### Lecture 2: Performance Evaluation Performance definition, benchmark, summarizing performance, Amdahl's law, and CPI

#### What Does Performance Mean?

- ♦ Response time
  - A simulation program finishes in 5 minutes
- Throughput
   A web server serves 5 million request per second
- Other metrics
  - MIPS (million instruction per second)
  - MFLOPS
  - Clock frequency

# Execution Time Processor design is concerned with processor consumed by program execution. Shorter execution time=> Shorter response time Higher throughput Execution time = #inst\*CPI\*Cycletime What affects #inst, CPI, and cycle time? Almost all designs can be interpreted Any other metrics is meaningful only if consistent with execution time

#### Performance of Computers

#### Performance is defined for *a program and a machine*.

How to compare computers? Need benchmark programs:

- Real applications: scientific programs, compilers, text-processing software, image processing
- Modified applications: providing portability and focus
- Kernels: good to isolate performance of individual features
  - Lmbench: measure latency and bandwidth of memory, file system, networking, etc.
- · Toy benchmarks
- Synthetic benchmarks: matching average execution profile

#### Performance Comparison

"X is n times faster than Y":

 $\frac{\text{Performance}_{x}}{\text{Performance}_{y}} = \frac{\text{Execution time}_{y}}{\text{Execution time}_{x}} = n$ 

- *n*: speedup if we are considering an enhancement, optimization, etc.
- What does "improving" mean?
  - Improve performance: decrease execution time, increase throughput
  - Improve execution time: decrease execution time
  - Degrade performance: the reverse of the above; brings negative speedup

#### Benchmark Suite

- Benchmark suite is a collection of benchmarks with a variety of applications
  - Alleviating weakness of a single benchmark
    - More representative for computer designers to evaluate their design
  - Benchmarks test both computer and compilers, and OS in many cases
- Desktop benchmarks: CPU, memory, and graphics performance
- Sever benchmarks: throughput-oriented, I/O and OS intensive
- Embedded benchmarks: measuring the ability to meet deadline and save power

| Given the pert<br>how to evalu<br>machines? | formance o<br>late the pe | of a set of<br>erformance | programs,<br>e of |
|---------------------------------------------|---------------------------|---------------------------|-------------------|
|                                             | А                         | В                         | С                 |
| P1 (secs)                                   | 1                         | 10                        | 20                |
| P2 (secs)                                   | 1000                      | 100                       | 20                |
| Total (secs)                                | 1001                      | 110                       | 40                |
| ♦ Which comp                                | uter is the               | e "best" on               | e?                |











#### Amdahl's Law

- Predict overall speedup from "local speedup" by an enhancement, provided the frequency to use the enhancement is know.
  - "Local speedup" is related to design and optimization objectives, like to double CPU frequency, to reduce cache latency by half







| Make Design Choice Using CPU                                                                 |     |       |       |  |  |
|----------------------------------------------------------------------------------------------|-----|-------|-------|--|--|
| Time Equation                                                                                |     |       |       |  |  |
|                                                                                              | FP  | FPSQR | Other |  |  |
| Frequency                                                                                    | 25% | 2%    | 75%   |  |  |
| CPI                                                                                          | 4.0 | 20    | 1.33  |  |  |
| Alternative 1: $CPI_{FPSQR} 20 \rightarrow 2$<br>Alternative 2: $CPI_{FP} 4 \rightarrow 2.5$ |     |       |       |  |  |
| Which one is better? Calculate speedups.                                                     |     |       |       |  |  |
|                                                                                              |     |       |       |  |  |



| SPEC CPU2000 Profiling |            |        |  |  |  |
|------------------------|------------|--------|--|--|--|
| Dynamic instru         | iction mix |        |  |  |  |
| Instruction            | Int avg    | FP avg |  |  |  |
| Load int               | 26%        | 15%    |  |  |  |
| Store int              | 10%        | 2%     |  |  |  |
| Load fp                | -          | 15%    |  |  |  |
| Store fp               | -          | 7%     |  |  |  |
| Add                    | 19%        | 23%    |  |  |  |
| All fp inst            | -          | 41%    |  |  |  |
| Cond br.               | 12%        | 4%     |  |  |  |
| All ctrl inst          | 16%        | 4%     |  |  |  |
|                        |            |        |  |  |  |

#### Other SPEC Benchmarks

- SPECviewperf and SPEapc: 3D graphics performance
- SPEC JVM98: performance of clientside Java virtual machine
- SPEC JBB2000: Server-cline Java application
- ◆ SPEC WEB99: evaluating WWW servers
- SPEC HPC96: parallel and distributed computing

## SPEC CPU2000, WBB99, SFS97 TPC Measuring the ability of a system to handle transactions TPC-C: online transaction processing (OLTP) benchmark (for bank systems) TPC-H: ad hoc decision make support TPC-D: decision make support

- TPC-R: decision make support with standard queries
- TPC-W: simulating business-oriented transactional web server

#### Embedded Benchmark

- EEMBC (Embedded Microprocessor Benchmark Consortium) benchmarks
  - Based on kernel performance
  - Five classes: automotive/industrial, consumer networking, office automation, and telecommunications

Embedded benchmarks are not mature