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Abstract— We consider the problem of controllability degra-
dation in dynamical networks subjected to malicious attacks.
Attacks on the networks are assumed to be in the form of the
removal of interconnection links. We formulate an optimization
problem that seeks sets of links whose removal causes maximal
degradation in the rank of the controllability gramian. We
apply the alternating direction method of multipliers and
sequential convex programming to find local solutions to this
combinatorial optimization problem. We provide illustrative
examples to demonstrate the utility of our results.

Index Terms— Alternating direction method of multipliers
(ADMM), cyber-physical systems, link failure, rank minimiza-
tion, sequential convex programming.

I. INTRODUCTION

Investigating the robustness of networks to targeted and
random attacks is a problem of significant interest across
various scientific communities. Understanding robustness
properties will allow the identification of vulnerabilities
and the design of mitigation strategies against attacks, will
provide insight on the connection between robustness and
network topology, and will aid the design of networks that
are resilient to cyber attacks [1], [2]. Most of the existing
literature in this area has focused on static networks with
relatively simple or no network dynamics. Furthermore,
measures of robustness, such as network connectivity and
average length of shortest paths, are also geared towards
static networks.

In the case of static networks, important high level
conclusions have been drawn from studies that connect
network topology to its robustness. For example, scale-free
networks have been shown to be more robust to random
node removals compared to exponential networks [3]. Since
most real-world networks are composed of interconnected
dynamical systems, it is of interest to develop similar
robustness results for dynamical networks.

In this paper we develop an optimization-based framework
for analyzing the robustness properties of dynamical
networks against link removal attacks. We consider the
problem of identifying small sets of links whose removal will
lead to maximal controllability degradation of the network.
The classical notions of controllability and observability
have received attention lately in the context of complex
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network [4]–[6], where in particular, the problems of finding
the minimum number of control inputs and observation
nodes were studied for large-scale networks. The impact
of stochastic link failures on synchronization in large-scale
dynamical networks was studied in [7]. In the context
of cyber security of power networks, [8]–[10] address
the robustness properties of state estimators to malicious
attacks. A novel metric that combines the controllability
and observability properties of dynamical networks for
vulnerability analysis was developed in [11].

We employ the optimization framework developed in
[12]–[14] to formulate the link removal problem. However,
our work here is different from [12]–[14] in that, rather than
minimizing a system norm, we search for links whose failure
minimizes the rank of the controllability (or observability)
gramian. The latter problem is combinatorial and intractable,
in general. We employ the alternating direction method
of multipliers [15], together with an iterative algorithm
based on sequential convex programming [16], to solve
the optimization problem. We use numerical examples to
demonstrate the utility of our results.

The paper is organized as follows. In Section II we present
the problem formulation. An equivalent formulation, which
better lends itself to convex programming, is presented in
Section III. We apply the alternating direction method of
multipliers and sequential convex programming to find local
solutions in Section IV. Numerical results are presented in
Section V, followed by conclusion and future directions in
Section VI.

II. PROBLEM STATEMENT & FORMULATION

We consider the following discrete-time linear time invari-
ant model for the network

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),

where x(k) ∈ Rn is the state of the network at time k,
u(k) ∈ Rm is the exogenous input, and y(k) ∈ Rp is
the output measurement. The system matrix A models
the interaction among network nodes. We assume that the
network is under attack, and that the attacker has access to
the interconnection links between nodes. The attacker seeks
to remove a few ‘critical links’ whose failure would result
in maximal degradation of the system’s controllability or
observability. In the rest of this paper we will focus only
on the degradation of controllability; the formulation for
observability degradation follows readily from a duality
argument.



Under the attack of a malicious agent, the A-matrix of
the system changes to Af = A + ∆, where the effect
of ∆ is to ‘zero out’ certain (non-diagonal and originally
nonzero) entries of the matrix A; this models the removal
of a link between two nodes. More precisely, we consider
∆ = −A◦F , where F is a matrix with entries in {0, 1} and
◦ denotes elementwise matrix multiplication. For example,
suppose the matrix F is zero everywhere except at its
ijth entry and Fij = 1. This means that the attacker has
dismantled the link between nodes i and j. Therefore
Af = A−A◦F is a matrix that is identical to A everywhere
except at its ijth entry, and (Af )ij = 0.

In general, we may wish to further restrict the class of
matrices in which F is allowed to vary, by constraining it
to a set S. The set S describes which entries of F can be
nonzero and which can not. For instance, if we know that
certain links of the system are completely out of reach of
attackers, then the set S will only include matrices that have
zeros in the entries corresponding to those links, i.e., those
links can never be made to fail by a malicious agent. Also,
the nonzero entries of F allowed by S are a subset of the
nonzero entries of A, since it is not possible to attack a link
that does not exist.

Throughout this work, we assume that link failures do not
result in system instability. For a stable system defined by
the pair (A − A◦F,B), the controllability gramian X � 0
is found by solving the algebraic Lyapunov equation

X − (A−A◦F )X(A−A◦F )T = BBT .

We formulate the optimal link failure problem that causes
maximal degradation of controllability as

minimize rank(X)

subject to X − (A−A◦F )X(A−A◦F )T = BBT

X � 0, F ∈ S, 1TF 1 = κ

Fij ∈ {0, 1}, i, j = 1, . . . , n,

(1)

where the optimization variables are the matrices F and X ,
1 denotes the column vector of all ones, and κ is a positive
integer that denotes the number of failed links. Since the
entries of F take values in {0, 1} the term 1TF 1 counts
the number of unit elements in F .

The above optimization problem is intractable in general
due to (a) the nonconvexity of the rank function, (b) the
nonlinearity of the matrix equality constraint, and (c) the
binary constraints on the entries of F . In the following
section, we propose an equivalent reformulation of (1) that
better lends itself to the application of convex optimization
algorithms.

For simplicity of notation, we hereafter summarize the
binary constraints on the entries of F as

Fij ∈ {0, 1},

with the understanding that this holds for all i, j = 1, . . . , n.
Furthermore, we replace F ∈ S in (1) with the equivalent

constraint
S◦F = 0, (2)

where S is a matrix of the same dimension as F and defined
as

Sij =

{
1 if Fij = 0 is required

0 if Fij is a free variable.

For example, if the diagonal entries of A are out of reach of
attackers (implying that links internal to every node can not
be removed or made to fail) then F will be a matrix whose
diagonal entries are constrained to zero, and (2) becomes
I◦F = 0.

III. AN EQUIVALENT FORMULATION

In this section we reformulate (1) in a way that is
more amenable to relaxations and convex programing. The
following proposition is one of the main results of this work.

Proposition 1: Assuming that A−A◦F is a stable matrix,
the optimization problem (1) is equivalent to

minimize trace(X)

subject to
[

X −BBT (A−A◦F )X
X(A−A◦F )T X

]
� 0

S◦F = 0, 1TF 1 = κ, Fij ∈ {0, 1},

(3)

where the optimization variables are the matrices F and X ,
and the binary constraints on the entries of F are required
for all i, j = 1, . . . , n.

Proof of Proposition 1: We begin the proof by demon-
strating that problem (1) is equivalent to the optimization
problem

minimize rank(X) + ε trace(X)

subject to X − (A−A◦F )X(A−A◦F )T � BBT

X � 0, S◦F = 0, 1TF 1 = κ, Fij ∈ {0, 1},
(4)

for any ε > 0. Problem (4) is the same as (1) except for
the replacement of the Lyapunov equation in (1) with a
Lyapunov inequality and the addition of ε trace(X) to the
objective.

Let L denote the Lyapunov operator L(X) := X − (A−
A◦F )X(A−A◦F )T , defined for stable A−A◦F . The inverse
Lyapunov operator is monotonically increasing, in the sense
that if Q1 � Q2 then X1 := L−1(Q1) � X2 := L−1(Q2).
To see this, let Q1 and Q2 be positive semidefinite matrices
such that Q1 � Q2 � 0. Then

(A−A◦F )kQ1(A−A◦F )kT � (A−A◦F )kQ2(A−A◦F )kT

for k = 0, 1, . . ., and therefore [17]

X1 :=

∞∑
k=0

(A−A◦F )kQ1(A−A◦F )kT

�
∞∑
k=0

(A−A◦F )kQ2(A−A◦F )kT =: X2



if A − A ◦F is stable. Recalling that the solution of the
Lyapunov equation L(X) = Q for Q � 0 and stable A−A◦F
is given by X =

∑∞
k=0(A − A◦F )kQ(A − A◦F )kT � 0,

we have thus shown that X1 = L−1(Q1) � X2 = L−1(Q2)
for Q1 � Q2, with equality holding if and only if Q1 = Q2.

Now suppose X1 and X2 satisfy the Lyapunov inequality
and Lyapunov equation in (4) and (1), respectively. Then the
inequality X1− (A−A◦F )X1(A−A◦F )T � BBT can be
regarded as the matrix equality

X1 − (A−A◦F )X1(A−A◦F )T = BBT + E

for some E � 0. Letting Q1 = BBT + E and Q2 = BBT ,
from the argument in the previous paragraph it follows that
X1 � X2, with equality holding if and only if E = 0.
In particular, this implies rank(X1) ≥ rank(X2) and
trace(X1) ≥ trace(X2), with trace(X1) = trace(X2) if
and only if X1 = X2.

For fixed F , let the positive semidefinite matrix X∗ satisfy
the Lyapunov equation in (1). Then there exist infinitely
many X̌ � X∗ that satisfy the Lyapunov inequality in
(4) and for which rank(X̌) = rank(X∗). However, from
the previous paragraph it follows that the X̌∗ which sat-
isfies the Lyapunov inequality and additionally minimizes
rank(X̌) + ε trace(X̌) is unique and satisfies X̌∗ = X∗.
We conclude that, for fixed F , any X̌∗ that minimizes the
objective rank(X̌) + ε trace(X̌) subject to the Lyapunov
inequality in (4) necessarily satisfies

X̌∗ − (A−A◦F )X̌∗(A−A◦F )T = BBT .

Problems (1) and (4) are thus equivalent.

We now invoke [18, Thm. II.2], which implies that for
fixed F the minimization of trace(X) subject to a linear
matrix inequality in the positive semidefinite matrix X
results in an optimal X that is of minimal rank. This
indicates that the minimization of trace(X) subject to the
matrix inequality in (4) is equivalent to the minimization
of any conic combination of rank(X) and trace(X), and in
particular the minimization of rank(X)+ε trace(X), subject
to the same constraint. Thus, problem (4) is equivalent to the
optimization problem

minimize trace(X)

subject to X − (A−A◦F )X(A−A◦F )T � BBT

X � 0, S◦F = 0, 1TF 1 = κ, Fij ∈ {0, 1}.
(5)

Problem (5) is the same as problem (4) except that
rank(X)+ε trace(X) in (4) has been replaced by trace(X).

Finally, using the identity X = XX†X in which X†

denotes the pseudo-inverse of X , we rewrite the Lyapunov
inequality in (5) as

X − (A−A◦F )XX†X(A−A◦F )T � BBT .

Applying a Schur complement [19, p. 28] to this matrix
inequality yields[

X −BBT (A−A◦F )X
X(A−A◦F )T X

]
� 0,

which is the same as the matrix inequality in (3). The proof
of the proposition is now complete.

IV. SOLVING (3) VIA ADMM

Problem (3) is still nonconvex due to the binary constraints
on the entries of F and the bilinear terms (A − A◦F )X
appearing in the matrix inequality. In this section we use the
alternating direction method of multipliers (ADMM) [15],
which is well-suited for problems with binary constraints,
and sequential convex programming [16] to find local
solutions to (3).

We start by endowing (3) with the redundant elementwise
matrix inequality constraint 0 ≤ F ≤ 11T to obtain

minimize trace(X)

subject to
[

X −BBT (A−A◦F )X
X(A−A◦F )T X

]
� 0

S◦F = 0, 0 ≤ F ≤ 11T

Fij ∈ {0, 1}, 1TF 1 = κ.

(6)

Let f(F,X) be defined as

f(F,X) =


trace(X) if (F,X) satisfies 1st, 2nd,

and 3rd constraints in (6)

∞ otherwise,

and g(F ) defined as [13]

g(F ) =

{
0 if Fij ∈{0, 1} and 1TF 1 = κ

∞ otherwise.

Problem (6) can thus be equivalently expressed as

minimize f(F,X) + g(F ).

To rewrite this optimization problem in a form that lends
itself to the application of ADMM [15] we introduce the
auxiliary variable K,

minimize f(F,X) + g(K)

subject to F −K = 0.
(7)

The augmented Lagrangian corresponding to this optimiza-
tion problem is given by

Lρ(F,X,K,Λ) = f(F,X) + g(K) + trace(ΛT [F −K])

+ (ρ/2)‖F −K‖2F .

ADMM now finds a local solution to (7) by iteratively
executing the following steps for l = 0, 1, . . .,

(F l+1, X l+1) := arg min
F,X

Lρ(F,X,K
l,Λl), (8)

Kl+1 := arg min
K

Lρ(F
l+1, X l+1,K,Λl), (9)

Λl+1 := Λl + ρ (F l+1 −Kl+1), (10)



until both of the conditions ‖F l+1 − Kl+1‖F ≤ ε and
‖Kl+1 − Kl‖F ≤ ε are satisfied. For simplicity, we refer
to (8) and (9) as F -minimization and K-minimization
problems, respectively.

It is not difficult to show that the F - and K-minimization
steps result in the respective optimization problems

minimize trace(X) + (ρ/2)‖F − K̂l‖2F

subject to
[

X −BBT (A−A◦F )X
X(A−A◦F )T X

]
� 0

S◦F = 0, 0 ≤ F ≤ 11T ,

(11)

and
minimize (ρ/2)‖K − F̂ l‖2F
subject to Kij ∈ {0, 1}, 1TK 1 = κ,

(12)

where K̂l := Kl − (1/ρ)Λl and F̂ l := F l+1 + (1/ρ)Λl.
The important observation here is that problem (12), which
has absorbed all of the binary constraints, can be solved
analytically. Indeed, (12) has the closed-form solution [13]

Kij =

{
1 if (F̂ l)ij ≥ [F̂ l]κ

0 if (F̂ l)ij < [F̂ l]κ,

where [F̂ l]κ denotes the κth largest entry of F̂ l. In other
words, to find the solution of (12) we identify the location
of the κ largest entries of F̂ l and set the corresponding
entries of K equal to one. It now remains to solve the F -
minimization problem (11), which we elaborate on in the
rest of this section.

Solving F -minimization Problem (11) via
Sequential Convex Programming

In what follows, we use sequential convex programming
[16] to iteratively approximate (11) with a convex program.
We begin by rewriting (11) as

minimize trace(X) + (ρ/2)‖F − K̂l‖2F + λ trace(Z−)

subject to
[

X −BBT (A−A◦F )X
X(A−A◦F )T X

]
= Z+ − Z−

S◦F = 0, 0 ≤ F ≤ 11T , Z+ � 0, Z− � 0.
(13)

For large enough λ, the minimizer of (13) is equal to that
of (11), [16, pp. 14-15]. To see this, let us denote by Z
the matrix on the left of the inequality constraint in (11).
The matrix Z is set equal to Z+ − Z− in (13), where
both Z+ and Z− are positive semidefinite. Now, rather
than enforcing Z � 0 as in (11), we allow Z to contain a
negative semidefinite component −Z−, but penalize Z− in
the objective. As λ grows, the matrix Z− approaches zero
and the original matrix inequality in (11) is recovered.

We now formulate a convex approximation of (13) by
linearizing the terms (A − A ◦F )X and X(A − A ◦F )T

around our current best estimate (X ,F) of (X,F ). We thus

formulate

minimize trace(X) + (ρ/2)‖F − K̂l‖2F + λ trace(Z−)

subject to
[
X −BBT H(X,F )
H(X,F )T X

]
= Z+ − Z−

S◦F = 0, 0 ≤ F ≤ 11T , Z+ � 0, Z− � 0,

‖X −X‖2F ≤ r2, ‖F −F‖2F ≤ r2,
(14)

where

H(X,F ) := (A−A◦F )X + (A−A◦F)X − (A−A◦F)X .

The function H is a linearization of (A − A◦F )X around
(X ,F), obtained by replacing X , F with X + δX , F + δF ,
where ‖X‖ � ‖δX‖, ‖F‖ � ‖δF‖, writing a Taylor
expansion, eliminating high order terms in δX , δF , and
substituting X−X , F−F for δX , δF , respectively. The last
two inequalities in (14) use the Frobenius norm to restrict
the search to a trust region [16, p. 15] with radius r around
the current best estimate (X ,F); these inequalities can be
equivalently replaced by the constraints[

W X −X
(X −X )T I

]
� 0, trace(W ) ≤ r2,[

V F −F
(F −F)T I

]
� 0, trace(V ) ≤ r2.

Finally, replacing ‖F −K̂l‖2F in the objective with trace(Y )
and adding the additional constraint[

Y F − K̂l

(F − K̂l)T I

]
� 0,

would allow problem (14) to be reformulated as an SDP.

The convex problem (14) is solved as part of an iteration.
The iterative procedure is initialized at F0 := 0 and X0 :=
Xc, where Xc is the controllability gramian of the original
system

Xc −AXcA
T = BBT .

We summarize this in Algorithm 1.

Algorithm 1 Iterative algorithm for local solutions to (11)

1: given ρ, K̂l, S, λ� 1, r, and ε.
2: for i = 1, 2, . . . do
3: If i = 1, set X := Xc, F := 0.
4: If i > 1, set X , F equal to optimal X , F from

previous iteration.
5: Solve (14) to obtain X∗, F ∗.
6: If ‖X∗ −X‖ < ε, ‖F ∗ −F‖ < ε, quit.
7: end for

If Algorithm 1 converges for small enough values of ε and
large enough values of λ, then H(X∗, F ∗) = (A−A◦F ∗)X∗
and Z∗− = 0. We make no claim on the convergence of
Algorithm 1 or the global optimality of the solution that
results from it. However, in our numerical experiments
Algorithm 1 always converges; see Sec. V for examples.



V. EXAMPLES

We briefly explain the conventions we use for visualizing
link removals in directed graphs, for all examples in this
section. Arrowheads are employed to demonstrate the
direction of links. Dashed links are those identified for
removal by the optimization algorithm. Regular nodes are
represented by small dots, whereas larger boxes indicate
nodes through which exogenous inputs enter the network.
In all examples we take the set S, and the corresponding
matrix S, to be such that only the links corresponding
to nonzero and non-diagonal entries of the A-matrix are
subject to failure. We seek the solution of (3) using the
ADMM algorithm described in Sec. IV with parameters
ρ = 1 and ε = 5× 10−6.

Example 1: We consider a network with 5 nodes, an
all-to-all interconnection topology, a randomly-generated
A-matrix, and two independent inputs such that the system
is controllable. Figs. 1(a), (b), (c) respectively demonstrate
computational results for κ = 4, 6, 8. The outcomes for
κ = 4, 6 are not surprising, as the optimization algorithm
selects to remove links emanating from the input nodes,
thus attempting to isolate these nodes from the rest of
the network. For κ = 8 we observe that the algorithm
additionally selects links that are distant from the input
nodes and the removal of which does not further decrease
the rank of the contrallability gramian. We believe this to
be a result of the approximation introduced by linearization
in the optimization algorithm.

(a) (b)

(c)

Fig. 1: Networks for Example 1. Dashed links are those selected
by the optimization algorithm for removal. Figures (a), (b), (c)
respectively correspond to κ = 4, 6, 8.

Example 2: We consider a network with two clusters
as in Fig. 2, interacting only through a pair of directed
links, and assume that the input is injected into the cluster

on the left and ensure that the network is controllable.
Figs. 2(a), (b), (c) respectively demonstrate computational
results for κ = 1, 3, 5. For κ = 1 the algorithm selects a
link originating from the input node, the failure of which
does not lead to a decrease in the rank of the controllability
gramian. It is important to note that the globally optimal
solution in this case is the link that goes from the left
cluster to the right cluster, the failure of which would render
the entire right cluster uncontrollable. When the number
of attacked links is increased to κ = 3, the optimization
algorithm removes all links emanating from the input node.
This leaves the input node as the only controllable node in
the network and thus the rank of the gramian drops to to
one. Not surprisingly, further increase in the value of κ to
5 has no effect on the rank of the gramian.

(a) (b)

(c)

Fig. 2: Networks for Example 2. Dashed links are those selected
by the optimization algorithm for removal. Figures (a), (b), (c)
respectively correspond to κ = 1, 3, 5.

Example 3: We consider a small-world network [20] of
15 nodes, constructed from a regular graph with probability
p = 0.1 of link rewiring. To choose the input nodes with the
highest control authority, we proceed with a greedy method
as follows. We inject an input at a single node and compute
the corresponding controllability gramian and its rank. We
repeat this for all 15 nodes and order them from highest
to lowest rank. For networks whose gramians have the
same rank, ordering is performed according to the condition
number of the gramians. Having obtained an ordered list of
input-node candidates, we now consider two scenarios: in the
first scenario only the best node is taken as the input node,
and in the second scenario the best five nodes are taken as
input nodes. In both cases we choose κ = 10 and implement
the optimal link selection algorithm. The links removed for
the network with one input and five inputs respectively are
shown in Fig. 3 and Fig. 4. It is interesting to note that,



when the network has a single input, the links chosen to
be removed are not all close to the input node. On the other
hand, when the network has five inputs, the links removed
are chosen close to the input nodes.

Fig. 3: Network for Example 3 with one input.

Fig. 4: Network for Example 3 with five inputs.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the desire to identify vulnerabilities
in large-scale interconnected systems, we present an
optimization-based framework for the identification of
critical links whose removal leads to maximal controllability
degradation. Due to the nonconvexity and combinatorial
nature of the optimal link failure problem, we employ
approximations and iterative algorithms to find its local
solutions.

As our numerical experiments demonstrate, the proposed
optimization algorithm is not always successful at finding the
globally optimal solution. Thus, part of our future research
efforts will be to find better convex relaxations of the optimal
link failure problem. Our future work will also focus on the
application of the proposed framework to networks in which
nodes, each described by a dynamical system, are coupled

via specific interconnection topologies such as scale-free,
exponential, random, and small-world. In particular, it is of
great interest to compare the robustness properties of such
dynamical networks with corresponding results reported in
the literature for the case of static networks. We expect to
draw conclusions that help illuminate the interplay between
the internal dynamics of nodes and the network topology,
and use this towards the design of resilient networks.
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selection in large dynamical networks: Noise-corrupted leaders,” in
Proceedings of the 50th IEEE Conference on Decision and Control,
2011, pp. 2932–2937.

[14] M. Fardad, F. Lin, and M. R. Jovanović, “Sparsity-promoting optimal
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