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Abstract— In this paper, we develop data-driven method for
the diagnosis of damage in mechanical structures using an
array of distributed sensors. The proposed approach relies on
comparing intrinsic geometry of data sets corresponding to the
undamage and damage state of the system. We use spectral
diffusion map approach for identifying the intrinsic geometry
of the data set. In particular, time series data from distributed
sensors is used for the construction of diffusion map. The low
dimensional embedding of the data set corresponding to dif-
ferent damage level is done using singular value decomposition
of the diffusion map to identify the intrinsic geometry. We
construct appropriate metric in diffusion space to compare
the different data set corresponding to different damage cases.
The application of this approach is demonstrated for damage
diagnosis of wind turbine blades. Our simulation results show
that the proposed diffusion map-based metric is not only able
to distinguish the damage from undamage system state, but can
also determine the extent and the location of the damage.

I. INTRODUCTION

Structural health monitoring (SHM) of wind turbine blades
is a problem that has received increased attention because
of the prominent role wind turbine technology plays in the
renewable energy future. The size of wind turbines blades
has increased over years to harvest large amount of energy
economically and efficiently. The inherent large geometrical
size of the monitored system impedes the applicability of
existing sensing solutions [1], [2]. Because it is well under-
stood that condition assessment of blades may have strong
economic benefits [3]–[5], various research efforts have been
oriented towards developing sensing systems tailored to this
SHM challenge. In particular, dense arrays of sensors have
been proposed [2], [6]–[8] to mimic biological skins, where
changes in a local state can be monitored over a global area.

In this paper, we develop spectral diffusion map based
approach for structural health monitoring of wind turbine
blades. The basic idea behind the proposed approach is to
compared the intrinsic geometry of the data sets obtained
from the undamaged and damaged system state. The intrin-
sic geometry of the data set is obtained using multiscale
diffusion map approach developed in [9]. The diffusion-map
method provides an embedding of the time-series data set in
the diffusion space to identify important lower dimensional
dynamical features of the data. We construct appropriate
metric in the diffusion space to compare the embedded data
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under normal and abnormal operating conditions. The dif-
fusion map-based approach combines ideas from variety of
methods currently adopted for data-driven schemes for health
monitoring such as spectral graph theory, Kernel methods,
and machine learning. One of the important advantages of
the proposed diffusion map-based approach is that it can be
used for sensor data fusion. We exploit this capability for
the development of sensor fusion-based SHM scheme.

The application of data-driven and data-dimensionality
based methods for SHM of civil structures is not new [10]–
[14]. These applications consist of constructing an attractor
of proper dimension and time delay from one or many
observations, and studying changes in the phase-space to
detect damages. Similarly, diffusion map-based approach has
also been to used for detection of anomaly in dynamical
systems [15]. A variation of diffusion maps called Discrim-
inant Diffusion Maps Analysis (DDMA) has been used for
machine condition monitoring and fault diagnosis [16]. In
[17], theoretical basis for construction of diffusion map for
changing data set is proposed. The main contribution of this
paper is in the application of diffusion map approach for
SHM of wind turbine blades. We show that our proposed
approach can not only be used for the detection of damage
but also for damage localization.

The organization of the paper is as follows. In Section
II, we discuss the theory behind the diffusion maps. The
application of diffusion maps for the comparison of different
data sets and for sensor fusion is discussed in Section III. The
wind turbine and wind load modeling is presented in Section
IV followed by simulation results in Section V. Conclusions
are presented in Section VI.

II. DIFFUSION MAPS

In this section, we provide brief overview of diffusion
maps. The material for this section is taken from [9], [18].
The construction of diffusion map starts with the construction
of kernel function, k(x, y), on set of data points Γ where
x and y are data points and belongs to space X . The
kernel function k(x, y) is constructed to satisfy following
properties.

• k is symmetric, i.e., k(x, y) = k(y, x)
• k is positivity preserving i.e., k(x, y) ≥ 0 for all x, y.
• k is positive semidefinite for all real valued bounded

function f defined on data set Γ∫
X

∫
X

k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0

where µ is a probability measure on X



The kernel function k(x, y) is constructed based on local
connectivity of data points and hence capture the local
geometry of data set. Several choices for the kernel k are
possible all leading to different analyses of data. The idea
behind the diffusion map is to construct the global geometry
of the data set from the local information contained in
the kernel k(x, y). The construction of the diffusion map
involves the following steps. First, we normalize the kernel
k(x, y) in the graph Laplacian fashion [19] . For all x ∈ Γ

let v2(x) =

∫
Γ

k(x, y)dµ(y)

set ã(x, y) =
k(x, y)

v2(x)

and ã satisfies
∫
ã(x, y)dµ(y) = 1. To ã we can associate a

random walk operator on the data set Γ as

Ãf(x) =

∫
ã(x, y)f(y)dµ(y).

Since we are interested in the spectral properties of the
operator it is preferable to work with a symmetric conjugate
of Ã. We conjugate ã by v in order to obtain a symmetric
form and we consider

a(x, y) =
k(x, y)

v(x)v(y)

and operator

Af(x) =

∫
a(x, y)f(y)dµ(y).

The operator A is referred to as diffusion operator. Under
very general hypotheses the operator A is compact and self-
adjoint so by spectral theory we have

a(x, y) =
∑
j≥0

λjϕj(x)ϕj(y), Aϕj(x) = λjϕj(x).

Let am(x, y) be the kernel of Am, then at the level of data
points the kernel am(x, y) has a probabilistic interpretation
as a Markov chain with transition matrix a to reach y from
x in m steps. The mapping

Φ(x) = (ϕ0(x), ϕ1(x), ..., ϕp(x), ...)

(where ϕi are the eigenfunctions of diffusion operator A)
maps the data set x ∈ Γ into the Euclidean space (`2(N)),
which we will call the diffusion space. Each eigenfunction
can be interpreted as a coordinate on the set. This mapping
can be used as a diffusion metric to measure the diffusion
distance between the data point x, y ∈ Γ. More precisely the
diffusion metric can be written as

D2
m(x, y) =

∑
j≥0

λmj (ϕj(x)− ϕj(y))2.

For more details on the diffusion metric see [9].
The embedding generated by the eigenfunctions can be

used for the dimensionality reduction of the data. For a given
accuracy δ we retain only the eigenvalues λ0, ..., λp−1 that
when raised to the power m, exceed a certain threshold (re-
lated to delta) and we use the corresponding eigenfunctions
ϕ0, ϕ1, ..., ϕp−1 to embed the data points in Rp.

III. COMPARISON OF DATA SETS AND SENSOR FUSION

The basic idea behind the comparison of data set using
diffusion map approach is adopted from [20]. Results in
[17] have address the problem of comparison of data sets
by studying diffusion maps over changing data sets and
generalizing diffusion distance for changing data. The goal
is to compare intrinsic geometry of the two data set. Let
X = {x1, x2, ..., xN} and Y = {y1, y2, ..., yN} be the two
data sets obtained as time series data from experiment or
model simulation. We are assuming that the two data sets are
of same size as this is the case of interest to us. However,
the approach can be extended to the case when data sets
are different size [17]. Using time-delayed coordinates we
embed the time series data in Rn, where n is sufficiently
large. Now we have N − n data points denoted by

X̄ := {x̄1, x̄2, ..., x̄N−n}, Ȳ := {ȳ1, ȳ2, ..., ȳN−n},

where x̄k = (xk, xk+1, ..., xk+n−1) and ȳk =
(yk, yk+1, .., yk+n−1). We denote the union of these
two data sets by Z = {X̄, Ȳ }. In this paper we use the
following Gaussian kernel,

k(zk, zj) = exp

(
−‖ zk − zj ‖

2

ε

)
, (1)

The parameter ε specifies the size of the neighborhoods
defining the local geometry of the data. The smaller the
parameter ε the faster the exponential decreases and hence
the weight function in (1) becomes numerically insignificant
as we move away from the center. It is easy to check that
the Gaussian kernel satisfies all the properties of the kernel
specified in the previous section.

From this kernel we construct the diffusion operator or the
diffusion matrix using the procedure outlined in the previous
section. Let {ϕ1, ϕ2, ..., ϕ2(N−n)} be the eigenvectors of
the diffusion matrix and {λ1, λ2, ..., λ2(N−n)} be the corre-
sponding eigenvalues. Retaining only the first p eigenvectors
we can embed the data set Z in a p-dimensional Euclidean
diffusion space, where {ϕ1, ..., ϕp} are the coordinates of
the data points in the Euclidean space. Note that typically
p << n and hence we obtain the dimensionality reduction
of the original data set. For some index j, the first N − n
elements of the eigenvector ϕj are the j-th coordinate in
the diffusion space of the N − n data points in X , while
the remaining N −n elements are the j-th coordinate in the
diffusion space of the data set Y . Denote the eigenvector on
data set X by ϕX and data set Y by ϕY . So we have

ϕ :=

[
ϕX

ϕY

]
.

Note that the k-th elements of the j-th eigenvectors are given,
respectively, by

ϕX
kj := ϕX

j (x̄k), ϕY
kj := ϕY

j (ȳk). (2)

Now we can use various metric for the comparison of data set



in diffusion space using the above eigenvectors. We define,

φXk =

 p∑
j=1

λj(ϕ
X
kj)

2

 1
2

, φYk =

 p∑
j=1

λj(ϕ
Y
kj)

2

 1
2

(3)

We propose following metric for the comparison of data set.

1) Weighted average diffusion distance

Davg =

[
1

N − n

N−n∑
k=1

φXk

]
−

[
1

M − n

M−n∑
k=1

φYk

]
(4)

2) Pointwise diffusion distance

Dp =
1

N

N∑
k=1

∣∣φXk − φYk ∣∣
φXk

. (5)

This metric is sensitive to the ordering of the data set. Other
metric can also be constructed depending upon application
[21]. For our proposed application of damage diagnosis of
wind turbine blades, we employ the pointwise distance for
data comparison in diffusion space. The pointwise distance
metric gives us satisfactory results. The proposed approach
for the comparison of two data sets can be extended to
multiple data sets in a straight forward manner [20]. For our
proposed application, the different data sets will correspond
to the different damage level for wind turbine blades. While
the above procedure help us compare different data sets
corresponding to different damage level, the procedure can
be extended for comparison of data sets from multiple
sensors. This can be accomplished using sensor fusion. We
consider the case where the wind turbine blade is equipped
with an array of distributed sensors. The goal is to fuse the
data from multiple sensors for damage diagnosis and also
for damage localization.

A. Multiple sensor fusion

In [22], the authors have described the procedure for
sensor fusion using diffusion maps. The basic idea behind the
sensor fusion using diffusion map is to construct hierarchy of
diffusion maps. The algorithm for the multiple sensor fusion
as it applies to our problem of damage detection is outlined
in Table I. The algorithm closely follows one used in [15]
except for the comparison metric that is defined above in Eq.
(5). For the simplicity of presentation, we will only consider
the case for data fusion from three sensors.

TABLE I: Algorithm for multiple sensor fusion

Comparison of different damage data sets using
multiple sensors
1) Let Xi = {xi1, xi2, . . . , xiN}, Yi = {yi1, yi2, . . . , yiN},
and Zi = {zi1, zi2, . . . , ziN}
be the data sets from three sensors. The index i = 0, 1, 2, 3... is
the index for damage, with 0 is for undamaged case and N is the
length of each data set. Using time delayed coordinates,we embed
Xi for each i in Rn where n is sufficiently large. We have N − n
data points for individual time series
2) X̄i := {x̄i1, x̄i2, . . . , x̄iN}
where x̄ik = (xik, x

i
k+1, . . . , x

i
k+n−1)

3) We denote the union of these data sets X̄0, X̄1, . . .

as X̂ = {X̄0, X̄1, . . .}
4) Applying the procedure outlined above to other sensors Y,Z,
we get Ŷ and Ẑ
5) We apply the diffusion map to the data set X̂ . The embedding
coordinates of X̂ are scaled and are denoted by
Ψ1 as Ψ1(x) = ( λ1ψ1(x)

‖λ1ψ1(x)‖
, λ2ψ2(x)
‖λ2ψ2(x)‖

,
λ3ψ3(x)
‖λ3ψ3(x)‖

, . . .)

6) We repeat the above procedure for all the different data sets
Ŷ and Ẑ and the scaled embedding coordinates for Ŷ and Ẑ
is given by Ψ2 and Ψ3.
7) The scaled diffusion coordinates are combined into a matrix
form given by W = {Ψ1,Ψ2,Ψ3}.The diffusion map is applied
again on this matrix W .
8) We retain only the first p eigenvectors (p << n) of the
diffusion matrix and {λ1, λ1, . . . , λp} be the corresponding
eigen values, so that we can embed the data set W in a
p-dimensional Euclidean diffusion space.
9) The eigenvectors obtained can be decomposed according to
damage index as ϕ̂ = [ϕ̂0; ϕ̂1; ϕ̂2; . . .]
10) The pointwise diffusion distance is applied on these set of
eigenvectors in order to capture the varying degrees of damage
in the system.

IV. WIND BLADE AND LOAD MODELING

In this section we develop the models for the wind turbine
blades and wind load.

A. Wind blade model
The wind turbine blade model consists of a cantilever

Timosenko beam with bending and shear deformations,
which are typically used as condition assessment features
for blades [23], a typical approximation used in modeling of
blades. The beam is discretized using a lumped masses m
where the ith mass is located at the ith node and is linked
by a stiffness element ki and a dashpot element ci to the
i − 1th mass for all N masses, as shown in Fig. 1. The
corresponding degrees-of-freedom xi, yi, and θi represent the
horizontal displacement (longitudinal to the blade), vertical
displacement, and rotation of mass, respectively. Each mass
is subjected to a load pi.

Fig. 1: Lumped mass model



The equation of motion governing the dynamic system is

Mz̈ + Cż + Kz = P (6)

where z is the state vector with zi = [xi, yi, θi]
T , P is the

load vector, and M, C, K are the mass, stiffness and damping
matrices, respectively. The assembly of M and K is based
on the Timoshenko beam element theory, as illustrated in
[24], and includes shear and torsional deformations. The
model properties include member length L, cross-section
width d, thickness t, mass M , Young’s modulus E and the
shear modulus G. These various model parameter values
are provided in Table II(a). The damping matrix C can be
constructed similarly to K. Here, C is taken as proportional
to K where

C = αK. (7)

Damage is simulated by reducing the stiffness between two
nodes and adjusting C using Eq. (7). We simulate damage
that results in a loss of stiffness (from a crack or delamination
for instance), a damage mode commonly studied in wind
turbine blade literature [5]. This is done in the numerical
model by reducing the stiffness k of the element linking
node i to node i+ 1. For simulations, we consider damages
with loss of 5%, 10%, 15%, 20%, 25% and 30% of stiffness.
We assume that strain gauge sensors are distributed on the
wind blades. Strain gauge data is simulated on the top surface
of the blade. Assuming a rectangular cross-section, surface
strain εi at location i is taken as εi = κi

t
2 where κi is the

curvature. Assuming small deformations, the curvature can
be approximated as follows:

κi =
tan(θi)− tan(θi−1)

l
≈ θi − θi−1

l
(8)

The numerical model consists of a 23.3m wind turbine blade
based on the description provided in [25]. For simplicity of
the simulation, a constant cross-section was selected to give
equivalent modal properties to dominant modes. The system

TABLE II: Blade and Wind Model parameters.

(a) Model parameters

Parameter Value
L 23.30 m
d 1.50 m
t 0.50 m
M 4.14×104 kg
E 3.57×1010 N/m2

G 2.81×109 N/m2

(b) Wind Model parameters

Parameter Value
Tsr = Tsg 50 s

Ter 350 s
Teg 150 s
h 70 m

Aramp 4 m/s
Agust -3 m/s
l 600 m
z 0.01m

Asurf 36 m2

Wa 11.5 m/s

is discretized into 48 elements giving constant section length
l = 0.48m and mass m = 862.5kg.

B. Wind Load model

The simulated wind load P(t) = (p1(t), . . . , pN (t))T

acting on the blade is taken as a uniform time-varying load

(pi(t) = p(t) ∀ i). The model for wind speed is taken
from [26]. The wind speed model, Ws, consists of four
components,

Ws = Wa +Wr +Wg +Wt (9)

where Wa is the average speed, Wr is the ramp component,
Wg models the gust component of wind, and Wt models the
turbulence. Following model is used for modeling the ramp
component, Wr,

Wr =

 0 if t < Tsr
wramp if Tsr < t < Ter

0 if t > Ter

(10)

where wramp = Aramp
(t−Tsr)

(Ter−Tsr) with Aramp being the
amplitude of wind speed ramp, Tsr and Ter are the starting
and end time of wind speed ramp respectively. The model
of wind gust, Wg , is assumed to be

Wg =

 0 if t < Tsg
wgust if Tsg < t < Teg

0 if t > Teg

(11)

where, wgust = Agust{1 − cos(2π(
t−Tsg

Teg−Tsg
))} with Agust

being the amplitude of wind gust, Tsg and Teg are the starting
and end time of wind gust respectively. Wt is modeled as a
one dimensional random process and is characterized by the
following power spectral density function, P (f) [26]

P (f) = lWa

(
ln

(
h

z0

)2
)−1(

1 + 1.5
fl

Wa

)−5/3

P (f) is the power spectral density of the turbulence for a
given frequency f , h is the height at which the wind speed
is calculated, l is the turbulence length scale, and z0 is the
roughness length. The wind load is directly obtained from
Ws using following formula [27]

WF = ρAsurfCd (12)

where ρ is the dynamic pressure given by ρ = 0.612W 2
S ,

Asurf is the surface area and Cd is drag coefficient. Following
parameter values are given in Table II(b) which are used in
the generation of two different realization of wind speed as
shown in Fig. 2.

V. SIMULATION RESULTS

The diffusion map is constructed using the time-series
strain output data from the model. We consider three dif-
ferent locations for sensors and damage along the beam.
In particular, the damage, D, and sensors, S, are assumed
to be located on element 1, 24, and 48. These element
numbers corresponds to root, midsection, and end locations
of the beam. We will use the notations D1,D24,D48 and
S1,S24,S48 to denote the locations for damage and sensors
respectively. The schematic of locations for the damage and
sensors is shown in Fig. 3. In the following, we present
simulation results for wind load model. Wind turbines blades
are normally subjected to highly varying wind loads. In
order to simulate the system subjected to such random



0 100 200 300 400 500 600
5

10

15

20

25

30

W
in

d
 S

p
e

e
d

(m
/s

)

time(sec)

Fig. 2: Two different realization of wind speed.

Fig. 3: Schematic showing the location of sensors
S1,S24,S48 and element damage D1,D24,D48.

load, the wind load has been generated using the procedure
described in section IV-B. We have simulated the model
using multiple realizations of wind load for different damage
cases. Furthermore, we present analysis using single sensor
and sensor fusion involving multiple sensors.

A. Analysis using single sensor
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In Fig. 4, we show a representative plot for the eigenvalues
of diffusion map. We can see that other than the eigenvalue
at one, the plot shows that there are three dominant eigen-
values. Hence, the data set can be approximated using three
dominant eigenvectors of the diffusion map. Eigenvector plot
corresponding to first three dominant eigenvalues for all
the damage cases is shown in Fig. 5. In Fig. 6, we show
pointwise diffusion distance corresponding to sensor location
at element 1 and damage at locations 1, 24 and 48. It is
important to state that the system with different degree of
damage is subjected to different realization of wind load.
The pointwise diffusion distance shows clear trend where
the distance increase with the increase in the percentage of
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Fig. 6: Pointwise diffusion distance plot for the sensor at S1

and damage at elements (D1,D24,D48).

damage to the structure. Similar trends in diffusion distance
were seen for the case of harmonic loading. We did not
include the results for harmonic loading because of space
constraints. Pointwise diffusion distance plots with sensors
at element Si and damage at element Di are similar to plot in
Fig. 6 for the case when sensor is at element S1 and damage
at element D1. Furthermore, the pointwise diffusion distance
is large when the sensor and damage location coincide and
is small for the case where there is a mismatch. This relative
sensitivity of diffusion distance with respect to the location
of the damage can be used for the purpose of damage
localization. This is also confirmed from the plot in Fig. 7.
Fig. 7, shows the plot for the pointwise diffusion distance for
a fixed damage location at element 1 and sensors at locations
1, 24, and 48. As seen from this plot the diffusion distance
corresponding to sensor location 1 is much larger compared
to sensor locations 24 and 48.
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Fig. 7: Pointwise diffusion distance plot for the sensor at
element (S1,S24,S48) and damage at D1.

B. Analysis using multiple sensors

We employ the sensor fusion scheme where data from
multiple sensors is used for calculating the pointwise diffu-
sion distance. From Fig. 8 it can be seen that the pointwise
diffusion distance increases as we increase the damage in
the system. Since the location of damage is not known
aprior, the proposed sensor fusion-based pointwise diffusion
distance will allow us to overcome the problem associated
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Fig. 8: Poitnwise diffusion distance plot for sensor fusion
with sensors at element (S1,S24,S48) and damage at D1.

with the relative sensitivity of pointwise diffusion distance
to the sensor and damage locations.

VI. CONCLUSION

In this paper, we proposed the application of spectral dif-
fusion map-based approach for structural health monitoring
of wind turbine blades. An algorithm has been provided
for the comparison of different data set corresponding to
different damage level of the blades using pointwise diffu-
sion distance. Similarly, an algorithm for data fusion from
multiple sensors is provided for the detection of damage.
The simulation results shows that the proposed approach
can be used for damage detection and also for determining
the extent of the damage. Furthermore, it can be used
for the localization of damage. The relative sensitivity of
diffusion distance with respect to damage location can also
be exploited for the purpose of damage localization.
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