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Abstract—Contingency analysis has been an integral part of
power system planning and operations. Dynamic contingency
analysis is often performed with off-line simulation studies, due to
its intense computational effort. Due to a large number of possible
system variations, covering all combinations in planning studies
is very challenging. Contingencies must be chosen carefully
to cover a wider group of possibilities, while ensuring system
security. This paper proposes a method to classify dynamic
contingencies into different clusters, according to their behavioral
patterns, in particular, with respect to voltage recovery patterns.
The most severe contingency from each cluster becomes the
representative of other contingencies in the corresponding cluster.
Using the information of contingency clusters, a new concept
called dynamic voltage control area (DVCA) is derived. The
concept of DVCA will address the importance of the location
of dynamic reactive reserves. Simulations have been completed
on the modified IEEE 162 bus system to test and validate the
proposed method.

Index Terms—Contingency Analysis, Delayed Voltage Recov-
ery, Spectral Clustering, Voltage Control Area.

I. INTRODUCTION

Contingency analysis is an important tool used to assess
the security of the system under topological changes and
component failures. It has been extensively used in power
system planning and operation studies for deciding preventive
and corrective control actions [1]. Power systems have become
more complex and dynamic because of increasing penetra-
tion of renewables, operating closer to system capacity for
economic benefits, increased use of electronically- controlled
loads and induction motor loads. To ensure secure operation
of the system, a large number of contingencies must be con-
sidered and analyzed during the planning stage. Reference [2]
outlines the challenges involved in performing a contingency
analysis. The large number of possible system variations pose
a major difficulty in covering all combinations in planning
studies. Therefore, contingencies must be chosen carefully in
order to cover a wider group of possibilities, while ensuring
system security.

In this paper, a method is proposed to classify contingencies
into different clusters according to their behavioral patterns.
The phenomenon of fault-induced delayed voltage recovery
(FIDVR) is considered and the pattern in the recovery of
voltages is used for the classification of contingencies. FIDVR-
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related studies have received increased attention from industry
and academic researchers in the recent past [3], [4]. The
importance and urgency assigned to FIDVR during planning
studies is directly related to the degree of induction load
penetration, especially single phase air conditioning (AC) in
the system. Increasing efforts have been made to properly
represent the behavior of induction motor loads in planning
studies [5]. FIDVR is one of the emerging issues that might
affect the reliability of the future grid [6]. The U.S. Depart-
ment of Energy (DOE) Workshops on FIDVR recognized the
growing concerns of utilities over FIDVR events and considers
it a national issue because of the increasing penetration of
residential AC loads [7], [8]. The DOE is sponsoring FIDVR
research activities to promote national awareness among util-
ities, improve understanding of potential grid impacts, and
identify appropriate steps to ensure reliability of the power
system [3]. The major cause for FIDVR events is related to
the dynamic behavior of induction motor loads, which tend to
decelerate and stall, following a large disturbance, resulting in
low voltages in a significant portion of the power system. The
reactive requirement of the induction motor increases when the
induction motor stalls and may prevent quick voltage recovery.
While the disturbance leading to FIDVR problems may be
initiated by different kinds of contingencies, the underlining
problem is an inherent weakness in the power system (lack of
dynamic VAR support). Contingencies in a particular region
affect a certain set of buses and expose the weakness in the
system. This work propose to group the contingencies that
produce similar response in terms of voltage behavior using
clustering procedure. If the contingencies that create similar
effect on the system are grouped together then instead of
considering all contingencies only severe contingency can be
considered for further analysis and planning studies.

In this paper, FIDVR is characterized using a statistical
measure called Kullback-Liebler (KL) divergence measure.
This characterization is used to define the similarity be-
tween contingencies and the spectral clustering algorithm
is employed to identify the contingency clusters. Then, the
most influential buses for dynamic VAR injections are found
by sensitivity studies for the identified severe contingencies.
Using the information of contingency clusters and the most
influential buses, a new concept called dynamic voltage control
area (DVCA) is derived. The concept of DVCA will address
the importance of the location of dynamic reactive reserves.
Identification of effective dynamic VAR support locations to
reduce the risk of FIDVR events is one of the important
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factors identified by NERC planning committee while dealing
with FIDVR studies. Utilities such as Southern California
Edison (SCE), Arizona public services (APS), Center Point
Energy, Georgia Transmission Company have installed static
var compensator (SVC) in their system to provide dynamic
VAR support [3]. This work attempts to develop a systematic
approach to identify the different areas experiencing short
term voltage problems and identify the effective dynamic VAR
support locations using the concept of DVCA. A DVCA is
defined as a section of a power system that responds as a
cohesive unit to avoid short-term voltage stability problems
within that section. For example, given a voltage deviation
within a DVCA, the dynamic reactive resources within that
area respond together to prevent short-term voltage stability
problems in this area. As long as minimum levels of dynamic
reactive reserves are maintained in each area, then the like-
lihood of occurrence of short-term voltage stability problems
will be minimized.

The paper is organized as follows: Section II briefly de-
scribes the characterization of FIDVR using the KL divergence
measure. Section III describes the procedure involved in
contingency clustering. Section IV provides the concept of
dynamic voltage control areas. Simulation studies based on the
modified IEEE 162 bus system have been provided in Section
V. Conclusions are provided in section VI.

II. CHARACTERIZATION OF FIDVR

In this section, the key results from [9] for the charac-
terization of FIDVR using KL measure are presented from
a rigorous analysis and detailed description provided in [9].
To characterize the FIDVR phenomenon, KL divergence, an
entropy-based measure is utilized. Characterization of voltage
waveforms using the KL measure will quantify FIDVR in
a scalar quantity and also be helpful in comparing different
voltage recoveries. The KL divergence is a popular measure
of distances used in statistics and information theory [10],[11].
The major steps involved in calculating the KL divergence for
voltage waveforms are outlined below.

Step 1) The voltage axis is partitioned into N subintervals.
The voltage samples are observed from fault clearing instant to
the final observation time. The number of voltage samples in
each subinterval is counted. This number provides information
about the time the voltage waveform is present in a subinterval.

Step 2) The number of samples in a particular subinterval
is divided by the total number of samples to obtain the nor-
malized subinterval frequency. This generates the probability
density function of the given voltage waveform. Figure 1
(a) shows a slow recovering voltage waveform and the blue
colored bars in Fig. 1(b) is the corresponding probability
density function.

Step 3) Construct the probability density function for the
reference voltage recovery using (1). yi refers to the ith

partition of the voltage axis and corresponds to the voltage
level, vi. The parameter, λ, controls the width of the refer-
ence probability distribution concentrated around the nominal
voltage level, vnom. The normalizing factor, Z, makes the
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Fig. 1. (a) Voltage time series for KL=16.7 (b) Probability density function
for the voltage series in part (a) and ideal voltage recovery.

summation of the reference distribution equal to 1.

pref,i :=
e−λ(yi−vnom)

2

Z
, i = 1, 2...N.

Z =
N∑
i=1

e−λ(yi−vnom)
2

(1)

Step 4) Calculate the KL divergence measure using (2a).
This is the relative entropy between two probability density
functions, p and pref, denoted by K(p||pref). The KL diver-
gence can be further simplified to (2b).

K(p||pref) =

N∑
i=1

pi ln
pi
pref,i

(2a)

K = lnZ +

N∑
i=1

pi ln pi + λ

N∑
i=1

pi(yi − vnom)2 (2b)

The value of KL is bounded below by zero and will be
zero only when the probability distribution generated by the
voltage waveform exactly matches the reference probability
distribution, pref.

The critical value of KL for a general specification of
voltage performance as given in (3) is derived. If the value of
KL is greater than this critical value, then this implies voltage
performance violations. On the other hand if the value is less
than the critical KL, there can be two possibilities (1) there are
no violations (2) the violations are very small and not severe.

v(t) ≥ V1, Tcl ≤ t < T1,

v(t) ≥ V2, T1 ≤ t < T2, V2 > V1,

v(t) ≥ V3, T2 ≤ t ≤ Tf , V3 > V2,

(3)

where Tcl denotes the fault clearing time and Tf denotes the
final time period.

If the voltage time series satisfies the performance condi-
tions mentioned in (3), then the corresponding KL divergence
has the following upper bound,

K∗ :=
1

∆Tf
(∆T1 log ∆T1 + ∆T2 log ∆T2 + ∆T3 log ∆T3)

+
λ

∆Tf
(∆T1(V1 − V ∗)2 + ∆T2(V2 − V ∗)2,

+ ∆T3(V3 − V ∗)2) + logZ − log ∆Tf
(4)



IEEE TRANSACTIONS ON POWER SYSTEMS 3

where ∆T1 := T1 − Tcl, ∆T2 := T2 − T1, ∆T3 := Tf − T2
and ∆Tf := Tf − Tcl.

The WECC performance criteria state that following an N-1
contingency, the voltages at all load and non-load buses should
not exceed its nominal voltage by 25 and 30%, respectively.
Also, the criteria state the voltage at load buses should not
exceed their nominal value by 20% for more than 20 cycles.
For the voltage bounds specified by the Western Electricity
Coordinating council (WECC) voltage performance criteria
[12], the value of the KL measure is calculated as 4.9 with
parameters λ = 450 and N = 50.

In this paper, the KL value calculated with the above men-
tioned parameters and WECC performance criteria boundary
conditions is treated as a critical KL value. A value of the
KL measure above this critical value implies violations in the
performance criteria. The higher the value of the KL measure,
the more severe the violation of WECC performance criteria
at the corresponding bus. When the value of the KL measure
is below 4.9, this implies the voltage signal recovers fast and
also settles within the bounds specified by WECC performance
criteria.

III. CONTINGENCY CLUSTERING

In the planning studies, analyzing all combinations is a
computationally challenging problem, due to the large number
of possible system variations. To alleviate this problem, only
the most severe contingencies are selected, based on certain
performance criteria. However, it is possible the problems
caused by the most severe contingencies are confined to
a certain region and there might be relatively less severe
contingencies that create problems in different regions of this
system. The focus of this work is to select the most important
contingencies from a given set of input contingencies, for anal-
ysis in the planning stage. First, the clustering-based approach
to identify severe contingencies for a given operating condition
is presented. Given a power system with NB buses and a set of
NC possible N-1 contingencies, the goal is to identify sets of
contingencies such that contingencies in the same set would
produce similar patterns of response in the system. Then a
framework for selecting the representative contingencies from
a wide range of operating conditions is provided at the end
of this section. The input set of contingencies, NC , can be
selected based on the operators knowledge about the system,
past experiences, most probable contingencies, contingencies
of severe type etc.

A. Similarity of Contingencies

Using the time domain simulation results, KL divergence at
each bus is computed for all contingencies and the results are
stored in a matrix K̄ ∈ RNB×NC . The element Kij of the
K̄ matrix has the summarized information of the voltage time
series corresponding to the ith bus and jth contingency in a
scalar form. Let Ui and Vj denote the ith row and jth column
of K̄. Ui ∈ RNC contains the KL divergence for the ith bus
for all contingencies and Vj contains the KL divergence for
all buses for the jth contingency. Numerous measures, such as
Euclidean distance, cosine similarity, Pearson and Spearman
rank correlation (SC), are available to describe the similarity

between two vectors. However, for defining the similarity
between the two contingencies it has been found that the SC
yields better results compared to other measures because it
measures the monotone relationship between the KL vectors
corresponding to different contingencies. For computing the
SC value, first the KL measure of the two contingencies
provided in Vj1 and Vj2 are converted to rank vectors, Rj1
and Rj2 , respectively. The bus corresponding to the lowest
KL value is assigned the least rank (rank 1) and the bus
corresponding to highest KL value is assigned the highest
rank (rank N). When there are identical KL values in a
contingency vector, then a rank equal to the average of their
positions in the ascending order of values is assigned to the
buses corresponding to rank ties. The rank vectors are used to
compute the Spearman correlation using (5).

rs :=

∑NB
k=1 (Rj1(k)− r̄j1) (Rj2(k)− r̄j2)√∑NB

k=1 (Rj1(k)− r̄j1)
2∑NB

k=1 (Rj2(k)− r̄j2)
2
,

wherer̄j1 :=
1

NB

NB∑
k=1

Rj1(k), r̄j2 :=
1

NB

NB∑
k=1

Rj2(k),

(5)

rj1 and rj2 denotes the mean values of rank vectors corre-
sponding to contingencies j1 and j2, respectively.

The Spearman rank correlation, rs, works on the ranks of
two vectors, instead of the actual data provided in the vectors.
It takes values between +1 and -1. When rs takes the value of
1, it indicates a perfect association of ranks between the two
contingencies and a value of -1 indicates a perfect negative
association of ranks (highest ranked bus in contingency 1
becoming lowest rank in contingency 2 and vice versa). A
value of rs close to zero signifies a weak association between
ranks of the two contingencies.

B. Spectral Clustering Algorithm

A spectral clustering technique [13] is utilized to group the
contingencies into different clusters based on the similarity in-
formation. The Spearman rank correlation is used to define the
similarity between contingencies. The following steps describe
the algorithmic procedure involved in grouping contingencies
using spectral clustering technique.

Step 1) Pre-processing: This step chooses the set of contin-
gencies and buses that must be considered for further analysis.
When the affected region is very small compared to the total
number of buses, the computed correlation will lead to mis-
leading similarity information between the two contingencies.
Therefore, neglecting non-severe contingencies and buses will
improve the accuracy of the results. The threshold values to
determine severe contingencies and buses from non-severe
cases are system and user dependent. The threshold values
for the selection of contingencies and buses are provided as
an input to the cluster analysis.

Step 2) Similarity matrix (S): The similarity matrix de-
fines the distance between each contingency with respect to
all other contingencies. First, compute the SC between two
contingencies, j1 and j2, using (5). Then, the SC values are
converted into the distance measure by using the transforma-
tion dj1j2 = 1−rj1j2s . The value of dj1j2 provides the distance
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measure between the two contingencies, j1 and j2. If the two
contingencies affect similar buses in the same rank order, then
the corresponding correlation value will be close to 1 and the
distance between them is close to zero. If the SC value is -1,
then the distance will have a value of 2, indicating dissimilarity
between the two contingencies. Since the SC value lies in the
range of -1 and 1, the distance measure will lie in the range
of 0 to 2.

Step 3) Adjacency matrix (A): Calculate the adjacency
matrix (A) using a Gaussian similarity function as shown in
(6a). The parameter, kp, scales the similarity function value
and σ is the connectivity parameter, which defines the extent
of similarity between two contingencies. The degree matrix, D,
is a diagonal matrix with entries s1, .., sj , .., sRC , as defined
in (6b), along its diagonal.

Aj1j2 = kpe
−
dj1j2
σ , Aj2j1 = Aj1j2 , j1 6= j2, and (6a)

sj =

NRC∑
k, k 6=j

A(j, k), A ∈ RNRC×NRC . (6b)

NRC denotes the reduced number of contingencies that have
been obtained after the pre-processing step.

Step 4) Calculate the graph Laplacian matrices using (7).
Matrix L and Lnorm represent the unnormalized and normal-
ized graph Laplacian matrix, respectively. Lnorm is a positive
semi-definite matrix and have NRC non-negative real valued
eigenvalues, 0 = λ1 ≤ · · · ≤ λNRC .

L = D −A.
Lnorm = D−

1
2LD

1
2 .

(7)

Step 5) Identify the preliminary number of clusters using the
eigenvalues analysis on the Laplacian matrix. If the eigenvalue,
0, has a multiplicity of k, this implies there are k fully
disconnected clusters. However, this is an ideal scenario and
does not happen in power systems. There are a number of
methods available in the literature for choosing the initial
number of clusters, k, for the clustering algorithm. Of the
available methods, the eigengap heuristic is used to identify
the initial number of clusters, where the goal is to identify the
number, k, such that all eigenvalues, λ1, · · · , λk, are small,
but λk+1 is relatively large.

Step 6) Compute the first k eigenvectors, e1, · · · , ek, of
normalized graph Laplacian matrix, Lnorm.

Step 7) Form the matrix E ∈ RNRC×k using the first k
eigenvectors, e1, · · · , ek, as columns. Let yj ∈ Rk, j =
1, · · · , NRC be the vector corresponding to the j-th row of E.
yj denotes the jth contingency from the reduced contingency
list in the lower dimensional space. The key aspect of the
spectral clustering algorithm is to change the representation
from abstract data points Vj in higher dimensional space to
yj in lower dimensional space. The change of representation
enhances the cluster properties in the data so the clusters can
be identified easily in the new representation, using K-means
clustering.

Step 8) Cluster the points, yj , using K-means algorithm
into different clusters, C1, · · · , Ck. The K-means algorithm

partitions the data points, yj , in the matrix, E, into k clusters.
The K-means algorithm identifies the clusters, such that it
minimizes the sum of the distance for each data point in the
cluster to the centroid of the corresponding cluster.

Step 9) For each identified cluster, recompute the Laplacian
matrix with contingencies belonging to the corresponding
cluster. Checking further clustering is possible by investigating
the dominant eigenvalues of the new Laplacian matrix. If
further clustering is possible, repeat the clustering algorithm
from Step 5. If further clustering is not possible, stop the
clustering algorithm and provide the final results.

A result of contingency clustering is contingencies that
produce similar behavioral patterns in system voltage response
are grouped together in different clusters. The most severe
contingency in each cluster will act as a representative for
all other contingencies in the corresponding cluster. Only
these representative contingencies, which represent all other
contingencies, are considered for further analysis. Also, the
cluster analysis provides the most severely affected buses
corresponding to each cluster. The application of clustering
based on similarity information reduces the complexity of
planning problem, especially when dealing with large scale
system. Also, this approach provides a systematic way to
reduce the complexity of dealing with multiple contingencies.

C. Contingency Clustering - Multiple operating conditions

The power system undergoes continuous variation in loads,
generation and system configuration. This presents a large
number of scenarios that have to be taken care of during
planning stage. The scenarios (operating conditions, load
levels, contingencies) have to be chosen carefully such that
it covers a wider group of possible cases. The clustering
procedure described in section III-B can be extended to reduce
the number of scenarios to be analyzed.

IV. Identification Of 

DVCA

(Section IV)

I. Clustering at different Operating Points

Grouping of 

Overlapping Clusters

II. Level 2 Clustering

III. Master Contingency 

Clusters 

x

y

z

Fig. 2. Contingency clustering framework for multiple operating conditions

Figure 2 provides the framework for handling multiple
scenarios and operating conditions in the process of DVCA
identification. First, the clustering of contingencies is per-
formed at different operating conditions. Second, the result-
ing clusters are further grouped based on their similarity.
Numerous measures such as rand index, mirkin distance,
Jaccard index, variation of information (VOI) are available to
compare the similarity between clusterings. A clustering, Ci,
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is a group of contingency clusters at one operating condition.
The variation of information (VOI) metric calculated by (8a)
is used to find the similarity between clusterings [14]. H(Ci)
is the entropy associated with clustering of contingencies at
operating condition, i and is computed using (8b). Ki and
Kj denotes the total number of clusters in clusterings Ci
and Cj respectively. The number of contingencies in the kth

cluster in clustering Ci is denoted as nki and Nc represents the
total number of input contingencies. I(Ci, Cj) has the mutual
information between the clusterings Ci and Cj . The VOI
metric measures the amount of information lost and gained
in forming clustering Cj from Ci. Consequently, lower values
of VOI implies better similarity between the clusterings.

V OI(Ci, Cj) = H(Ci) +H(Cj)− 2I(Ci, Cj), (8a)
V OI ∈ [0 logNc]

H(Ci) = −
Ki∑
ki=1

P (ki)logP (ki), (8b)

I(Ci, Cj) =

Ki∑
ki=1

Kj∑
kj=1

P (ki, kj)log
P (ki, kj)

P (ki)P (kj)
(8c)

P (ki) =
nki
Nc

, P (ki, kj) =

∣∣Cki ∩ Ckj ∣∣
Nc

(8d)

The VOI metric can be normalized by its maximum value
(logNc) and can be used as the distance metric to compute
the graph Laplacian matrix (Refer Sec. III-B). Utilizing the
eigenvalue analysis of this Laplacian matrix, k-means cluster-
ing is performed to group the similarly behaving clusterings.
The representative contingencies from different groups of
clusterings forms the final contingency set that is used for
the identification of DVCA.

IV. DYNAMIC VOLTAGE CONTROL AREAS

Reference [15] describes a method to identify voltage
control areas based on steady state analysis. This method
uses the PV curve tracing method to push the system to the
point of instability for all considered contingencies. For each
considered case, modal analysis is performed at the point of
instability to identify the critical modes of instability. Based
on the participation factors (PFs) of buses corresponding to the
critical mode, data mining techniques are employed to identify
contingency clusters and the voltage control area (VCA). The
measure used for contingency clustering is similarity in PFs.
Generators that have high PFs are chosen as the initial set
of control candidates to represent each contingency cluster.
The PFs corresponding to zero eigenvalue (critical mode)
indicate the buses contributing to the instability. In this work
for identifying DVCA, the KL measure is used to define
the similarity between contingencies (Refer section:III-A).
The KL measure indicates the relative participation of buses
contributing to short-term voltage problems. Figure 3 provides
the important steps involved in the process of identifying
DVCA.

Step 1) Clustering of contingencies: Groups of contingen-
cies behaving similarly are identified through the clustering

Contingency Clustering (Clusters i=1...k )

Selection of representative 

contingencies

Selection of preliminary 

candidate locations

Specify Min/

Max kV Level

Inject dynamic VAR at selected location  j , 

Observe ΔKL at all monitored buses

Identify the influenced buses for 

the selected location  j 

Injections performed at 

selected candidate locations ?

Identification of effective 

control locations (MILP 

problem)

Mapping of effective control 

locations to preliminary 

DVCA set

Formation of dynamic 

voltage control areas

Power system dynamic 

simulation results

Set of  

contingencies

N Y

Formation of 

preliminary DVCA

Contingencies belonging to   

each cluster, i=1...k

Affected buses - (a) Common 

between clusters, (b) Specific 

to each of the clusters

Input

Section III

Steps 4-5 Step 6

Step 7

Step 3

Steps 1-2

Fig. 3. Overview of steps involved in the identification of dynamic voltage
control areas

procedure (Refer Section III-B). The most severe contingency
from each cluster is a representative of all other contingencies
in the corresponding cluster. Only the representative contin-
gencies are chosen for further analysis.

Step 2) Identification of affected buses: For each cluster,
all buses with violations of performance criteria form the set
of violated buses corresponding to the cluster. Among the
violated buses, some buses are affected only by contingencies
specific to a particular cluster and some buses are affected
by contingencies belonging to different clusters. The affected
buses are grouped into different sets, such as specific to each
clusters and common between clusters through a hierarchical
clustering procedure. The number of common affected buses
between clusters is used as the similarity measure for the
hierarchical clustering procedure.

Step 3) Identification of preliminary DVCA: Each set of
affected buses along with its corresponding contingency clus-
ters form the preliminary DVCA. The contingency clusters
provide the group of contingencies that result in the violations
in the buses belonging to its DVCA. For example, if the set of
affected buses correspond to buses common to two clusters,
then contingencies corresponding to these two clusters have
influence on this set of buses.

Step 4) Identification of potential control candidate lo-
cations: In the DVCA identification procedure, one of the
challenges is to identify the initial control candidate locations,
which are effective locations for placing dynamic reactive
resources. Placement of dynamic VAR devices, such as SVC
and STATCOM, at lower kV levels is relatively cheap, but it
will not help wider range of buses in the system. On the other
hand, placing them at higher kV levels helps a wider range
of buses to improve their voltage levels, but is very costly.
Therefore, based on economic considerations, the loads buses
between the specified minimum and maximum kV levels are
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chosen as preliminary candidate locations.

Step 5) Sensitivity studies: The influence of potential control
candidate locations is identified through sensitivity studies.
The trajectory sensitivity index (TSI) is used in [16] to identify
the relative effectiveness of locations for placing dynamic
VAR sources. Similar to TSI, sensitivities to the KL measure
are used to capture the effectiveness of selected candidate
locations. For the representative contingencies, the change in
KL measures at all monitored buses to injection of dynamic
VARs at the chosen candidate locations are calculated.

Step 6) Identification of effective control locations: The ef-
fective control locations are identified by a mixed integer linear
programming (MILP) problem utilizing the KL sensitivities
from Step 5. The constraints of the MILP include the specified
performance criterion on KL values at all monitored buses and
limitations on the maximum amount of reactive sources that
can be placed at each location. Details of the MILP problem
are provided in section IV-A. The MILP identifies the effective
control locations and amount of dynamic VARs required to
meet the specified KL performance criteria, considering the
representative contingencies from cluster analysis.

Step 7) Identification of DVCA: The effective control lo-
cations identified by the MILP problem are mapped to its
corresponding preliminary DVCA set. The mapping results in
effective control locations that influence a set of affected buses
for a given set of contingencies. After mapping, if a prelim-
inary DVCA set does not have any control locations, then it
is merged with its corresponding common preliminary DVCA
sets. The area of influence of control candidate locations are
identified from the sensitivity study results. For injection of
dynamic VARs at a control location, the buses that produced
a change in the KL value above a certain specified threshold
value form the area of influence for the corresponding control
location. Each resulting group with a set of contingencies,
affected buses, and effective control locations forms a DVCA.

A. Mixed Integer Linear programming problem for finding
effective control locations

Sensitivity studies with different levels of dynamic reactive
power injection are performed to identify the influence of
VAR injections on the KL measure at different buses. The
results of sensitivity studies are utilized to formulate the MILP
optimization problem. The general formulation of the MILP
optimization problem for handling multiple contingencies is
provided in (9).

The parameters, CiB , CiQml , denote the fixed cost and
variable cost respectively, based on the size of the dynamic
VAR device at location i. The status of the integer variable,
Bi, determines the selection of location i for dynamic VAR
placement. The variable, Qiml, provides the amount of dynamic
VAR device required at location i for contingency m and level
l. The integer, W i

ml, is an indicator variable that indicates
whether Qiml has reached its corresponding range limit, QR,iml .
The maximum capacity of the dynamic VAR device at a partic-
ular location is given by Qimax. The constants, Ncont, Nlev, NLoc,
define the number of contingencies, the number of levels
used for dynamic VAR injection in sensitivity studies, and

the number of initial candidate locations, respectively. Sets
SMon and SCont define the sets of monitored buses and
contingencies, respectively.

minimize
B,Q

F =

NLoc∑
i

CiBB
i +

Ncont∑
m

Nlev∑
l

NLoc∑
i

CiQmlQ
i
ml,

Subject to

(C1) :

NLoc∑
j

∂Ki

∂Qjml
Qjml ≤ K

∗ −K(0)
m,i,

(C2) :

Nlev∑
l

Qiml ≤ BiQimax,

(C3) : QR,imlW
i
ml ≤ Qiml ≤ Q

R,i
mlW

i
m(l−1),

∀i ∈ SMon, ∀m ∈ SCont,

B ∈ {0, 1}, Q ∈ RNLoc , W ∈ {0, 1}

(9)

The objective of this MILP formulation is to identify
effective control candidate locations and the minimum amount
of dynamic reactive power needed to meet the required per-
formance constraints (set C1). The performance constraints
include the KL divergence measure at the monitored buses
should be less than the critical value of the KL divergence
measure for all the contingencies. For contingency m, K(0)

m,i

is the base case KL measure at location i. K∗ denotes the
critical value of the KL divergence measure based on WECC
performance criteria (Refer section II). The constraints set
C2 provide limits to the maximum amount of dynamic VAR
placed at a given location. The constraints set C3 is included
to preserve the linearity of the optimization formulation.

V. SIMULATION RESULTS

Simulations have been performed in IEEE 162 bus system.
The test system has 17 generators, 111 loads, 34 shunts, and
238 branches. The power flow and dynamics data for the
162 bus system are available in [17]. The total generation
capacity and load of the system are 20.60 GW and 17.27 GW
respectively. For a more accurate load representation, 22 load
buses were stepped down through distribution transformers
to the 12.47 kV level, and the new low voltage buses were
assigned the numbers 163 through 184. Dynamic simulation
studies are performed using PSSE software [18]. To capture
the dynamic behavior of motor loads, a composite load model
represented by CMDL was used at the new representative load
buses. Additionally, composite load models were also used to
represent motor loads at the major load centers (zones 3 and 6).
Of the total load for each bus, 30% is specified as three-phase
induction motor loads and 35% as single-phase air conditioner
loads.

The modified IEEE 162 bus system has NB buses (184) and
a total of NC contingencies (316) of the type, a three-phase
fault at a bus cleared after 6 cycles by opening one of the
transmission lines connected to the faulted bus is considered
for simulation studies. The voltage time series corresponding
to bus i and contingency j are stored in the vector, vij(t), 0 ≤
t ≤ Tf , i ∈ NB , j ∈ NC . Tf represents the final simulation
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time instant chosen as 5 seconds for all the simulations.

In the pre-processing step, only those contingencies affect-
ing more than 5% of the total number of buses are considered
for further analysis. This reduces the number of contingencies
from 316 to 71. Also, the KL values for buses that do not
have violations for more than 10 contingencies are discarded
for further analysis. A more detailed analysis and discussion
on the severity of contingencies and buses are provided in [9].
After the pre-processing step, the K̄ ∈ RNB×NC has been
reduced to K̄ ∈ R70×71.

The correlation matrix, as plotted in Fig 4, shows the
correlation values between different contingencies, where the
rows and columns represent the contingency identification
numbers (cIDs) in the reduced contingency list. The different
colors in the matrix plot corresponds to SC values as indicated
along the sidebar in fig 4. When the correlation value is
close to 1, the matrix block has shades of red signifying the
strong similar behavior between the cIDs given by the row
and column number (e.g. cIDs 4 and 5). Similarity signifies
both the contingencies affect the same set of buses in the
same rank order based on the KL values. When the correlation
value decreases below 0.6, then the contingencies exhibit weak
correlations. When the correlation value become negative,
the matrix block has shades of blue, signifying dissimilarity
between these corresponding contingencies (e.g. cIDs 1 and
32). Dissimilarity signifies buses severely affected by one
contingency are not affected by another contingency.
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Fig. 4. Plot of Spearman’s rank correlation between all contingencies. Rows
and columns represent indices of different contingencies.

The SC values between contingencies are converted into dis-
tance between contingencies using the transformation provided
in Step 2 of section III.B. Strongly correlated contingencies
will have a distance close to 0 and weakly correlated contin-
gencies will have a distance close to 2. Since the correlation
between contingencies changes from strong to weak, the
corresponding distance between them increases from 0 to 2.
The distance between contingencies is used to compute the
adjacency matrix utilizing a Gaussian similarity function. The
computed adjacency matrix using (6a) will have values in the
range of 0 to 1. A value of 1 in the adjacency matrix implies
contingencies belonging to corresponding row and column
are adjacent and belong to the same group of contingency
cluster. If the adjacency value between two contingencies is
close to 0, then it implies they are dissimilar and belong to
a different contingency cluster. The goal of the clustering

algorithm is to group contingencies with adjacency values
close to 1 with respect to each other. Such groupings will
result in contingencies that create a similar voltage response
in the system placed in the same cluster.

Figure 5 shows the eigenvalue plots for the analysis of 71
contingencies. From the eigenvalue analysis of the normalized
Laplacian matrix, the preliminary number of clusters is 2. The
first two eigenvectors of the matrix Lnorm are used to represent
the similarity data in a reduced dimensional space. K-means
clustering algorithm is performed using the number of clusters
and corresponding eigenvector data. The distance measure
used by the K-means algorithm is city block distance. Figure
6 shows the plot of the second eigenvector after rearranging
the rows based on K-means cluster results. If the eigenvector 2
is thresholded at -0.05, then the part below -0.05 corresponds
to cluster 1 and the part above -0.05 corresponds to cluster
2. Each data point in Fig. 6 corresponds to a contingency ID.
The number of contingencies in the two different clusters are
29 and 42.
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Fig. 6. Plot of eigenvectors

When the correlation information between the contingencies
is placed in random order as shown in Fig. 4, the presence
of clusters is difficult to discern. However, after clustering
analysis, the two clusters, shown by red colored regions along
the diagonal of the adjacency matrix, are clearly separated in
Fig. 7. The shades of red imply contingencies have strong
similar behavior with respect to the other contingencies in the
same cluster and shades of blue imply their separation from
contingencies in other clusters. There are 29 contingencies in
cluster 1 and 43 contingencies in cluster 2, as indicated in Fig.
7. The contingencies are ordered such that the most severe
contingency in a cluster is placed first and the least severe
contingency is placed last. For example, cIDs 1 and 30 are
the most severe contingencies in clusters 1 and 2, respectively.
Similarly, cIDs 29 and 71 are the least severe contingencies
in clusters 1 and 2, respectively. The first 24 contingencies
in cluster 1 exhibit strong similar behavior with respect to
each other, where as cIDs 25-29 exhibit a strong similarity
among themselves, but relatively weak similarity with respect
to the other contingencies in the cluster. This is due to the
fact these five contingencies are less severe and affect only
a subset of buses affected by the most severe contingency in
cluster 1. It can be also noted these contingencies exhibit a
strong dissimilarity with contingencies in cluster 2. Similarly,
a few contingencies in cluster 2 exhibit a weak correlation
with other contingencies in cluster 2, but they have a strong
dissimilarity with cluster 1 contingencies.
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Fig. 7. Plot of Adjacency Matrix - After clustering. Rows and columns
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A. Validation of Clustering Results

Cluster validity refers to the procedure of evaluating the
results of the clustering technique. In this paper, validation
is accomplished using internal criteria of validating cluster-
ing procedure. With respect to the internal criteria, the two
commonly used measures for validating clustering results
are compactness and separation. Compactness measures the
closeness of contingencies within a cluster and separation
measures how distinct or well separated a cluster is from
other clusters. A silhouette coefficient combines the idea of
both cohesion and separation for clusters and clusterings [19].
Silhouette values help interpret cluster results and provide a
graphical representation of how well each object lies within
its cluster. The silhouette value for the ith data point, s(i),
is calculated by using the formula, s(i) = b(i)−a(i)

max{a(i),b(i)} .
The average dissimilarity of ith contingency with all other
contingencies within the same cluster is denoted by a(i).
The average dissimilarity of the i with contingencies of other
clusters where contingency i is not a member is calculated
and the lowest dissimilarity is denoted as b(i). The city block
distance measure, as used in k-means clustering, is used to
define the dissimilarity. The value of a(i) defines how well
the contingency, i, is related to the cluster it belongs. When
the value of a(i) is smaller, the matching of contingency i to
its assigned cluster is better. The value of b(i) defines how well
contingency i is separated from other clusters. The larger the
value of b(i), the poorer is the matching of contingency i to the
other clusters. The value for s(i) lies between -1 and 1. When
the value of a(i) << b(i), then the value for s(i) will be close
to 1. A value of s(i) close to 1 signifies the corresponding
contingency is properly clustered. When the value of s(i) is
close to 0, then the contingency is on the border line between
two clusters. When the value of s(i) is close to -1 signifies a
misclassification of the contingency.

For illustration of clustering validation, sample plots of
silhouette values for two different numbers of clusters (k=2
and 4) are shown in Figs. 8 and 9. The average silhouette
value for clustering with k as 2 and 5 are determined 0.8739
and 0.6039, respectively. The higher the value of the average
silhouette value, the better the clustering result. When the
value of k is specified as 4, some of the silhouette values
become negative, indicating the contingencies are improperly

clustered.
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Fig. 8. Silhouette plot for clustering
with k=2. Average Silhouette value is
0.8739
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Fig. 9. Silhouette plot for clustering
with k=4. Average Silhouette value is
0.6039

The silhouette value can be used to provide the natural
number of clusters within a data set and compare the two
different clusterings. The average silhouette value over the
entire data set provides a measure of how appropriately
the contingencies have been clustered. An average silhouette
greater than 0.5 indicates reasonable partitioning of data into
appropriate clusters and a value less than 0.2 indicates the data
do not exhibit cluster structure [19].

The number of clusters, k, an input to the k-means algo-
rithm, is decided by the number of dominant eigenvalues of
the Laplacian matrix. The silhouette plot is used to confirm
the claim that the number of clusters identified using dominant
eigenvalues, indeed, provide the best clustering results. Figure
5 shows the eigenvalues plot for the Laplacian matrix used to
obtain the preliminary number of clusters as 2. To verify this
claim, the clustering procedure is repeated with different num-
ber of clusters and the average silhouette value is computed
for each case. Table I shows the average silhouette values
for clusterings with different number of clusters. The average
silhouette value is maximum when the number of clusters is
2, which indicates the natural number of clusters available in
the provided data set is 2.

TABLE I
AVERAGE SILHOUETTE VALUES FOR DIFFERENT CLUSTERING

No.of clusters 2 3 4 5 6 7
Average

silhouette value 0.8739 0.8627 0.6409 0.6039 0.6119 0.537

B. Multiple Operating Conditions

The idea of contingency clustering is extended to account
for multiple operating conditions. From the PV analysis, it is
found that a maximum of 11.76% of the base load can be
increased uniformly at all load buses. For illustration, seven
different load levels (3 cases below and above the base load
level) have been considered. For example, the load level in
scenario S2 is 15% less than that of in S1, whereas the load
level in S7 is 6% greater than that of S1. The clustering pro-
cedure is repeated at each of the chosen operating conditions.

Table II shows the similarity of different clusterings com-
puted by VOI metric. Theoretically, for the reduced input
contingency set, the VOI can have a maximum of 4.3175 for
two dissimilar clusterings. The small VOI values in table II
indicate that clusterings at different operating conditions being
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TABLE II
SIMILARITY BETWEEN CLUSTERINGS AT DIFFERENT OPERATING

CONDITIONS USING VOI METRIC

Scenario S1 S2 S3 S4 S5 S6 S7
Load (%) (Base) (-15) (-10) (-5) (2) (4) (6)

S1 0 0.8652 0.7954 0.3817 0.2052 0.2612 0.4526
S2 0.8652 0 0.6018 0.8727 0.8468 0.8137 0.8534
S3 0.7954 0.6018 0 0.5914 0.8182 0.8087 0.8493
S4 0.3817 0.8727 0.5914 0 0.4628 0.4824 0.6704
S5 0.2052 0.8468 0.8182 0.4628 0 0.1434 0.4109
S6 0.2612 0.8137 0.8087 0.4824 0.1434 0 0.3720
S7 0.4526 0.8534 0.8493 0.6704 0.4109 0.3720 0

similar. In all seven cases, the final number of contingency
clusters remain as two. But the number of contingencies in
each cluster is different for different cases. At higher load
levels, some of the contingencies that are considered as non-
severe earlier have become severe and therefore included in
the set of identified clusters. For example, S2 has 23 and 28
contingencies in clusters 1 and 2 respectively, as opposed to
29 and 42 in the base case. The change in the number of con-
tingencies between clusterings 1 and 2 has resulted in a VOI
of 0.8652. However, the most severe contingencies remains
the same at different operating conditions. Therefore, the final
set of severe contingencies does not have any new additions
compared to the one in base load operating condition. Without
loss of generality, the severe contingencies in the base case
have been considered for the identification of DVCA.

C. Dynamic Voltage Control Areas

Results from the contingency clustering analysis provide
information about the set of contingencies and buses affected
by them. For the modified 162 bus system, the representative
contingencies in clusters 1 and 2 results in a violation of 70
buses and they are chosen for further analysis. Although the
number of violated buses common to both clusters is high, the
severity of the affected buses is different for these two clusters,
indicated through the small correlation value (SC=-0.3227).

Buses with large KL values corresponding to each represen-
tative contingency are selected as the most severely affected
buses. Also, it has been observed the most severely affected
buses result in performance violations for other contingencies
in the corresponding cluster. The contingencies in clusters 1
and 2 result in severe KL performance violations at 44 and
34 buses, respectively. There are 29 buses severely affected
only by cluster 1 contingencies and 18 buses severely affected
only by cluster 2 contingencies. There are 16 buses severely
affected by contingencies in both clusters 1 and 2. Apart from
this, there are 8 buses with KL violations for the representative
contingencies, but these violations are not severe. Three pre-
liminary DVCA groups are formed by grouping the severely
affected buses along with their corresponding contingency
clusters. The preliminary DVCA corresponding to the common
affected buses includes the contingencies from both clusters.

For the selection of preliminary candidate location using
sensitivity studies, 92 load buses in the range of 69-345 kV
levels are considered. For each selected potential candidate
location, a dynamic VAR source with maximum capacity as
1 p.u, 3 p.u and 5 p.u is placed and the change in the KL
measure for each injection level is observed. The different

VAR injection levels are considered to account for the non-
linearity in change in KL measure with respect to dynamic
VAR injections. The sensitivities of the KL measure with
respect to VAR injection at different candidate locations are
used to formulate the constraints of the MILP problem as
described in section IV-A.

The MILP problem is solved by using a branch and
cut search algorithm in CPLEX. This optimization problem
identifies the best candidate locations and the amount of
dynamic reactive power needed to achieve satisfactory voltage
performance, considering all representative contingencies from
each cluster. For the representative contingency from each
cluster, the MILP chooses 9 candidate locations as optimal
locations from the initial set of 92 candidate locations. The
chosen control locations that primarily influence the affected
buses in preliminary DVCA 1, 2, and 3 are determined 4,
2, and 3, respectively. The control locations corresponding to
each preliminary DVCA set along with its influential buses
and set of contingencies define the dynamic voltage control
area.

Unaffected Buses: 114

Total Buses: 184

Non-severe Contingencies: 245

 Contingencies: 316

DVCA:1

C:29

AB:28

CL:4

DVCA 2

C:42

AB:18

CL:3

DVCA:3

C:71

AB:16

CL:2

Violated Buses: 70

DVCA: Dynamic Voltage Control Area

C: Contingencies, AB: Affected Buses, CL: Control Locations

Fig. 10. Summary of DVCA results

Figure 10 shows the summary of the three DVCAs for the
modified 162 bus system. Each DVCA has three components:
(1) set of similarly behaving contingencies, (2) buses affected
by this contingency set, and (3) effective control buses that
mitigate the problems in the affected buses. DVCA 1 has
29 contingencies, 28 affected buses, and 4 effective control
candidate locations. Similarly, 18 buses are severely affected
by 42 contingencies in DVCA2 and 3 candidate locations from
the 18 affected buses are most effective in mitigating the short-
term voltage stability problems. The 16 buses in DVCA3 are
affected by both contingencies in DVCA1 and DVCA2, and,
therefore, DVCA3 has 71 contingencies. There are 2 control
locations in DVCA3 providing dynamic VAR support to the 16
buses in DVCA3 for all the 71 contingencies in DVCA3. As
long as the minimum levels of dynamic reactive reserves are
maintained in each area, the likelihood of short-term voltage
instability is minimized within the corresponding area.

To validate the claim that only representative contingencies
are sufficient to perform the MILP optimization, the optimiza-
tion procedure is repeated with the top 3 contingencies from
each cluster set. The MILP optimization yielded the same
control candidate locations obtained in the case where only the
representative contingencies are used. This approach greatly
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reduces the number of dynamic simulations that must be
performed, while dealing with multiple contingency analyses
during the planning stage.

VI. CONCLUSIONS

This paper described a clustering based approach for con-
tingency analysis and a novel method for the identification
of dynamic voltage control areas. Clustering analysis groups
the contingencies based on their similarity patterns of bus
responses. The number of contingencies considered for differ-
ent analyses is greatly reduced, since the severe contingency
for each cluster is representative of all other contingencies
in this cluster. Also, this approach provides a comprehensive
list of contingencies that exposes different weaknesses in the
system. The concept of DVCA identifies groups of weak buses
vulnerable to short-term voltage problems under a given set of
contingencies and also the most effective control locations to
provide dynamic reactive support to achieve satisfactory dy-
namic voltage performance. A MILP optimization problem is
formulated to identify effective candidate locations for placing
dynamic reactive sources. Identification of DVCA provides
information about different regions vulnerable to short term
voltage problems, conditions that expose such weakness and
locations most effective in mitigating the problem.
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