose a relatively simple and reliable method. In the de-
fault configuration, we have turned on the software prefetch-
ing: This is done by setting an option in the m5 simula-
tor to execute software prefetching instructions in the binary
code. The SPEC binary code is pre-built on DEC Alpha com-
puter [25]; the compiler has generated software prefetching
instructions. Software cache prefetching is enabled in the de-
fault setting. In this part of experiment, we turn off the soft-
ware cache prefetching by letting the simulator ignore soft-
ware prefetching instructions, so that we can compare how
well AMB prefetching works with and without software cache
prefetching.

Figure 12 compares the SMT speedup of three designs,
namely AP (AMB prefetching ), SP (software prefetching) and
AP+SP (the combination) normalized to the SMT speedup of
no prefetching at all. For simplicity, we only show the aver-
age of all workloads. We have following observations. First,
software cache prefetching (SP) does improve the performance
significantly. Its speedup is greater than that of AMB prefetch-
ing (AP) alone on single, dual and four cores. However, the

Figure 12: Relative SMT speedup. The complementary between soft-
ware prefetch and AMB prefetching.

speedup drops with the increase on number of cores. With
eight cores, the speedup is less than that of AMB prefetch-
ing. Second, the speedup by using both the AMB prefetch-
ing and software prefetching (AP+SP) is very close to the sum
of SP and AP on single, two, four and eight cores. In other
words, the two prefetchings are complementary to each other,
although they are not fully orthogonal. We speculate two rea-
sons for this scenario: Bank conflict is only reduced by AMB
prefetching, and AMB prefetching may improve the timeliness
of software prefetching [20]. We believe that AMB prefetch-
ing will improve performance similarly if hardware prefetch-
ing is used. We do not include the experiment in this study
because it is challenging to fairly evaluate hardware prefetch-
ing: There are many design variants [23] and some may incur
excessive memory traffic in the worst case.

5.5 Power Saving of AMB Prefetching

The AMB prefetching has a secondary, good effect on
power saving: When a memory access hits in the AMB
cache, the power for DRAM activation and column access is
saved. To estimate the power consumption of memory devices
(DRAM chips), we count the number of row and column ac-
cesses and use an existing calculator [14] of estimating the
power consumption of each pair of activation/precharge and
each column access. By feeding the DDR2 parameters to the
calculator and assuming 70% bandwidth utilization and 0%
row buffer hit rate (using the close page mode), we estimate the
ratio of power consumption between the activation/precharge
and column access to be roughly 4:1. Activation and precharge
are separate operations but their numbers are almost equal un-
der the close page mode with auto precharge. We can use
this ratio to calculate the ratio of power consumption with and
without AMB prefetching, for which our simulator tells the



Figure 13: Power saving for FB-DIMM with AMB prefetching.

number of activation/precharge and the number of column ac-
cess. Note that the tag and data parts of the AMB-cache are
accessed in two steps: The tag array in the memory controller
is searched first and then the data block in the AMB is ac-
cessed. The second step is not associative search and does not
incur extra power consumption related to associative search.

Figure 13 shows the power consumption at all memory de-
vices with AMB prefetching variants, all normalized to that
of the FB-DIMM without AMB prefetching. The estimated
power consumption only includes the dynamic power of the
memory devices, not the static and terminal power. Accord-
ing to the calculator [14], the static power is about 17.5% of
the total power consumption for the above configuration. The
power consumed by the FB-DIMM channels and AMBs is not
included because their degree of activities is almost the same
with or without the AMB prefetching. The power of the AMB-
cache is not estimated either, because it is a very small com-
ponent when compared with DRAM activation, column ac-
cess and DDR2 bus transaction. A final note is that the figure
does not show the energy saving of the processor: As AMB
prefetching improves performance, it also reduces processor
execution time and energy consumption.

As the figure shows, in general, the AMB prefetching can
significantly reduce the power consumption of memory de-
vices. For instance, it can save 29.9% and 14.7% of power
consumption for single-core and four-core workloads using
the four-cacheline interleaving, respectively. Because no row
and precharge operations are required for prefetch buffer hits
and row and precharge operations consume much more power
than column accesses, the AMB prefetching can save the total
power consumption even if it issues some unnecessary column
accesses. Grouping more cache lines together can further re-
duce the number of row accesses but at the cost of more un-
necessary column accesses. For example, for four-core work-
loads, the number of ACT/PRE accesses decreases by 24.0%,
33.3% and 40.6% for one, two and eight-cacheline interleav-
ing, respectively. At same time, the number of column ac-
cesses increases by 19.5%, 41.2% and 61.1%, respectively.
In the extreme case, for eight-core workloads, using eight-
cacheline interleaving will increase the total memory device
power consumption by 12.7%. Thus, the AMB prefetching
must make a balance between reducing the number of row ac-
cesses and increasing the number of column accesses. In addi-
tion, increasing the size or associativity of the prefetch buffer

may save more power of memory devices because of higher
prefetch buffer hit ratio. However, this will increase the power
consumption on the prefetch buffer. We plan to study the trade
off in the future. In general, to balance between the power
consumption and performance, the memory mapping policy
and the prefetch buffer configuration need to be carefully con-
sidered. For our experimental setup, the prefetch buffer with
four-way associativity, 64 cache lines and using four-cacheline
interleaving mode is a good choice.

6 Related Work

The FB-DIMM technology is proposed recently and has
been adopted by the Intel Corp [24]. Nasr used synthetic work-
loads to evaluate FB-DIMM technology [16]. Davis et al. used
FB-DIMM in their CMT study [5], though did not evaluate
FB-DIMM itself. Parulkar and Cypher found that the error
tolerance feature in FB-DIMM makes it more robust than oth-
ers [17]. Recently Ganesh et al. evaluated FB-DIMM in de-
tail [6]. To our best knowledge, this paper is the first work that
study DRAM-level prefetching for FB-DIMM.

This work is closely related to DRAM latency reduc-
tion techniques. Burger et al. evaluated the latency-reducing
techniques such as non-block cache, out-of-order execution,
prefetching, and their demand for high memory bandwidth [2].
They concluded that the processor pin bandwidth would be the
bottleneck of future processors. Cuppu et al. compared the
performance of several DRAM technologies, including Fast
Page Mode, Extended Data Out, Synchronous, Enhanced Syn-
chronous, Synchronous Link, Rambus and Direct Rambus [3].
Zhu and Zhang studied DRAM memory access scheduling of
SMT processor [28].

There have been many studies in hardware or software
cache prefetching [11, 15, 23]. Because of the volume of those
existing studies, we cannot fully cite even the most important
ones. Those prefetching schemes can be evaluated by their
coverage, accuracy, and timeliness [20]. In general, those con-
ventional prefetching schemes may reduce idle memory la-
tency much better than DRAM-level prefetching. Addition-
ally, their coverage may be better because they may observe
full cache miss addresses to predict future misses. However,
inaccurate prefetch is unavoidable and will increase memory
traffic. The increase of memory traffic is particularly an issue
of using those prefetching for multicore processor. A special
case of prefetching is to fetch data from DRAM to memory



controller [13]. This type is closer to cache prefetching than
DRAM-level prefetching because the memory controller and
the CPU is on the same side of the memory bus.

DRAM-level prefetching in this paper refers to the prefetch-
ing of data at the same side of DRAM memories to the memory
bus. In previous studies, the DRAM row buffer is enhanced as
a natural buffer, or SRAM cache is added to the DRAM in the
case of cached DRAM [10, 7, 12, 27]. The prefetching is actu-
ally inside DRAM chips, which enjoys the huge internal band-
width of DRAM, roughly hundreds of GB/s. AMB prefetch-
ing is different in that the prefetching is across the DRAM
chip boundary, and thus the available bandwidth is a small
multiple of the memory channel bandwidth. The prefetching
must be more careful as less redundant bandwidth is available.
David [4] has proposed to use a cache module with each mem-
ory module for prefetching, which is similar to this work in
principle, but no quantitative evaluation was done at that time.

7 Conclusions
In this study, we have studied the DRAM-level prefetching

for FB-DIMM that prefetches data from DRAM chips to the
AMBs of FB-DIMM. We study the design issues in this class
of prefetching and propose a region-based memory prefetching
scheme as the implementation. The experiment results show
that the proposed AMB prefetching significantly improve the
overall performance of single-core and multicore workloads,
and the improvement comes from idle memory latency reduc-
tion and improved bandwidth utilization. Additionally, the
proposed AMB prefetching reduces DRAM power consump-
tion and works well with software cache prefetching.
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