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Abstract—In this paper, we present an algorithm for rotor
angle stability monitoring of power system in real-time. The
proposed algorithm is model-free and can make use of high
resolution Phasor Measurement Units (PMUs) data to provide
reliable, timely information about the system’s stability. The
theoretical basis behind the proposed algorithm is adopted
from dynamical systems theory. In particular, the algorithm
approximately computes the system’s Lyapunov exponent (LE),
thereby measuring the exponential convergence or divergence
rate of the rotor angle trajectories. The LE serves as a certifi-
cate of stability where the positive (negative) value of the LE
implies exponential divergence (convergence) of nearby system
trajectories; hence, unstable (stable) rotor angle dynamics. We
also show the proposed model-free algorithm can be used for the
identification of the coherent sets of generators. The simulation
results are presented to verify the developed results in the paper
on the modified IEEE 162 bus system.

Index Terms—Online Stability Monitoring, Lyapunov Expo-
nents, Transient Stability.

I. INTRODUCTION

Advancement in sensing technologies in the form of PMUs
has made it possible to obtain high resolution, real-time dy-
namic state information of the power grid. This advancement
has presented us with a unique opportunity to develop methods
for real-time monitoring and control of the power grid. There
are increased research efforts in the community to address
stability monitoring and control problems [1]. However, some
serious challenges remain to enable the PMU-based sensing
technology for real-time monitoring and control. The short-
term stability or transient stability problem for the power grid
occurs over a very short 4− 10 sec time period following
a fault. This relatively short time period combined with the
large size of the power network makes it difficult to develop
a reliable method and provide timely information about the
system’s stability. Existing methods employing the power
system model are not particularly appropriate for real-time
stability monitoring application because of the computational
complexity associated with the system’s size. Furthermore,
presence of various sources of parametric and modeling un-
certainties in power system dynamics could also be a cause
for unreliable stability prediction.

To circumvent the problem associated with using this model,
we present a novel model-free algorithm for real-time rotor
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angle stability monitoring. The LE from the ergodic theory of
dynamical systems theory is used as the stability certificate.
The positive (negative) value of largest LE implies exponential
divergence (convergence) of nearby system trajectories; hence,
unstable (stable) rotor angle dynamics [2]. LE has been
utilized in [3] to analyze the rotor angle stability. Furthermore,
an LE-based algorithm has been proposed to identify coherent
generators in [4]. In both [3] and [4], the model-based algo-
rithm is proposed for LE computation. In [2], a model-free LE
computation from the time series has been proposed for short-
term voltage stability monitoring. In this work, we extend the
algorithm, proposed in [2], for real-time rotor angle stability
monitoring.

II. ALGORITHM FOR LE COMPUTATION

The transient stability is defined as the convergence of the
angle difference between the pair of generators. Let there be n
number of generators in the network. The generator angle time
series can be denoted as [θ1(t),θ2(t), . . . ,θn(t)]T ∈ Rn, where
t = 0,∆t,2∆t, . . . ,M∆t, where ∆t is the sampling period. Next,
the angle stability is defined following [5].

Definition 1. The system shows asymptotic angle stability if
for all i, j, there exists a κi j < ∞ such that, limt→∞|θi(t)−
θ j(t)|= κi j.

Following Definition 1, we observe for rotor angle stability
the required relative angle differences tend to be a constant
value for all possible pairs. We take one of the angles, say
θR(t), as reference and define the relative angle difference
with respect to θR(t) as follows, θ̂ R

i (t) = θi(t)− θR(t), i =
1, . . . ,n, i 6= R. The system achieves stability, if each of
θ̂ R

i (t) converges to a constant value. In [2], it has been
demonstrated for stable (unstable) time series the LE goes
negative (positive). Here, we have extended the algorithm
described in [2] to rotor angles in the following manner.

1) For fixed small numbers, 0 < ε1 < ε2, choose N initial
conditions, such that ε1 < |θ̂ R

i (m∆t)− θ̂ R
i ((m−1)∆t)|< ε2 for

m = 1,2, . . . ,N.

2) Define the maximum Lyapunov exponent at
time, k∆t, using the following formula λ R

i (k∆t) :=
1

Nk∆t ∑
N
m=1 log |θ̂

R
i ((k+m)∆t)−θ̂ R

i ((k+m−1)∆t)|
|θ̂ R

i (m∆t)−θ̂ R
i ((m−1)∆t)| ,

where, k > N. The system is transient stable if λ R
i (k∆t) is

negative for all i = 1, . . .n, for sufficiently large k. The number
of initial conditions, N, is a function of parameters ε1 and ε2,
which in turn, is a function of the sampling frequency.
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Fig. 1. Relative angles (t f = 0.08s)
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Fig. 2. Evolution of LE - Stable
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Fig. 3. Relative angles (t f = 0.23s)
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Fig. 4. Evolution of LE - Unstable

The model-based methods proposed in [3] and [4] would
be computationally expensive, due to the large system size
requiring system-wide rotor angle measurements or their es-
timated values. On the other hand, the proposed model-free
algorithm only requires arithmetic and logarithmic operations.
Furthermore, for our proposed algorithm to work, we do not
require system-wide rotor angle measurement. With few rotor
angle measurements, indeed, stability predictions are restricted
to the generators for which the angle measurements are
available. More specifically, with few angle measurements our
proposed algorithm can identify whether the generators under
consideration are moving in synchronism or not. Furthermore,
there may be various sources of error in the power system
model coming from un-modeled dynamics and parametric
uncertainty. These limitations of the model-based approach are
overcome using our algorithm.

III. SIMULATION RESULTS

Simulations have been performed in the IEEE 162 bus
system. The test system has 17 generators, 111 loads, 34
shunts, and 238 branches. The power flow and dynamics data
for the 162 bus system are available in [6]. For a more accurate
load representation, 22 load buses were stepped down through
distribution transformers to the 12.47 kV level. The new low
voltage buses were assigned numbers 163 through 184. To
capture the dynamic behavior of motor loads, the composite
load model represented by CMDL [7] was utilized at the new
representative load buses in the dynamic simulation studies.
The sampling frequency used for the computation of the LE
was 2 samples per cycle (120 Hz) and the values of ε1 and ε2
are chosen as 0.001 and 0.01 respectively.

A 3-phase fault was created at bus 75 at time, t=1 second.
The fault was cleared after 0.08 sec by opening the line
between buses 75 and 9. Figure 1 shows the relative difference

of all generator angles with respect to the angle corresponding
to the generator index 5. Figure 2 shows the corresponding LE
evolution, where all LEs become negative, indicating stable
behavior. For the same fault scenario if the fault duration (t f )
is 0.23 sec, then the system shows unstable behavior, observed
from Fig. 3. The corresponding LEs are shown in Fig. 4. It can
be observed that some of the LEs are positive. The conclusion
drawn from LEs is the system is unstable. It can be noticed
from Fig. 2, and 4, the proposed algorithm can accurately
identify stability or instability, using the sign of LE within a
time window of 2.5 sec. This demonstrates our algorithm is
capable of early detection of instability.

For the unstable scenario, our proposed method can also be
used for online identification of generator pairs going out of
synchronism. Figure 5 shows the exponent values for generator
pairs computed after 4 sec. The rows and columns correspond
to the indices of generators in the system. It can be observed
the instability is accurately predicted as some of the generator
pairs have positive exponents. Furthermore, the generators
have been partitioned into two groups, where two generators
belonging to the same (different) group have negative (posi-
tive) LE values. From Fig. 5, it can be observed the generator
pairs with negative (positive) exponents are achieving (losing)
synchronism. Comparing Fig. 5 with Fig. 6, we observe the
stability prediction and coherent group identification at 4 sec
matches with those for the ones computed at 10 sec. Therefore,
our algorithm opens the opportunity of identifying the coherent
set of generators in transient.
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Fig. 5. LEs for generator pairs, after
clustering, at t = 4 sec.
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Fig. 6. LEs for generator pairs, after
clustering, at t = 10 sec.
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