Modern DRAM Memory Architectures

Sam Miller
Tam Chantem
Jon Lucas

CprE 585 Fall 2003

Introduction

- Memory subsystem is a bottleneck
- Memory stall time will become dominant
- New architectures & accessing techniques proposed to combat these issues

Outline

- DRAM background
- Introduction to Memory Access Scheduling
- Fine-grain priority scheduling
- Review of DRAM architectures

DRAM Background 1/3

- Dynamic Random Access Memory
 - Dynamic: leakage requires refreshing
 - Random: half-truth, equal read/write time for all addresses
- Built from 1 capacitor, contrast to SRAM
 - 4 to 6 transistors; single bit memory cell is larger & more expensive

DRAM Background 2/3

- Accessing DRAM
 - Think of a square grid: split address in half
 - Half bits for row, other half for column
- Today, most architectures multiplex address pins
 - Read row & column address on two edges
 - Saves space, money
- Typically there are more columns than rows
 - Better row buffer hit rate
 - Less time spent refreshing (just a row read)

DRAM Background 3/3

 Multiplexed address is latched on successive clock cycle

3-D DRAM Representation

S. Rixner et al. Memory Access Scheduling. ISCA 2000.

DRAM Operations

- Precharge
 - Desired row is read into row buffer on a miss
- Row Access
 - Bank is already precharged
- Column Access
 - Desired column can be accessed by row buffer

Memory Access Scheduling 1/3

- Similar to out-of-order execution
- Scheduler determines which set of pending references can best utilize the available bandwidth
- Simplest policy is "in-order"
- Another policy is "column first"
 - Reduces access latency to valid rows

Memory Access Scheduling 2/3

(A) Without access scheduling (56 DRAM Cycles)

(B) With access scheduling (19 DRAM Cycles)

DRAM Operations:

P: bank precharge (3 cycle occupancy)

A: row activation (3 cycle occupancy)

C: column access (1 cycle occupancy)

S. Rixner et al. Memory Access Scheduling. ISCA 2000.

Memory Access Scheduling 3/3

- "first-ready" policy
 - Latency for accessing other banks can be masked
- Improves bandwidth by 25% over in-order policy

S. Rixner et al. Memory Access Scheduling. ISCA 2000.

Fine-grain Priority Scheduling 1/5

- Goal: workload independent, optimal performance on multi-channel memory systems
- On the highest level cache miss, DRAM is issued a "cache line fill request"
 - Typically, more data is fetched than needed
 - But it may be needed in the future
- For a performance increase, divide requests into sub-blocks with priority tags

Fine-grain Priority Scheduling 2/5

- Split memory requests into sub-blocks
 - Critical sub-blocks returned earlier than non-critical

Z. Zhang, Z. Zhu, and X. Zhang. Fine-grain priority scheduling on multi-channel memory systems. HPCA 2002.

Fine-grain Priority Scheduling 3/5

- Sub-block size can be no less than minimum DRAM request length
- 16 bytes is smallest size for DRDRAM
- Note: memory misses on other sub-blocks of the SAME cache block may happen
 - Priority information is updated dynamically in this case by the Miss Status Handling Register (MSHR)

Fine-grain Priority Scheduling 4/5

- Complexity issues
 - Support multiple outstanding, out-of-order memory requests
 - Data returned to processor in sub-block, not cache-block
 - Memory controller must be able to order DRAM operations from multiple outstanding requests

Fine-grain Priority Scheduling 5/5

- Compare to gang scheduling
 - Cache block size used as burst size
 - Memory channels grouped together
 - Stalled instructions resumed when whole cache block is returned
- Compare to burst scheduling
 - Each cache miss results in multiple DRAM requests
 - Each request is confined to one memory channel

Contemporary DRAM Architectures 1/5

- Many new DRAM architectures have been introduced to improve memory sub-system performance
- Goals
 - Improved bandwidth
 - Reduced latency

Contemporary DRAM Architectures 2/5

- Fast Page Mode (FPM)
 - Multiple columns in row buffer can be accessed very quickly
- Extended Data Out (EDO)
 - Implements latch between row buffer and output pins
 - Row buffer can be changed sooner
- Synchronous DRAM (SDRAM)
 - Clocked interface to processor
 - Multiple bytes transferred per request

Contemporary DRAM Architectures 3/5

- Enhanced Synchronous DRAM (ESDRAM)
 - Adds SRAM row-caches to row buffer
- Rambus DRAM (RDRAM)
 - Bus is much faster (>300MHz)
 - Transfers data at both clock edges
- Direct RAMBUS DRAM (DRDRAM)
 - Faster bus than Rambus (>400MHz)
 - Bus is partitioned into different components
 - 2 bytes for data, 1 byte for address & commands

Contemporary DRAM Architectures 4/5

V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contemporary DRAM architectures. ISCA 1999.

Contemporary DRAM Architectures 5/5

V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contemporary DRAM architectures. ISCA 1999.