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Abstract— In this paper, we study the problem of syn-
chronization in a network of nonlinear systems with scalar
dynamics. The nonlinear systems are connected over linear
network with stochastic uncertainty in their interactions. We
provide a sufficient condition for the synchronization of such
network system expressed in terms of the parameters of the
nonlinear scalar dynamics, the second and largest eigenvalues
of the mean interconnection Laplacian, and the variance of
the stochastic uncertainty. The provided sufficient condition
is independent of network size thereby making it attractive
for verification of synchronization in a large size network.
The main contribution of this paper is to provide analytical
characterization for the interplay of role played by the internal
dynamics of the nonlinear systems, network topology, and
uncertainty statistics for the network synchronization. We show
that there exist important trade-offs between these various
network parameters necessary to achieve synchronization. We
provide simulation results in network system with internal
dynamics modeling of agents moving in a double well potential
function. The synchronization of network happens whereby the
dynamics of the network system flip from one potential well to
another at the backdrop of stochastic interaction uncertainty.

I. INTRODUCTION

Synchronization in large scale network system is a fasci-
nating problem that has attracted researcher attention from
various disciplines of science and engineering. Synchro-
nization is a ubiquitous phenomena in many engineering
and naturally occurring systems. Examples include gener-
ators in electric power grid, communication network, sensor
network, circadian clock, neural network in visual cortex
in biological applications, and synchronization of fireflies
[1]–[4]. In recent years, synchronization of systems over
a network has gained significant importance in power sys-
tem dynamics. Simplified power system models showing
synchronization are being studied to gain insight into the
effect of network topology on synchronization properties of
dynamic power networks [5]. Effect of network topology
and size on synchronization ability of complex networks is
an important area of research [6]. Complex networks with
certain desired properties like small average path between
nodes, low clustering ability, existence of hub nodes among
others, have been extensively studied over the past decade
[7]–[12]. Understanding the effect of neighboring and long
range communications on the ability and rate of synchro-
nization, are important questions that will help understand
molecular conformation [13]. Emergence of chimera states
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in synchronization is studied, where for mechanical systems
coexistence of asynchronous states with synchronous states
is demonstrated [14]. An aspect of network synchronization
gaining attention is the effect of network topology and
interconnection weights on robustness of synchronization
properties [15].

Uncertainty plays an important role in many of these
large scale network systems. Hence, the problem of robust
synchronization in the presence of uncertainty is important
for the design of robust network system. The presence of
uncertainty in network systems can be motivated in various
different ways. For example, in power network the uncertain
parameters or outage of transmission lines could be source
of uncertainty. Similarly, malicious attack on network links
can be modeled as uncertainty. Synchronization with limited
information or intermittent communication among individual
agents can also be modeled as time varying uncertainty. In
this paper, we address the problem of robust synchronization
in large scale network systems. Existing literature on this
problem has focused on the use of Lyapunov function-based
techniques to provide condition for robust synchronization
[16]. Similarly problem of synchronization in the presence
of simple on-off or blinking interaction uncertainty is studied
in [17]–[20]. Local synchronization for coupled maps is
studied in [21], [22], which provides a measure for local
synchronization. Our results differ from the existing work on
this topic in a fundamental way as explained in the following
discussion.

We consider a network of systems where the nodes
in the network are dynamic agents with scalar nonlinear
dynamics. These agents are assumed to interact linearly
with other agents or nodes through the network Laplacian.
The interaction among the network nodes is assumed to be
stochastic. This research builds on our past work, where
we have developed analytical framework for understanding
fundamental limitations for stabilization and estimation of
nonlinear systems over uncertain channels [23]–[27]. There
are two main motivations of this research work which also
form the main contributions of this paper. The first motiva-
tion was to provide scalable computational condition for the
synchronization of large scale network systems. We exploit
the identical nature of network agents dynamics to pro-
vide sufficient condition for synchronization which involves
verifying a scalar inequality. This makes our condition
independent of network size and hence attractive from the
computational point of view for large scale network systems.
The second motivation and contribution of this paper is to
understand the interplay of internal agent dynamics, network



topology captured by graph Laplacian, and uncertainty statis-
tics, and role played by each in network synchronization.
We provide analytical relationship that help understand the
trade-off between internal dynamics, network topology, and
uncertainty statistics necessary for network synchronization.
This analytical relationship will provide useful insight and
comparison of robustness properties of complex network
systems connected over varied network topologies such as
scale-free, random, exponential, and small world.

The paper is organized as follows. The problem formu-
lation and main results are presented in section II. The
discussion on the interplay or role played by various network
parameters is presented in section III. Simulation results are
presented in section IV followed by conclusions in section
V.

II. SYNCHRONIZATION IN DYNAMIC NETWORK WITH
UNCERTAIN LINKS

We consider a nonlinear network system where the first
order dynamics of the individual network components is
assumed to be of the form

xk
t+1 = axk

t −φ(xk
t ) k = 1, . . . ,N (1)

where, xk ∈R are the states of kth subsystem, and a > 0. The
function φ : R→R is a nonlinear function. The nonlinearity
φ satisfies the following assumption,

Assumption 1: The nonlinearity φ : R→ R is a continu-
ous, globally Lipschitz function with global Lipschitz con-
stant 2

δ
.

The individual subsystem model is general enough to include
system with steady state dynamics that could be stable, os-
cillatory, or chaotic in nature. The Jacobian of the nonlinear
dynamics at the origin is given by J = a− dφ

dx (0) > a− 2
δ

.
So for example, if (a− 1)δ > 2 we have J > 1 which
would make the origin unstable. The negative feedback of
the nonlinearity could then have a restoring effect and induce
oscillatory or chaotic behavior.

We assume that the individual subsystems are linearly
coupled over an undirected network given by a graph G =
(V,E), with node set V and edge set E with edge weights
µi j ∈ R+ for i, j ∈ V and ei j ∈ E. Let EU ⊆ E be a set
of uncertain edges, and ED = E\EU . The weights for the
uncertain edges are µi j +ξi j for ei j ∈ EU , where µi j models
the nominal edge weight and ξi j models the uncertainty. ξi j
are random variables satisfying following statistics

E[ξi j] = 0, E[ξ 2
i j] = σ

2
i j.

Remark 1: The case corresponding to packet-drop or
blinking [18] interaction uncertainty will be special case
of the above defined more general random variable. For
example, if ei j ∈ EU is a blinking interconnection, it is
modeled as a Bernoulli random variable with probability
p < 1 to be on and (1− p) to be off. Then µi j corresponding
to ei j is given by µi j = p and σ2

i j = p(1− p).

If the coupling gain is g > 0 the individual agent dynamics
of the coupled subsystem is given by,

xk
t+1 =axk

t −φ

(
xk

t

)
+g ∑

ek j∈ED

µk j(x
j
t − xk

t )

+g ∑
eki∈EU

(µki +ξki)(xi
t − xk

t ).

We denote the purely deterministic graph Laplacian by Ld :=
[µi j] , ∀ei j ∈ ED and mean Laplacian of the uncertain graph
by Lu := [µi j] , ∀ei j ∈ EU . Furthermore, let Lm = Ld + Lu
be the mean Laplacian of the entire network, and Lξ =
[ξi j], ∀ei j ∈ EU . We combine the individual systems to create
the network system (x̃t ) written in compact form as,

x̃t+1 =
(
aIN−g(Lm +Lξ )

)
x̃t − φ̃ (x̃t) , (2)

where, IN is the N × N identity matrix and x̃t =
[(x1

t )
′ . . .(xN

t )
′]′, φ̃(x̃t) = [(φ 1)′(x1

t ) . . .(φ
N
t )′(xN

t )]
′. There are

four actors in Eq. (2) that we expect to play an important
role in the synchronization. These are the internal dynamics
of the network components captured by parameter a and
nonlinearity φ , the deterministic graph Laplacian Ld , the
uncertainty characteristics given by the variance σi j of the
random variables, and the coupling gain g. Our objective is to
understand the interplay of these actors to achieve synchro-
nization in the network. Since the network is stochastic, we
use following definition of mean square exponential (MSE)
synchronization.

Definition 2 (MSE Synchronization): The system of equa-
tions described by (2) is mean square exponentially synchro-
nizing, if there exists a β < 1 and K(ẽ0)> 0 such that,

EΞ ‖ xk
t − x j

t ‖2≤ K̄(ẽ0)β
t ‖ xk

0− x j
0 ‖2, ∀k, j ∈ [1,N] (3)

where, Ξ = {ξi j | ei j ∈ EU}, EΞ[·] is expectation with respect
to Ξ, ẽ0 is function of difference ‖ xi

0 − x`0 ‖2 for i, ` ∈
{1, ...,N} and K̄(0) = K is a constant.
We introduce the following definition for the coefficient of
dispersion to capture the statistics of uncertainty.

Definition 3 (Coefficient of Dispersion): Let ξ ∈ R be a
random variable with mean µ > 0 and variance σ2 > 0. Then,
the coefficient of dispersion γ is defined as

γ :=
σ2

µ
We make following assumption on the coupling constants
and the coefficient of dispersion.

Assumption 4: For all edges (i, j) in the network, the
mean weights assigned are positive, i.e. µi j > 0 for all (i, j).
Furthermore, the coefficient of dispersion of each link is

given by γi j =
σ2

i j
µi j

, and γ̄ = max
ξi j ,ei j∈EU

γi j. This assumption

simply states that the network connections are positively
enforcing the coupling.
The goal is to synchronize N first order systems over a
network with mean graph Laplacian Lm having eigenvalues
0 = λ1 < λ2 ≤ ·· · ≤ λN , and maximum link uncertainty
dispersion coefficient γ̄ . We will refer to the set {λ2,λN}
as the boundary eigenvalues. Following theorem is the first
main result of this paper.



Theorem 2: The network system (2) satisfying Assump-
tions 1 and 4 will achieve mean square synchronization
(Definition 2) if there exists a positive scalar p such that

δ > p > α
2
0 p+α

2
0

p2

δ − p
+

1
δ

(4)

where, α2
0 = (a0−λsupg)2 +2λsupτg2, a0 = a− 1

δ
,

λsup = argmax
λ∈{λ2,λN}

∣∣∣∣λ + γ̄− a0

g

∣∣∣∣,
and τ =

λNu
λNu+λ2d

. λNu is maximum eigenvalue of Lu, and λ2d

is second smallest eigenvalue of Ld .
Proof: Please refer to the Arxiv copy of this paper [28]

for the proof.
The condition in Theorem 2 requires one to find a positive
scalar p which satisfies inequality (4). The following theo-
rem provides condition based on system internal dynamics,
network property, and uncertainty characteristics for network
synchronization.

Theorem 3: The network system (2) satisfying Assump-
tions 1 and 4 will achieve mean square synchronization
(Definition 2) if there exist δ > 1, and,(

1− 1
δ

)2

> α
2
0 (5)

where, α2
0 = (a0−λsupg)2 +2λsupτg2, a0 = a− 1

δ
,

λsup = argmax
λ∈{λ2,λN}

∣∣∣∣λ + γ̄− a0

g

∣∣∣∣,
and τ =

λNu
λNu+λ2d

. λNu is maximum eigenvalue of Lu, and λ2d

is second smallest eigenvalue of Ld .
Proof: From Theorem 2 and Eq. (4) we get the

sufficient condition to be δ > p, and,(
p− 1

δ

)(
1
p
− 1

δ

)
> α

2
0 . (6)

Since δ > p > 1
δ

we must have δ > 1. Furthermore, we have(
p− 1

δ

)(
1
p
− 1

δ

)
≤
(

1− 1
δ

)2

. (7)

Using (7) we obtain that (5) is necessary for (4). Further-
more, if (5) is true then p = 1 satisfies the required condition
(4) of Theorem 2. Hence (5) with δ > 1 is equivalent to (4),
proving Theorem 2 and Theorem 3 to be equivalent.

Remark 4: The sufficient condition for mean square expo-
nential synchronization of N dimensional nonlinear network
system (2) as derived in Theorem 2 is provided in terms
of a scalar inequality instead of an N dimensional matrix
inequality. This significantly reduces the computational load
in determining the sufficient condition for synchronization of
the coupled dynamics as the network size increases.

It should be noted that the sufficient condition as provided
in Theorem 2, Eq. (4) is a Riccati equation in one dimension.
Writing µc := λsup and σ2

c := 2γ̄λsupτ we can write (4) as

p >
(
(a0−µcg)2 +σ

2
c g2) p+

(
(a0−µcg)2 +σ

2
c g2) p2

δ − p
+

1
δ

For q = δ p, this may be modified as

q > Eξ

[
(a0−ξ g)2q+(a0−ξ g)2 q2

δ 2−q
+1

]
(8)

Using the condition of Bounded Real Lemma in [29] sim-
plified for scalar systems, we notice that (8) is a sufficient
condition for mean square stability of the 1D system given
by

xt+1 = (a0−ξ g)xt +φ0 (xt) , ||φ0(x)||< δ ||x|| (9)

where ξ is an i.i.d. random variable with mean µc and
variance σ2

c . The coefficient of dispersion for ξ is given
by γc =

σ2
c

µc
= 2γ̄τ . Thus the mean square exponential syn-

chronization of coupled dynamics over a uncertain network
is guaranteed if a one dimensional system with parametric
uncertainty in the state matrix, having CoD twice that of
the maximum CoD for uncertain links in the network, is
robust to δ norm-bounded nonlinearity in the mean square
sense. Thus, our sufficiency conditions in Theorems 2 and 3,
indicate network robustness in a mean square sense towards
coupling uncertainties.

We will now provide a condition relating the largest
eigenvalue of a graph Laplacian to the eigenvalues of the
Laplacian for the complementary graph which will be used
for understanding the impact of the largest eigenvalue in syn-
chronization. This condition is provided here for completion
and the readers may refer [30] for the result and the proof.

Condition 5: Let G≡ (V,E) be a graph on |V |=N nodes.
Suppose that G̃ ≡ (V, Ẽ) is the complement of G, such that
G̃ = KN\G, where KN is the complete graph on N vertices.
Let LG and LG̃ are the Laplacian matrices of G and G̃ with
eigenvalues 0 = λ1 ≤ λ2 ≤ ·· · ≤ λN and 0 = λ̃1 ≤ λ̃2 ≤ ·· · ≤
λ̃N respectively. Then we must have

λ̃1 = λ1 = 0, λ̃i = N−λN−i+2, ∀ i ∈ {2, . . . ,N} (10)

III. INTERPLAY OF INTERNAL DYNAMICS, NETWORK
TOPOLOGY, AND UNCERTAINTY CHARACTERISTICS

In this section, we discuss the role played by the internal
dynamics, network topology, and uncertainty statistics for
the synchronization of the network system. The internal
dynamics is captured by parameters a and δ , the network
topology is captured by the deterministic Laplacian, Ld , in
particular the eigenvalues of the Laplacian, the uncertainty
statistics is captured by CoD γ̄ and τ captures the uncertainty
location within the graph. We will make use of results from
Theorems 2 and 3 to discover the interplay between the
various parameters. We show that there are important trade-
offs between the above mentioned parameters that impact
synchronization over the network.

Remark 6 (Significance of τ): In Theorem 2, the factor
τ := λNu

λNu+λ2d
captures the effect of location and number of

uncertain links, whereas γ̄ captures the effect of intensity of
the randomness in the links. It is clear that 0 < τ ≤ 1. If
the number of uncertain links (|EU |) is sufficiently large, the
graph formed by purely deterministic edge set may become
disconnected. This will imply λ2d = 0, and, τ = 1. Hence,
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for large number of uncertain links, λNu is large while
λ2d is small. In contrast, if a single link is uncertain, say
EU = {ekl}, then τ = 2µkl

2µkl+λ2d
. Hence, for a single uncertain

link, the weight of the link has a degrading effect on the
synchronization margin. The location of such an uncertain
link will determine the value of λ2d ≤ λ2, thus degrading the
synchronization margin. Based on this observation, we can
rank order individual links within a graph, with respect to
their degradation of synchronization, on the basis of location
(λ2d ,λNu ), mean connectivity weight (µ), and the intensity
of randomness given by CoD γ .

Based on Theorem 3 we plot the figures in this section
for a range of λ and γ̄ values. For any given λ and γ̄ value
in the λ − γ̄ space, using (5) we compute the quantity,

χ(λ , γ̄) = max{0,
(

1− 1
δ

)2

−α
2
0}.

We plot χ(λ , γ̄) in the λ − γ̄ space in this section to
help us understand the interplay of various system and
network parameters. We observe from Theorem 3 (condition
(2) computed for no uncertainty, i.e. γ̄ = 0) that, there
exists a critical value λ ∗2 = a0

g −
1
g

(
1− 1

δ

)
, below which

synchronization is not guaranteed (colored white in Fig. 1,
χ(λ , γ̄) = 0) for given system dynamics and coupling gain.
The parameter values where synchronization is possible is
marked in color, in Fig. 1. Recall that λ2 is the measure of
algebraic connectivity of mean network with larger value of
λ2 implies stronger algebraic connectivity of the network.
Hence, we require a minimum degree of connectivity to
accomplish synchronization. Similarly, it can be observed
that, there is a critical value λ ∗N above which synchronization
is not guaranteed. λN can be interpreted to quantify the
connectivity of hub nodes. This is discussed in the following
remark.

Remark 7 (Significance of λN): Let G(V,E) be a graph
on |V | = N vertices with E as the edge set. Let G̃ = (V, Ẽ)
be the compliment of G. Then we know from Condition
5 equation (10), that λN = N − λ̃2 where λ̃2 is the sec-
ond smallest eigenvalue of G̃. Thus if λN is large then
λ̃2 has to be small indicating lack of connectivity in the
complementary graph. Thus if we have hub nodes with very
high connectivity, then these nodes will be very sparsely
connected in the complementary graph decreasing λ2. If
a hub node is connected to all the remaining nodes then
λN = N and λ̃2 = 0 indicating that this node is disconnected
in the complementary graph. Thus we interpret that a high λN
indicates a high presence of densely connected hub nodes.
In Fig. 1, we plot two extreme cases for the system over
a 1000 node network. We plot the results for a marginally
stable system interconnected with a passive feedback nonlin-
earity. We observe that when the system is marginally stable
only the largest Laplacian eigenvalue (λN) will determine
synchronizability as long as λ2 > 0 i.e. graph is connected.
Thus for a given degree of nonlinearity (δ ) as appropriate
amount of coupling gain g will guarantee mean square
synchronizability for any network, as long as the CoD of

λ

γ

(a)

λ

γ

(b)

Fig. 1. χ(λ , γ̄) in λ − γ̄ parameter space indicating region of synchroniza-
tion(colored)/desynchronization(white) a) a = 1.25,g = 0.01, and δ = ∞; b)
a = 1,g = 0.01, and δ = 4

the link uncertainty lies below a threshold γ̄max =
1
g

(
1− 1

δ

)
,

which is obtained from Theorem 3. Fig. 1(b) on the other
hand, studies the extreme case of linear systems obtained by
setting δ =∞. For this case, we observe that for a given value
of γ̄ , we require a certain minimum algebraic connectivity
(λ2) to ensure mean square synchronization. Furthermore,
λN cannot exceed a bound indicating limitations on high
connectivity of the network. These bounds on λ2 and λN
are worst case bounds for the given system dynamics as
characterized by a and coupling gain g.

We now choose a base set of values a = 1.25, g = 0.01
and δ = 4 and plot the results in λ − γ̄ space as shown in
Fig. 2. We vary the parameters for the system dynamics,
nonlinearity bounds and the coupling gain to observe their
interaction with the critical Laplacian eigenvalues λ ∗2 and λ ∗N
and the maximum allowable dispersion in uncertainty values
γ̄ . Following conclusions are drawn from these parameter
variations.

λ

γ

(a)

λ

γ

(b)

λ

γ

(c)

λ

γ

(d)

Fig. 2. χ(λ , γ̄) in λ − γ̄ parameter space indicating region of synchro-
nization(colored)/desynchronization(white) a) a= 1.25,g= 0.01, and δ = 4;
b) a = 1.5,g = 0.01, and δ = 4; c) a = 1.25,g = 0.01, and δ = 8; d)
a = 1.25,g = 0.02, and δ = 4



A. Effect of Internal Stability (a)

The effect of internal instability (a) as observed from Fig
1 and Fig. 2, is to demand minimum level of connectivity
(λ2) within a network, to guarantee synchronization. The
increase in internal instability for higher value of a will
require improved network connectivity for synchronization
and hence increase in critical value λ ∗2 . The maximum
eigenvalue λ ∗N is also proportional to a indicating high
instability in systems aids synchronization if there is high
level of communication. On the other hand as is expected,
increase in instability, guarantees synchronization only under
lower uncertainty (smaller γ̄). In Fig. 2(b), we show the
region of synchronization/desynchronization in λ − γ̄ space
for parameter values of a = 1.5,δ = 4, and g = 0.01. The
effect of instability on maximum allowable uncertainty γ̄ as
we decrease the amount of nonlinearity within a system.

B. Effect of Nonlinearity Bound (δ )

The effect of nonlinearity bound δ is to demand smaller
range of nodal interconnection density (small λN) while
maintaining certain average number of interconnections
(minimum required λ2). The parameter δ is inversely pro-
portional to sector of nonlinearity i.e., increase in δ leads
to smaller sector of nonlinearity. In Fig. 2(c), we show the
region of synchronization/desynchronization in λ2− γ̄ space
for parameter values of a = 1.25,δ = 8, and g = 0.01. λ ∗2
is independent of δ while λ ∗N is directly proportional to δ .
Thus we conclude that very high level of communication
through few hub nodes is harmful for synchronization of
highly nonlinear systems with large sectors. As uncertainty
increases the level of communication has to drop in order
for the network to synchronize.

C. Effect of Coupling Gain (g)

The effect of coupling gain g is to allow synchronization
under sparse network connectivity (small λ2) with low levels
of network uncertainty (γ̄). Increase in gain g leads to
decrease in region where synchronization occurs in λ − γ̄

parameter space. λ ∗2 , λ ∗N and γ̄max are inversely proportional
to the value of g indicating that high gain is detrimental
to synchronization of networks with significant number of
densely connected nodes (large λ ) as opposed to majority
of nodes with small average connectivity (small λN). Fur-
thermore, a large gain might aid synchronization of sparsely
connected networks (small λ2). In Fig. 2(d), we show the
region of synchronization/desynchronization in λ2− γ̄ space
for parameter values of a = 1.25,δ = 4, and g = 0.02.

Remark 8: The analytical characterization for synchro-
nization condition in Theorems 2 and 3 makes it possible
to provide precise trade-off between the various network
parameters. We refer the readers to [28] for more details
discussions on these trade-offs and its applications to under-
stand robustness properties of synchronization using various
complex network topologies.

IV. SIMULATION RESULTS

We consider the following 1D system

xt+1 = axt −φ(xt) (11)

where a = 1.125 and δ = 4. Here φ(x) is given by

φ(xt) =
sgn(xt )

4 ( 1+m2
2 (|xt |− ε)

+ 1
2

(
(1−m2)

2(|xt |− ε)2 +4m2ε2
)
)

where m2 = 1
1+10ε0.1 and ε = 0.3. The internal dynamics

of the system as described by Eq. (11) consists of dou-
ble well potential Fig. 3(a) with an unstable equilibrium
point at the origin and two stable equilibrium points at
x∗ =±ε

(
a−1
a−2 +

m2(a−1)
m2(a−1)−1

)
=±0.5237. So with no network

coupling i.e., g = 0, the internal dynamics of the agents will
converge to the the positive equilibrium point x∗ > 0 for
positive initial conditions. Similarly if the initial condition
is negative, the systems converge to the negative equilibrium
point x∗ < 0.

(a) (b)

Fig. 3. a) Double-well potential function for system dynamics, b) Small
World Network graph

We couple this system over a network of 100 nodes, gen-
erated as a random network with the Small World property
(using the Pajek [31] network visualization software), Fig.
3(b). The coupling gain for this system is g = 0.005. The
mean Laplacian of the network is considered to be a standard
Laplacian with unit weight. Thus for all links ei j connecting
nodes i and j, µi j = 1. This network has λN = 52.55 and
λ2 = 26.23. The uncertainty ξ in the network link weights, is
chosen as a uniform variable with variance σ2 = 1

48 , such that
both these eigenvalues satisfy the required condition from
Theorem 3. The CoD of the link uncertainty γ̄ = σ2

µ
= 1

48 .
We plot the result in Fig. 4(a), which shows that the systems
synchronize to the equilibrium point.

For systems over the network with identical parameters to
those in the previous case and identical link noise variance,
if the coupling gain is decreased to g = 0.001 which does
not satisfy the requirement of Theorem 3, we observe that
the system is not able to synchronize (Fig. 4(b)), and the
points with positive initial conditions converge to the positive
equilibrium and visa-versa for the points with negative initial
conditions. We do see some movement to the opposing
equilibrium point for initial conditions very close to the
origin. This may be possible due to the connectivity of



(a) (b)

Fig. 4. a) Time evolution of systems over a 100 node Small World network,
γ̄ = 1

48 , g = 0.005, b) Time evolution of systems over a 100 node Small
World network, γ̄ = 1

48 , g = 0.001

such nodes to nodes in the other well and the fact that
they are extremely close to the origin, which creates a
dividing barrier between the two potential wells, such that
any small computational inaccuracy or stochasticity allows
it to overcome the potential barrier.

V. CONCLUSIONS

We studied the problem of synchronization in complex
network systems in the presence of stochastic interaction
uncertainty among network nodes. We exploited identical
nature of internal node dynamics to provide sufficient condi-
tion for the network synchronization. The unique feature of
the sufficient condition is that it is independent of network
size. This makes the sufficient condition attractive from
the computational point of view for large scale network
system. Furthermore, the sufficient condition provides useful
insight into the interplay between the internal dynamics
of the network nodes, network interconnection topology,
and uncertainty statistics and their roles in network syn-
chronization. Our results will help understand and compare
various complex network topologies for a given internal
nodal dynamics.

REFERENCES

[1] S. H. Strogatz and I. Stewart, “Coupled oscillators and biological
synchronization,” Scientific American, vol. 269, no. 6, pp. 102–109,
1993.

[2] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and
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