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Abstract— We compare two probabilistic approaches that
have been proposed for the study and comparison of data ob-
tained from experiment or simulations of a dynamical systems
model. Both the approaches aim to carry out spectral analysis
using a time-series data that is generated by a dynamical
system. The first approach is based on constructing the so-
called harmonic averages from the time-series data [1] and the
second is an approach based on construction of a Markov chain
from the data [2]. Results of the comparison using time-series
data from a combustion model is provided.

I. INTRODUCTION

Results from experiments are typically available in the
form of time-series measurements. Physical models of the
experiment, that may include noise as an input, can also
be simulated to obtain time-series. Because of presence of
stochastic driving noise or because of sensitivity due to the
presence of chaotic dynamics, the question of ”When is a
model good enough?” is as difficult as it is important.

One crude statistical approach to comparison is to compare
the stationary distribution (histogram) representing the time-
averaged properties of the data. However, such an approach
ignores the spectrum of the signal. For instance, two sine
waves with same amplitude but different frequencies have
the same histogram but different spectral characteristics. In
the recent pioneering work of [1], a formalism for comparing
the asymptotic dynamics resulting from different dynamical
models is provided. The formalism is based upon spectral
properties of Koopman operator. The idea is to construct
harmonic averages (in addition to time averages) and use
these to analyze the spectral characteristics. This generalizes
the concept of comparing the stationary distribution alone.

The spectral analysis of time-series data generated from
a dynamical system, now for the purpose of recovering
cyclic behavior, is pursued in the work of [2]. In these
papers, the formalism is based upon Perron-Frobenius op-
erator, that (in suitable functional analytic settings) is the
adjoint to the Koopman operator [3]. A set-oriented nu-
merical method is described to numerically approximate the
infinite-dimensional Frobenius-Perron operator with a finite-
dimensional Markov chain matrix. Modulus 1 eigenvalues of
these matrix are used to extract the cyclic behavior.

The objective of this paper is to compare and contrast
the two approaches. In particular, we are interested in
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determining the relationship between the spectral analysis
afforded by the two approaches. In studying the connections
between the two approaches, we distinguish between the
infinite-dimensional (continuous) formalism and the finite-
dimensional implementation (with a choice of finite parti-
tion). For invertible mappings, the relationship for the former
is studied in [1]. In particular, the harmonic averages are
shown to yield an eigenmeasure for the P-F operator.

However, the relationship between the two approaches is
not clear once one takes a finite partition for the purpose of
computational implementation. In this paper, we investigate
the relationship between the harmonic averages (based on
Koopman formalism [1]) and the eigenmeasures (based on
P-F formalism [2]) for the finite-dimensional problem. From
our intuition of the continuous problem, it is perhaps reason-
able to expect the two to be related (for fine enough parti-
tion). It is the purpose of the paper to demonstrate this. The
results are obtained using calculations that explicitly account
for partition. We show that choice of indicator functions as
basis functions is a natural counterpart of constructing P-F
matrix with co-ordinates that correspond to measures defined
on (σ -algebra) of the partition. Results are illustrated with
the help of examples, including an example from a UTRC
combustion model.

The outline of this paper is as follows. In Section II,
we present the notation and definitions for the stochastic
objects under study. In Section III, we present the formalism
pertaining to the spectral analysis of the continuous infinite-
dimensional problem. A discussion of both the Koopman
and the P-F formalism and their mutual relationship is
provided. In Section IV, we present the results now for a
finite partition. The approach is novel and constructive, with
explicit formulas, so as to be useful to the practitioners.
In Section V, we present two examples, one academic and
other using a nonlinear model of the UTRC combustion
rig, to demonstrate the finite-dimensional approach of this
paper. Finally in Section VI, we draw up some conclusions,
including our assessment of the merits of the two approaches
and directions for future work.

II. PRELIMINARIES AND NOTATION

We assume X ⊂ R
n and consider discrete dynamical

systems of the form

xn+1 = T (xn), (1)

where T : X ⊂ R
n → X is an invertible smooth mapping

(diffeomorphism) that depends additionally on parameters.
To aid probabilistic treatment of the problem, we introduce
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some notation from the field of Ergodic theory [4], [3]. We
denote by B(X) the Borel σ -algebra on X and define basic
stochastic objects. We use M to denote the vector-space of
bounded complex valued measures on B.

Definition 1 (Perron-Frobenius (P-F) operator):
P : M → M is defined by

P[µ ](A) =
∫

X
δT (x)(A)dµ(x) = µ(T−1(A)), (2)

where T is the map in Eq. (1).
Here, δT (x)(A) is the stochastic transition function, which
measures the probability that the point x reaches the set A
under one iterate of the map T .

Definition 2 (Invariant measures): are the fixed points of
the P-F operator P that are additionally probability measures.

It is known that the P-F operator has atleast one eigenvalue
at 1 [3], [5], i.e., any map T admits atleast one invariant
measure (denoted as µ1).

Definition 3 (Koopman operator): U : F → F is defined
by

U f (x) = f (T x), (3)

where x ∈ X .
For the choice of F = L2(X ,B,µ1) as a Hilbert space, it is
easy to see that

‖U f‖2 =
∫

X
| f (T x)|2dµ1(x) = ‖ f‖2, (4)

where we have used the fact that µ1 is an invariant measure.
If instead of the measure space, the P-F operator is defined

on the function space of densities (L1(X)), it can be shown
that the P-F and the Koopman operator (defined on L∞(X))
are adjoint [3]. In this paper, we assume that the Ergodic
hypothesis applies.

III. CONTINUOUS PROBLEM

A. Koopman formalism

By Eq. (4), the Koopman operator U is a unitary operator.
Hence the spectrum σ(U) and in particular, the eigenvalues
of U lies on the unit circle. Denote by Eλ = { f ∈ H :
U f = λ f}, where |λ | = 1 and H denotes the Hilbert space
obtained after complexification of the space L2(X ,B,µ1).
For λ ∈C with absolute value 1, define the harmonic average
by

Pλ
T g(x) = lim

N→∞

1
N

N−1

∑
k=0

(λU)kg(x), (5)

where (λU)kg(x) = λ kg(T kx). The operator P1
T is the special

case of the above and corresponds to the time average.
Since λU is unitary for |λ | = 1, the following theorem is
a simple corollary of the mean Ergodic theorem in Hilbert
space (Theorem 1.2 in [5]).

Theorem 4: Pλ
T : H → Eλ̄ is the projection operator onto

eigenspace Eλ̄ corresponding to eigenfunction of U with
eigenvalue λ̄ .
We remark that if |λ | ≤ 1 and λ /∈ σ(U) then the harmonic
average Pλ

T g(x) converges to zero. In fact, the harmonic
average is non-zero only on atmost a countable set of λ

that correspond to the eigenvalues of the operator U [6], [1].
Thus, constructing harmonic averages with such λ can be
used as a method for distinguishing dynamical systems as is
advocated in [1]. For λ = 1, the operator P1

T leads to non-
zero time-averages (for suitable choice of basis function g)
because 1 ∈ σ(U) and is in fact an eigenvalue.

B. Perron-Frobenius formalism

If the mapping T : X → X (with P-F opertor P) is assumed
invertible, the P-F operator for the inverse mapping T−1 :
X → X is given by P

∗ where, PP
∗ = P

∗
P = 1, i.e., P is

unitary.
By the unitary property, the spectrum of such an operator

lies on the unit circle. The individual modulus 1 eigenvalues
and their eigenfunctions can be used to extract information
on cyclic behavior [2] present in the solutions of the dynam-
ical system (with map T ). In particular, the eigenmeasure
corresponding to eigenvalue 1 (that always exists) represents
the invariant measure. Likewise an eigenvalue −1, if it exists,
would point to the presence of cyclic behavior with period
2. The behavior may be as simple as a period 2 orbit
{x0,T (x0),x0,T (x0), ...} or it may be complex where the
trajectory is chaotic but moves with a period 2 between two
disjoint sets, i.e.,

T k(x) ∈
{

A0 : k mod 2 = 0
A1 : k mod 2 = 1

(6)

The eigenfunction (for eigenvalue −1) can be used to dis-
tinguish between the two cases.

We remark that T need not be an invertible map in Eq. (2)
for the definition of the P-F operator. Indeed, for a non-
invertible T , T−1(A) is simply the pre-image set consisting
of all the points that lie in the set A after one iterate of
mapping T . In this case, P is generally not unitary and the
spectrum is only known to lie inside the unit circle.

Non-invertibility of T is not the only way for P to be
non-unitary. Even discretization with finite partitions may
lead to a non-unitary Markov chain P as will be discussed
in Section IV.

C. Harmonic averages and P-F eigenmeasures

The two formalisms suggest two approaches for compar-
ing dynamical systems: (1) using harmonic averages, and
(2) using eigenmeasures of the P-F operator. In fact, the two
approaches are equivalent and yield the same information.
For the particular case of eigenvalue 1, this follows from
the equivalence of the space and the time-averages (under
suitable Ergodic hypothesis), i.e.,

lim
N→∞

1
N

N−1

∑
k=0

Ukg(x) =
∫

X
gdµ1 (7)

independent of x (in a.e. sense). More generally, the follow-
ing theorem is shown in [1]:

Theorem 5: For a.e. x,

lim
N→∞

1
N

N−1

∑
k=0

(λU)kg(x) =
∫

X
gdµλ̄ ,x, (8)
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where Pµλ ,x = λ̄ µλ̄ ,x. Moreover, µλ̄ ,T x = λ̄ µλ̄ ,x.
We have the following corollary:

Corollary 6: Suppose λ̄ ∈ σ(P) then
1) |µλ̄ ,x| = µ1

2) if x ∈ A then

lim
N→∞

1
N

N−1

∑
k=0

(λU)kκA(x) = µ1(A). (9)

D. Comparison of dynamics

One possible approach to comparing two dynamical sys-
tems could be to compare the time-averages or equivalently
the invariant measures. Such a comparison, however, fails
to account for the spectral characteristics of the possible
behavior. From the results of this section, two equivalent
directions to obtain spectral information would be 1) to
construct harmonic averages or 2) to compute eigenmeasures
of the P-F operator. Either of these yield objects that can
be used to compare (solutions of) dynamical systems. A
appropriately defined distance function between two sets
of harmonic averages (eigenmeasures) yield the so-called
psuedometric for comparison.

IV. DISCRETE PROBLEM FOR A FINITE
PARTITION

In practice, one begins with a time-series data generated
from an experiment or from simulating a model. While
the phase space co-ordinates for a model is known, we
assume that the time-series from an experiment has been
embedded in to a suitable phase space X ⊂R

m. This may be
accomplished by using a simple delay co-ordinate technique
together with an embedding theorem [7]. We assume a finite
time-series data {x0,T (x0),T 2(x0), ...,T N−1(x0)} of length N
that is embedded in a suitable space X ⊂ R

m. We assume
that N is large enough to take good averages. We carry out
spectral analysis of this time-series data using the discrete
version of the two approaches. To obtain a discrete problem,
we work with finite partitions. Instead of the phase space X ,
we consider X ′ = {D1, · · · ,DL}, a finite partition of X (such
that ∪ jD j = X).

A. Harmonic averages for indicator functions

For X ′ = {D1, · · · ,DL}, let κ j denote the indicator function
with support on D j. For a given normalized frequency ω ∈
[−0.5,0.5], denote λ = ei2πω . Take the harmonic average for
each κ j to obtain a complex value for D j as

κ∗
j,λ (ω) =

1
N

N−1

∑
k=0

(λ )kκ j(T k(x0)). (10)

In [1] the harmonic averages, thus constructed, are used to
define a pseudometric. In particular, the psuedometric mea-
sures the distance between the harmonic average constructed
with the data from the model against the data from the
experiment. In this approach, a frequency ω needs to be
picked first. The authors suggest using DFT of the signal to
obtain the frequency. The advantage of this approach is that
the harmonic averages are straightforward to compute.

B. P-F matrix for finite partitions

Recall that B(X) denotes the (Borel) σ -algebra defined on
X , M (X) denotes the measure space on X and P : M (X)→
M (X). For the discrete problem, one instead considers X ′ .=
{D1, · · · ,DL}, a finite partition of X (such that ∪ jD j = X).
Now, instead of a Borel σ -algebra, consider a σ -algebra
is all possible subsets of X ′. A real-valued measure µ j is
defined by ascribing to each element D j a real number. This
allows one to identify the associated measure space with a
finite-dimensional real vector space R

L. A given mapping
T : X → X defines a stochastic transition function δT (x)(·).
This function can be used to obtain a coarser representation
(denoted by P

′ : R
L →R

L) for the continuous P-F operator P

as follows: For µ ′ = (µ ′
1, · · · ,µ ′

L) ∈ R
L, we define a measure

on X as

dµ(x) =
L

∑
j=1

µ ′
jκ j(x)

dm(x)
m(D j)

, (11)

where m is the Lebesgue measure and κ j denotes the
indicator function with support on D j. The P-F matrix can
now be obtained by

ν ′
i = P

′[µ ′](Di)

=
L

∑
j=1

∫
D j

δT (x)(Di)µ ′
j
dm(x)
m(D j)

=
n

∑
j=1

µ ′
jP

′
i j, (12)

where

P
′
i j =

m(T−1(Di)∩D j)
m(D j)

, (13)

m being the Lebesgue measure. We note that the resulting
matrix is a Markov chain. One can use a Monte-Carlo ap-
proach to compute the individual entries P

′
i j. In the simplest

settings, one begins with M “initial conditions” uniformly
distributed in the box D j and use the mapping T to flow
these initial conditions; each initial condition is used to
represent a volume in the phase space. The entry Pi j is then
approximated by the fraction of initial conditions that are in
the box Di after one iteration of the mapping.

We may also extend this Monte-Carlo approach to
the case where a sufficiently long time-series data
{x0,T (x0),T 2(x0), ...,T N−1(x0)} of length N is given. The
number of ”initial conditions” in box j are then given by

N−1

∑
l=0

κ j(T l(x0)) (14)

and the i j-entry of the P-F matrix is the fraction of these
initial conditions that are in set Di after one iterate of map
T . This leads to an explicit formula

P
′
i j =

1

∑N−1
l=0 κ j(T l(x0))

N−1

∑
k=0

κ j(T k(x0))κi(T k+1(x0)) (15)

given entirely in terms of indicator functions. Eigenvalues of
this matrix provides for a spectral analysis of the time-series
data.

One may construct the psuedometric for comparison by
using the individual eigenmeasures. For a given partition,
one looks for eigenvalues ”close” to the unit circle. These
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eigenvalues yield information on the behavior that persists
at the coarse scale of the partition. The spectral comparison
between the data from the model and the experiment involves
comparing the eigenvalues as well as comparing the eigen-
measures. In particular, if there is a single eigenvalue (apart
from the unity eigenvalue) close to the unit circle, one deems
the model to validate the experiment if the eigenvalue match
and so do the eigenspace. The advantage of this approach
above the former one is that one need not guess the frequency
ω .

C. Harmonic averages and P-F eigenmeasures

We begin by showing the relationship between time-
averages and the invariant measure (with λ = 1). Set

µ1[ j] = κ∗
j,1 =

1
N

N−1

∑
k=0

κ j(T k(x0)). (16)

Using Eq. (15), we have

P
′
i jµ1[ j] =

1
N

N−1

∑
k=0

κ j(T k(x0))κi(T k+1(x0)), (17)

and taking a sum over j, we obtain

L

∑
j=1

P
′
i jµ1[ j] =

1
N

N−1

∑
k=0

κi(T k+1(x0))
L

∑
j=1

κ j(T k(x0))

=
1
N

N−1

∑
k=0

κi(T k+1(x0)) ·1

= µ1[i], (18)

i.e., the vector µ1 ∈ R
L is in fact the invariant measure. For

the more general case, set

µλ̄ [ j] = κ∗
j,λ =

1
N

N−1

∑
k=0

λ kκ j(T k(x0)). (19)

We have the following theorem:
Theorem 7: Suppose λ is an eigenvalue of P

′ with unit
modulus then for a suitably fine partition,

P
′µλ̄ = λ̄ µλ̄ , (20)

where µλ̄ is given by Eq. (19).
Proof:

P
′
i jµλ̄ [ j] =

1
N

N−1

∑
k=0

λ kκi(T k+1x0)
∑N−1

l=0 λ l−kκ j(T lx0)κ j(T kx0)

∑N−1
p=0 κ j(T px0)

(21)
Taking a summation over index j,

L

∑
j=1

P
′
i jµλ̄ [ j] =

1
N

N−1

∑
k=0

λ kκi(T k+1x0)
N−1

∑
l=0

λ l−k
L

∑
j=1

κ j(T lx0)κ j(T kx0)

∑N−1
p=0 κ j(T px0)

(22)
For fixed k, suppose T kx0 ∈ DJ(k) then

L

∑
j=1

P
′
i jµλ̄ [ j] =

1
N

N−1

∑
k=0

λ kκi(T k+1x0)
∑N−1

l=0 λ l−kκJ(k)(T lx0)

∑N−1
p=0 κJ(k)(T px0)

(23)

Using the part (2) of Corollary 6 above,

lim
N→∞

1
N

N−1

∑
l=0

λ l−kκJ(k)(T
lx0) = µ1(DJ(k)), (24)

the invariant measure for the continuous problem. Next, by
Eq. (16)

1
N

N−1

∑
p=0

κJ(k)(T
px0) = µ1[J(k)]. (25)

Now, for N long enough and partition fine enough, it is true
that µ1(DJ(k)) ≈ µ1[J(k)] [2] and we have

∑N−1
l=0 λ l−kκJ(k)(T lx0)

∑N−1
p=0 κJ(k)(T px0)

→ 1. (26)

Substituting Eq. (26) into Eq. (23),

L

∑
j=1

P
′
i jµλ̄ [ j] → λ̄

N

N−1

∑
k=0

λ k+1κi(T k+1x0) = λ̄ µλ̄ [i] (27)

and this proves the theorem.

V. EXAMPLES

A. Period-4 oribit with noise

Fig. 1. Phase space plot of the period-4 time-series data.

Fig. 1 depicts a time-series consisting of a period-4 orbit

{x1,x2,x3,x4} (28)

perturbed with bounded random noise; x1 = [0.5,−0.5],
x2 = [0.5,0.5], x3 = [−0.5,0.5], x4 = [−0.5,−0.5]. The time-
series data with N = 4000 points is embedded in B

.=
[−1,1] × [−1,1] ⊂ R

2 and B′ = {B1,B2,B3,B4} denote a
finite partition of B consisting of four boxes (see Fig. 1). For
this partition and the time-series, the underlying dynamical
system T satisfies the deterministic and cyclic relationship

T (Bi) ⊂ Bi+1 for i = 1,2,3

T (B4) ⊂ B1. (29)

The corresponding P-F matrix corresponds to a deterministic
[3] and unitary transfer matrix

P
′ =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ (30)
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with eigenvalues {1, i,−1,−i}. We consider the harmonic
averages for individual eigenvalues. Since noise is small
relative to the size of the box, a very good approximation
for harmonic average (for large N) is

κ∗
j,λ =

1
4

3

∑
k=0

λ kκ j(T k(x0)). (31)

There exist four possibilities for the choice of x0: x0 ∈ B j for
j = 1,2,3,4.

It is easily seen that for λ = 1, κ∗
j,1 = 1

4 independent of the
choice of x0. Moreover, this is precisely the invariant measure
- eigenmeasure for the matrix in Eq. (30) with eigenvalue
λ = 1. The eigenmeasures for other eigenvalues of the P-F
matrix in Eq. (30) may also be consistently obtained and used
for constructing a pseudometric for spectral comparison. For
instance, the eigenmeasure corresponding to the eigenvalue
λ = ±i picks up the period-4 cyclic behavior and the P-F
matrix and hence its eigenmeasures are independent of the
exact realization of the noise.

However, for eigenvalues λ �= 1, the harmonic average κ∗
j,λ

depends upon the choice of initial condition. Its value for
λ = i is summarized in the following table

x0 ∈ B1 B2 B3 B4

κ∗
1 1 −i −1 i

κ∗
2 i 1 −i −1

κ∗
3 −1 i 1 −i

κ∗
4 −i −1 i 1

. (32)

It is however easy to see that these functions differ from
each other only by a complex factor (suitable power of
λ ). Moreover, each of these functions lie in the complex
eigenspace corresponding to the eigenvalue λ̄ = −i. As a
result, the spectral analysis of the P-F matrix constructed
using a partition provides for pseudometrics that are identical
to ones obtained using harmonic averages corresponding to
indicator functions on the partition. For the realization of the
noise used in constructing the time-series of Fig 1, there was
only O(10−16) difference in the pseudometrics constructed
using the two approaches.

Fig. 2. Phase space plot of the perturbed period-4 time-series data.

We remark that the construction of pseudometric depend
upon the selection of the partition. As an example, consider
the period-4 time-series shown in Fig 2 but now with a
partition that is not fine enough to resolve the cyclic behavior.
In this case, the P-F matrix corresponding to the partition is

not deterministic; depending upon the instantaneous value of
noise there may be a transition from B2 → B2 or B2 → B3.
Numerically, the P-F matrix was found to have eigenvalues
{1,−0.006+0.727i,−0.006−0.727i,−0.516}, i.e., it is not
unitary. Figure 3 compares the absolute value of the normal-
ized error between the eigenfunctions obtained with the two
approaches. In order to construct the harmonic averages, the
eigenvalues {1, i,−i,−1} were used. The harmonic averages
are compared against the eigenfunction with the closest
corresponding eigenvalue of the P-F matrix.

Fig. 3. Normalized error between the (suitably normalized) eigenfunctions
obtained using the two approaches for the time-series and the partition of
Fig. 2.

B. Time-series data from combustion model

In this section, we compare the results of the spectral
analysis carried out using two approaches for the time-
series data that is generated from the combustion model
first presented in [1]. The model is a two-state oscillator
with a saturation nonlinearity in feedback and is driven by a
broadband stochastic disturbance. The equations are

x(k) = (−α + cos(ω0Ts))x(k−1)− sin(ω0Ts)y(k−1),
y(k) = sin(ω0Ts)x(k−1)+(−α + cos(ω0Ts))y(k−1)

+ K3h(K2x(k−D))+K1n(k−1), (33)

where the model parameters are Ts = 0.0005,α = 0.03,ω0 =
2π · 207,K1 = 1,K2 = 2000,K3 = 0.0525,D = 10, h is a
saturation (at 1) nonlinearity, and n(·) is taken to be a random
noise uniformly distributed in the interval [−0.1,0.1]. Fig. 4
plots a N = 10000 length time-series obtained with this
model and initial conditions x(0) = 1,y(0) = 0. Also shown

Fig. 4. Phase space plot of the time-series data generated with model
Eq. (33).
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is the 10 × 10 partition of the phase space [−1.5,1.5]×
[−1.5,1.5] that is used for carrying out the spectral analysis:
for defining the indicator functions for harmonic averages
and for defining the coordinates of the 100×100 P-F matrix.
Fig. 5 shows the eigenvalues of this matrix. The figure shows

Fig. 5. Eigenvalues of the P-F matrix corresponding to the time-series data
and the partition of Fig. 4.

that for the coarse partition considered, the eigenvalues are
only bounded by unit circle. Apart from the unity eigenvalue,
there is an eigenvalue denoted λp f close to the unit circle
that captures the frequency of the limit cycle. In fact, there
is a band of eigenvalues close to the unit circle all related to
the superharmonics of λp f .

Fig. 6 compares the time-average and the eigenfunction
corresponding to the eigenvalue 1 (invariant measure). On
10× 10 partition, the maximim difference between the two
is of O(10−3). The invariant measure also shows the attractor
to be a noisy limit cycle [1].

Fig. 6. Invariant measure constructed using (a) harmonic averages with
indicator functions and (b) normalized eigenmeasure for eigenvalue 1 of the
100×100 P-F matrix.

Next, a discrete Fourier transform of the signal shows
a dominant peak at frequency of 2π · 222.2 (corresponding
λ = 0.766+ i0.643

.= λh). According to the suggestion in [1],
this is used to construct harmonic averages for 100 indicator
functions that are defined by the 10× 10 partition. This is
compared against the suitably normalized eigenmeasure cor-
responding to the eigenvalue λ = 0.758+ i0.637

.= λp f of the
P-F matrix. Fig. 7 depicts the real and the imaginary parts of
this eigenfunction. The eigenfunction matches the harmonic
averages very closely. The normalized error between the two
approaches is ≤ 0.05.

We finally note that we have not compared the absolute
value of the eigenfunctions. For modulus 1 eigenvalues, the
absolute value of the eigenmeasure is the invariant measure
and hence does not provide additional information.

Fig. 7. (a) Real and (b) Imaginary parts of the eigenmeasure corresponding
to the eigenvalue λp f of the 100×100 P-F matrix.

VI. CONCLUSIONS

In this paper, we have provided a comparison between two
approaches for comparing dynamical systems. With the aid
of theory and examples, we show the two approaches to be
equivalent. The P-F matrix approach provides for a complete
spectral analysis of the data (for a given partition). If the
eigenvalues of this matrix are known then harmonic average
is a straightforward method to obtain the eigenfunctions
of the P-F matrix. The advantage is that this avoid an
eigenvalue calculation of a matrix. The disadvantage is that it
requires apriori knowledge of the eigenvalue. Moreover, for
long time-series, the harmonic averages are sensitive with
respect to λ : it is generically zero. The harmonic average
also depends upon the choice of initial condition. However,
this is a minor issue as the harmonic average for two initial
conditions differ only by a complex factor.

In future work, we would consider the problem of inte-
grating the comparison problem with model identification
problem from experimental data. The spectral analysis results
presented here are seen as the first step in that direction.
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