Modern DRAM Memory
Architectures

Sam Miller
Tam Chantem
Jon Lucas

CprE 585 Fall 2003



100,000 maus

10,000

Introduction

Performance

100 |

10 pooeeeee

Year
© 2003 Elsevier Science (USA). All rights reserved.

Memory subsystem is a bottleneck
Memory stall time will become dominant

New architectures & accessing techniques
proposed to combat these issues
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DRAM Background 1/3

Dynamic Random Access Memory
— Dynamic: leakage requires refreshing

— Random: half-truth, equal read/write time for all
addresses

Built from 1 capacitor, contrast to SRAM

— 4 to 6 transistors; single bit memory cell is larger &
more expensive
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* Accessing DRAM

— Think of a square grid: split address in half
— Half bits for row, other half for column

* Today, most architectures multiplex address
pins
— Read row & column address on two edges
— Saves space, money

* Typically there are more columns than rows
— Better row buffer hit rate
— Less time spent refreshing (just a row read)
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« Multiplexed address Addrosspus  Data Bus
IS latched on
successive clock
cycle




3-D DRAM Representation
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DRAM Operations

* Precharge

— Desired row is read into row buffer on a
mIssS
e Row Access
— Bank is already precharged

e Column Access

— Desired column can be accessed by row
buffer



Memory Access Scheduling 1/3

 Similar to out-of-order execution

* Scheduler determines which set of
pending references can best utilize the
available bandwidth

« Simplest policy is “in-order”
* Another policy is “column first”
— Reduces access latency to valid rows
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(A) Without access scheduling (56 DRAM Cycles)
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(B) With access scheduling (19 DRAM Cycles)
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« “first-ready” policy
— Latency for accessing

Applications
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Fine-grain Priority Scheduling 1/5

* Goal: workload independent, optimal
performance on multi-channel memory
systems

* On the highest level cache miss, DRAM is
issued a “cache line fill request”
— Typically, more data is fetched than needed
— But it may be needed in the future

* For a performance increase, divide
requests into sub-blocks with priority tags
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Split memory requests into sub-blocks
— Critical sub-blocks returned earlier than non-critical
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 Sub-block size can be no less than
minimum DRAM request length

* 16 bytes is smallest size for DRDRAM
* Note: memory misses on other sub-blocks

of the SAME cache block may happen

— Priority information is updated dynamically in
this case by the Miss Status Handling
Register (MSHR)
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« Complexity issues
— Support multiple outstanding, out-of-order
memory requests

— Data returned to processor in sub-block, not
cache-block

— Memory controller must be able to order
DRAM operations from multiple outstanding
requests
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« Compare to gang scheduling
— Cache block size used as burst size
— Memory channels grouped together

— Stalled instructions resumed when whole cache block
IS returned

« Compare to burst scheduling
— Each cache miss results in multiple DRAM requests
— Each request is confined to one memory channel
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 Many new DRAM architectures have been
iIntroduced to improve memory sub-system
performance

* Goals
— Improved bandwidth
— Reduced latency
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« Fast Page Mode (FPM)

— Multiple columns in row buffer can be accessed very
quickly

« Extended Data Out (EDQO)

— Implements latch between row buffer and output pins
— Row buffer can be changed sooner

* Synchronous DRAM (SDRAM)

— Clocked interface to processor
— Multiple bytes transferred per request
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 Enhanced Synchronous DRAM (ESDRAM)
— Adds SRAM row-caches to row buffer

+ Rambus DRAM (RDRAM)
— Bus is much faster (>300MHZz)
— Transfers data at both clock edges

* Direct RAMBUS DRAM (DRDRAM)
— Faster bus than Rambus (>400MHZz)

— Bus is partitioned into different components
« 2 bytes for data, 1 byte for address & commands
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