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Abstract: Active controllers that allow the compressor to operate safely at its peak pressure rise point by
preventing surge and controlling entry into rotating stall need to be globally stabilizing. Bifurcation methods
have emerged as a useful tool for the analysis of global stability and control of nonlinear dynamical systems
such as the axial compressor. In this paper we show how bifurcation analysis can be used effectively to obtain
answers to questions of global stability of the compressor dynamics. Since the bifurcation method does not
directly provide information on transient behaviour, we demonstrate how bifurcation results need to be
carefully interpreted to be of use when dealing with practical systems. We then present a novel nonlinear
bifurcation-based stall/surge controller that is globally stabilizing. With such a controller, it becomes possible
to avoid surge entirely and to prevent abrupt entry into rotating stall. The controller also eliminates the
hysteresis between entry into and recovery from a rotating stall, and maintains system stability under all
perturbations, small and large.
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NOTATION

K1, K2 controller gain parameters
R square of the amplitude of � rst mode

rotating stall

b parameter related to the Greitzer ‘B’
parameter

g parameter representing throttle area
s constant, � xed at 7
j nondimensional mass � ow coef� cient
c nondimensional compressor pressure rise
cc0 constant, � xed at 1.67

Superscript
0 derivative with respect to nondimensional time

Subscripts
0 nominal value under closed-loop conditions
c compressor
T throttle

1 INTRODUCTION

Axial compressors are designed to operate under conditions
of steady axisymmetric � ow, where the pressure rise across
the compressor is a function of the compressor mass � ow
rate. Throttling down the mass � ow results in higher blade
loading and a larger compressor pressure rise, but only up to
a point. Beyond this point, lower mass � ow rates result in
stalled � ow at one or more circumferential blade stations,
resulting in the phenomenon of rotating stall. These regions
of stalled � ow, called stall cells, rotate at a fraction of
the compressor rotor speed, thus loading and unloading
the blades as they pass in and out of the stall cells. The
presence of stall cells results in a loss of pressure rise and
creates circumferential asymmetry in the � ow through the
compressor. In addition, the annulus averaged mass � ow,
and hence the pressure rise, may show a time periodic osci-
llation along the axis of the compressor. This phenomenon

The MS was received on 20 December 2002 and was accepted after
revision for publication on 31 March 2003.

*Corresponding author: Department of Aerospace Engineering, Indian
Institute of Technology (Bombay), Powai, Mumbai 400076, India. E-mail:
akn@aero.iitb.ac.in

This paper was presented at the XV International Symposium on Air
Breathing Engines (ISABE) held in Bangalore, India, on 2–7 September
2001.

279

A09202 # IMechE 2003 Proc. Instn Mech. Engrs Vol. 217 Part A: J. Power and Energy



is called classic surge. In extreme cases, the oscillation of
the averaged � ow quantities along the compressor axis may
be severe (even reverse � ow over part of the cycle) with mild
or insigni� cant rotating stall behaviour. This is called deep
surge. Besides the obvious loss in compressor pressure rise
and the possibility of engine � ame out, stall and surge can
damage compressor blades and can cause substantial over-
temperatures in the burner and turbine. Thus, stall and surge
act as primary design constraints in axial � ow compressors,
effectively reducing gas turbine engine performance.

The traditional approach to avoid stall and surge has been
to impose a surge margin, which discourages operation near
the unstable region. However, since the desired point of
axisymmetric operation with maximum pressure rise occurs
at the verge of this unstable region, use of the surge margin,
unfortunately, precludes operation near the peak pressure
rise point, thus limiting the compressor performance.
Instead, recent research has focused on the use of active
control techniques to suppress rotating stall and surge in
order to extend the stable operating range, and to improve
engine performance by allowing the compressor to operate
near the peak pressure rise point without the danger of
entering rotating stall or surge. Most of the developments in
the � eld of compressor � ow stability and active control over
the last two decades have been reviewed in a recent
paper [1]. An introduction to the problem of compressor
stall/surge modeling and control is available in reference [2].
An overview of the various control techniques applied
to compressor stall/surge dynamics has been provided
in [3, 4].

Most of the theoretically developed stall/surge control
strategies have been based on the one-mode approximation
of the Moore–Greitzer (MG86) model [5]. (A list of existing
compressor � ow dynamics models and their properties is
given in reference [2].) The one-mode MG86 model consists
of three � rst-order ordinary differential equations in three
variables (representing compressor pressure rise, mass � ow,
and the amplitude of the � rst mode of rotating stall) and two
parameters (representing the compressor rpm and throttle
area). Many studies using the one-mode MG86 model have
chosen the pressure rise and mass � ow as sensed variables,
and the throttle parameter as the control variable for imple-
mentation of their stall/surge control law. A recent study
suggests that a close-coupled valve actuator and a mass � ow
sensor may be the most promising choice for surge control
[6]. However, other methods of actuation such as air injec-
tion have been successfully demonstrated in experimental
programmes [7]. A few of the theoretically derived control
laws have also been experimentally validated [8–10],
although there are persisting concerns on the limitations
imposed by sensor availability and present-day actuator
bandwidths. Prompted by these concerns, linear � xed-
order dynamic compensators have been proposed in refe-
rence [11] which, the authors claim, considerably reduce the
sensing requirements for control. However, most of the
control strategies developed in recent years have relied on
nonlinear feedback laws for stall/surge suppression, and

nonlinear bifurcation-based control appears to be capable
of handling actuator rate and magnitude limits [12, 13].

Multi-mode MG86 models have been analysed for their
dynamics and control, and there is some evidence to suggest
that controllers designed for the one-mode MG86 model
may not always work in the multi-mode case [14, 15]. There
have been some attempts to examine alternate models that
capture compressor dynamic effects ignored by the MG86
model; for example, control of compressors that exhibit the
phenomenon of deep hysteresis [16], control of high-speed
multi-stage compressors [17], and active stabilization in the
presence of inlet distortion effects [18]. A robust distur-
bance rejecting control law has been devised [19] to handle
uncertain pressure-� ow maps (compressor characteristics),
while a high-gain adaptive control for surge stabilization has
been proposed [20].

It has been recognized in recent years that successful
active stall/surge controllers would need to be globally
stabilizing, and that, in turn, depends on the global stability
properties of the axial compressor dynamic system. Jet
engines often operate under noisy environments where
large � uctuations are possible, and the operating point
needs to be globally stable in order to recover satisfactorily
from perturbations encountered under these conditions.
Globally stabilizing controllers for jet engine surge and
stall using a back-stepping approach have been designed
[21, 22].

An ef� cient technique to compute numerically global
stability information is the continuation and bifurcation
method. In this method, a continuation algorithm is � rst
used to compute all equilibrium states and periodic solu-
tions, and their stability. Bifurcation theory is then used to
predict the global stability behaviour of the system, based on
the continuation results. Numerical simulation is required
only for a few parameter values indicated by the bifurcation
method, which provides signi� cant savings in time and
money. The bifurcation method has been applied to the
analysis of compressor � ow dynamics [23–26]. The idea
that the bifurcation method can be naturally used to design
nonlinear controllers to alter the global stability behaviour
of dynamical systems � rst emerged in the early 1990s
[27, 28]. There are obvious advantages if the globally
stabilizing control could itself be derived using bifurcation
methods, because the requirements for global stability are
naturally posed in terms of the presence or absence of
certain bifurcations. Although there have been a few
papers [29, 30] where bifurcation-based nonlinear control-
lers for axial compressor � ow dynamics have been devised,
these controllers have not been globally stabilizing. It is
therefore of interest to consider globally stabilizing control-
lers for the compressor stall/surge problem obtained using
bifurcation methods.

In the present paper, we � rst show how bifurcation
analysis can be effectively used to obtain answers to ques-
tions of global stability of the compressor dynamics. It must
be understood that the bifurcation method does not directly
provide information on transient behaviour, and bifurcation

Proc. Instn Mech. Engrs Vol. 217 Part A: J. Power and Energy A09202 # IMechE 2003

280 N ANANTHKRISHNAN, U G VAIDYA AND V W WALIMBE



results need to be carefully interpreted to be of use when
dealing with practical systems. Following this, we present a
novelnonlinearbifurcation-basedstall/surge controller that is
globally stabilizing. This controller will permit the compres-
sor to operate near its peak pressure rise point without the
danger of surging or encountering abrupt rotating stall.

2 BIFURCATION ANALYSIS

The most widely used model for studies of axial compressor
� ow dynamics and control has been the MG86 model [5].
This model features the following set of three nonlinear
ordinary differential equations, following the notation in
reference [23]:

j0 ˆ ¡c ‡ cc(j) ¡ 3jR

c0 ˆ 1

b2 [j ¡ jT(c)],

R0 ˆ sR(1 ¡ j2 ¡ R), (1)

where j is the nondimensional mass � ow coef� cient, c is
the nondimensional pressure rise of the compressor, R is the
square of the amplitude of the � rst mode of the rotating stall
disturbance, and the ‘0’ refers to differentiation with respect
to a suitable nondimensional time parameter. Clearly, R is
non-negative, with R ˆ 0 representing axisymmetric � ow,
while R > 0 indicates the presence of regions of stalled � ow.
The compressor characteristic, cc(j), which represents the
response of the compressor in steady axisymmetric � ow, is
taken to be a cubic function:

cc(j) ˆ cc0 ‡ 1 ‡ 3
2 j ¡ 1

2 j3 (2)

while the throttle characteristic jT(c) is modeled as:

jT(c) ˆ
������
gc

p
¡ 1 (3)

There are two parameters in equation (1), the throttle
parameter g, which represents the area of the throttle, and
the parameter b, which is related to the Greitzer ‘B’
parameter [31] and represents the compressor rotational
speed. The constant cc0 is chosen to be 1.67, and s is
� xed at 7.

A complete bifurcation analysis of the MG86 model in
equation (1) has been carried out [25]. The AUTO97
continuation and bifurcation software [32] has been used
to carry out the computations. The computed bifurcation
diagram, for pressure rise c with varying throttle parameter
g, for the case b ˆ 0.75, is presented in Fig. 1.* (Similar
bifurcation diagrams for the other variables, j and R, can
also be plotted.) Figure 1 contains information about all

steady states (equilibrium states and limit cycles) and their
stability, and identi� es bifurcation points where steady states
exchange stability, new steady states are created, or existing
steady states disappear. The subcritical bifurcation point
represents the peak value of pressure rise where the axisym-
metric � ow loses stability. Limit cycles originating from
Hopf bifurcation point H1 represent deep surge with R ˆ 0,
while those from Hopf bifurcation point H2 are classic surge
cycles with R > 0. Classic surge cycles occur only for a
narrow range of values of the throttle parameter g, and are
therefore plotted separately in Fig. 1b on a different para-
meter axis scale. Limit cycles from Hopf point H3 are not
plotted because they are found to have negative R and are
therefore nonphysical (this is one of the shortcomings of the
one-mode MG86 model). Bifurcation diagrams, such as that
in Fig. 1, can be used to identify parameter regions of
different global stability behaviour.

2.1 Steady-state behaviour

The bifurcation diagram of Fig. 1 indicates four main
regions of throttle parameter g with different global stability

Fig. 1 Bifurcation diagram of pressure rise c with varying
throttle parameter g for MG86 model with b ˆ 0.75.
Arrows labeled ‘Throttle slowly varied’ and ‘Throttle
slam’ indicate typical modes of entry into rotating stall
and surge. Part (b) shows on enlargement with different
parameteraxis scaleshowing classic surge cycles in detail

*Note that in all bifurcation diagrams, full lines are stable equilibria,
dashed lines are unstable equilibria, � lled circles represent peak ampli-
tude of stable limit cycles, empty circles denote peak amplitude of unstable
limit cycles, � lled squares are Hopf bifurcations, and empty squares are
sub/supercritical bifurcations.
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behaviour. To the right of the subcritical bifurcation, the
axisymmetric � ow is the only stable solution. To the
immediate left of the subcritical point, there is a narrow
region, ampli� ed in Fig. 1b, where both rotating stall and
classic surge are stable, and either steady state is possible
depending on the initial conditions. Further to the left is a
region where rotating stall is the sole stable solution. Finally,
there is a leftmost region where both rotating stall and deep
surge are stable, once again the choice of steady state
depending on the initial conditions. Several predictions
about the global dynamical behaviour of the MG86 model
may be made based on the bifurcation diagram of Fig. 1:

1. As the mass � ow is slowly throttled down past the
subcritical bifurcation value, Fig. 1 predicts that the
system will � rst show classic surge before entering
rotating stall at the point marked ‘‘rotating stall onset’’
in the � gure. If the throttle parameter is slowly increased
from this point, one may conclude that, once past the
Hopf point H2, rotating stall should give way to classic
surge brie� y, followed by recovery to axisymmetric � ow
shortly after the subcritical bifurcation.

2. Both entry into rotating stall and recovery to axisym-
metric � ow appear to be accompanied by abrupt changes
in the pressure rise (and mass � ow), but hysteretic
behaviour appears to be limited to a narrow range of
the throttle parameter between the values g º 1.05–1.10.

3. Deep surge seems to occur only when the throttle is
slammed to values of g less than that at the Hopf point
H1, otherwise the compressor always appears to enter
rotating stall, no matter how the throttle is varied.

A more detailed bifurcation analysis, as in reference [25],
can reveal further information. For example, it can be
established that presence of classic surge is not a prerequi-
site for onset of deep surge, and that there is a cutoff value
of b below which surge does not occur at all.

2.2 Transient behaviour

While bifurcation diagrams such as that in Fig. 1 can be
easily computed, some care must be exercised in their
interpretation. This is because bifurcation diagrams only
provide steady state information whereas, in practical opera-
tion, there are always signi� cant transients, which can be
discovered only by numerical simulation. Two numerical
simulations are presented in this section as illustrations. The
� rst simulation in Fig. 2a shows the system response to
throttle varied slowly from g ˆ 1.2 to 0.9 and back. The
predicted entry into classic surge brie� y, followed by rota-
ting stall, and the foreseen abrupt loss in pressure rise, are
all veri� ed in Fig. 2a. However, recovery to axisymmetric
� ow is delayed until g º 1.2, leading to a larger region of
hysteresis than expected, and there is also no evidence of
classic surge during the recovery transient. While this
observation can be explained in terms of the topology of
the classic surge cycles (their proximity to a saddle point as

explained in reference [25]), this is not obvious from the
diagram in Fig. 1.

Another simulation in Fig. 2b shows the throttle being
slammed from g ˆ 1.2 to 0.9 and being held there for a while
before being slowly brought back to its original value of 1.2.
Figure 1 predicts the deep surge solution for g ˆ 0.9 to be
unstable and, hence, one may believe that deep surge cycles
may not be expected to occur in this case. However, several
deep surge cycles may be noticed in Fig. 2b before onset of
rotating stall, while recovery to axisymmetric � ow in Fig. 2b
is identical to that seen in Fig. 2a. Thus, while the prediction
of deep surge being caused by throttle slam turns out to be
correct, it is necessary to distinguish between the point of
deep surge onset and the point of sustained deep surge onset
as marked in Fig. 1. It turns out that the deep surge cycles
originating at the Hopf point H1, although unstable, are in
fact stable in the R ˆ 0 plane. It is only at the point marked
‘‘Sustained deep surge onset’’ in Fig. 1 that the deep surge
cycles gain stability in the direction out of the R ˆ 0 plane at
what is seen to be a transcritical bifurcation of cycles [25].

Thus, the bifurcation diagram in Fig. 1 identi� es the
following points. The � rst is the point of onset of instability
in the axisymmetric � ow (labeled H3). This is also the point

Fig. 2 Transient response of the compressor system in Fig. 1
to (a) slowly varying throttle showing jump and
hysteresis, and (b) throttle slam showing deep surge
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where classic surge oscillations originate. The second is the
point of rotating stall onset (labeled H2). The third is the
point where deep surge cycles are created (labeled H1), but
these deep surge cycles are not sustained, eventually giving
way to rotating stall. Finally the fourth is the point of onset of
sustained deep surge oscillations. This usually requires the
throttle to be slammed, as indicated by the arrow in Fig. 1.
The power of the bifurcation method lies in the fact that,
when accompanied by a few select numerical simulations, it
provides an exhaustive picture of the global stability of the
system. In terms of time and cost, it reduces the number of
numerical simulations to a fraction of that required in the
absence of bifurcation analysis. It also allows one to quickly
con� rm whether a closed-loop system with a speci� c
controller has desired global stability properties.

3 BIFURCATION-BASED CONTROL

Linear controllers depend on local stability information and
are usually unable to alter the global stability characteristics
of nonlinear systems in a desired manner. For example, a
hypothetical linear controller was considered in reference
[33] that attempted to maintain the axial compressor system
of equation (1) in axisymmetric � ow, that is, at R ˆ 0, no
matter what the value of the throttle parameter g. It was found
that for certain values of g, this controller could inadvertently
force the compressor into deep surge even though the
uncontrolled system did not show deep surge under those
conditions. Control of the global stability behaviour of
nonlinear systems therefore requires nonlinear control laws.

The bifurcation method is an effective tool for the global
control analysis of nonlinear systems. Bifurcation-based
control laws to prevent jump and hysteresis at onset of
rotating stall have been devised in the past [29, 30]. These
laws were based on the idea that the jump phenomenon and
the accompanying hysteretic response could be avoided if
the subcritical bifurcation at onset of rotating stall could be
converted into a supercritical one. Essentially, this requires a
feedback that alters the throttle characteristic in equation (3)
such that multiple equilibrium states are avoided for a given
value of throttle parameter. While the control law in refer-
ence [29] required feedback of the rotating stall amplitude
variable R, which is not easily measurable, another bifurca-
tion-based control law requiring only feedback of compres-
sor pressure rise c has been put forward by Gu et al. [30],
and is given as:

g ˆ �����
g0

p ‡ K1����
c

p
Á !2

(4)

where g0 is the new nominal value of the throttle parameter.
With this control law, the second part of equation (1) now
becomes:

c0 ˆ 1

b2(j ¡
��������
g0c

p
¡ K1 ‡ 1) (5)

It can be shown that, for values of K1 between 0.77 and 2.0,
the bifurcation point at onset of rotating stall is indeed
supercritical, and hence jump and hysteresis are eliminated.
However, this control law does not eliminate surge. Far
worse, this controller actually induces the compressor to
surge whenever the throttle is reduced past the peak pressure
rise point. This can be seen from Fig. 3, which shows the
bifurcation diagrams for R with varying throttle parameter g
in the open-loop case (b ˆ 0.75, as in Fig. 1), and for R with
varying parameter g0 in the closed-loop case with the control
law in equation (4). The gain parameter in equation (4) is
chosen as K1ˆ 0.9. Solutions with R ˆ 0 represent the
desired axisymmetric � ow through the compressor. With
decreasing g, the stable axisymmetric solutions lose stability
in both Figs 3a and b. However, the closed-loop bifurcation
diagram in Fig. 3b shows a supercritical bifurcation as
against the subcritical bifurcation in the open-loop diagram
of Fig. 3a. While this does eliminate jump and hysteresis at
the point of onset of instability, it must be noted that the
Hopf bifurcation H2, indicating onset of surge, is located
very near the supercritical bifurcation point in Fig. 3b. In the

Fig. 3 Bifurcation diagram of � rst-mode rotating stall ampli-
tude R with varying throttle parameter g (or g0 ) for
MG86 model with b ˆ 0.75 for (a) open-loop system,
and (b) closed-loop system with control law equation (4)
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absence of any stable equilibrium solutions for g0 less than
the H2 Hopf value, it is almost certain that the compressor
will start surging as the throttle is reduced past the peak
pressure rise point marked by the supercritical bifurcation.
Further evidence of this surging behaviour, in the form of a
numerical simulation, is presented later in this paper.

We now aim to modify the controller in equation (4) such
that it also eliminates the Hopf bifurcation point H2, without
disturbing the supercritical nature of the equilibrium states
at the point of onset of instability of the axisymmetric � ow
solutions. The modi� ed controller may be expected to be
globally stabilizing, that is, for g0 greater than the super-
critical bifurcation value, the only stable solutions will
be the axisymmetric equilibria, while for g0 less than the
supercritical value, the rotating stall equilibria would be the
only stable solutions. This implies that there would be no
stable periodic solutions for any value of g0, and hence no
surge cycles. The � rst step in this procedure is to start with
the control law in equation (4), with the parameter K1 � xed
at 0.9, and carry out a two-parameter continuation to track
the locus of Hopf bifurcation points H2 with varying
parameters b and g0. This locus is plotted in Fig. 4, from
which it is clearly seen that there is a minimum value of b
marked by a dashed line, below which the Hopf point H2

does not occur. Hence, operation at any value of b below
this minimum guarantees that the compressor will not surge.
However, b, which represents the compressor rpm, is not a
suitable control parameter, and the challenge, therefore, is to
devise a control strategy using the throttle g as the control
parameter that can emulate the effects of operating at
lowered values of b.

Consider the following control law, which is based on a
nonlinear feedback of pressure rise c and mass � ow j to the
throttle g:

g ˆ 1
K2

2 p
g0 ‡ 1p

c
[(K2 ¡ 1)(j ‡ 1) ‡ K1]

2

(6)

Using this control law in the second part of equation (1)
gives

c0 ˆ 1

K2b2(j ¡
��������
g0c

p
¡ K1 ‡ 1) (7)

Surprisingly, this is identical to equation (5) except for the
additional parameter K2 that now appears in the denomi-
nator of equation (7). For a choice of K2ˆ 1, it is easily
veri� ed that the control law in equation (6) is identical to
that in equation (4), and that the closed-loop compressor
dynamics in Fig. 3b is left unchanged. The effect of any
other choice of K2 is to make the compressor operate at an
effective value of b given by,

beff
2 ˆ K2b

2 (8)

Thus, in order to make a compressor operating at b ˆ 0.75
behave like one working at, say, b ˆ 0.2, one only needs to
choose K2ˆ (beff /b)2ˆ 0.0711 in the control law of equa-
tion (6). The bifurcation diagrams for the resulting closed-
loop compressor system with K1ˆ 0.9 and K2ˆ 0.0711 are
plotted in Fig. 5. The bifurcation diagram of R against g0 in
Fig. 5a shows the onset of instability of the axisymmetric

Fig. 4 Two-parameter continuation showing the locus of Hopf
points H2 with varying parameters g0 and b for the
closed-loop compressor system with the control law
equation (4)

Fig. 5 Bifurcation diagram of (a) � rst-mode rotating stall
amplitude R with varying throttle parameter g0 , and
(b) pressure rise c with varying mass � ow j, for the
closed-loop compressor system with the control law
equation (6)
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(R ˆ 0) solutions at a supercritical bifurcation. The bifur-
cated rotating stall solutions (R > 0) are all stable, and jump
and hysteresis do not occur at onset of rotating stall. There
are no Hopf bifurcations and, hence, surge limit cycles
have been eliminated. For each value of g0, there is only
one stable equilibrium state, and that is globally asympto-
tically stable. The equilibrium solutions can also be viewed
on a plot of pressure rise c versus mass � ow j in Fig. 5b.
States marked ‘A’ are the axisymmetric solutions, those
marked ‘R’ are the rotating stall solutions, and the super-
critical bifurcation can be seen to occur at the peak pressure
rise point. Incidentally, the control law in equation (6) also
succeeds in displacing the deep surge Hopf bifurcation point
H1 to smaller values of g0, out of the range of values in Fig.
5, virtually eliminating the possibility of deep surge for any
reasonable throttle slam.

To close this section, a couple of numerical simulations
are presented illustrating the conclusions drawn from the
bifurcation diagrams of Figs 3 and 5. Figures 6a and b show
the response in pressure rise of the closed-loop compressor
system with the control laws in equations (4) and (6),
respectively, to the identical throttle input shown in the
� gures. The control law in equation (4) without the global
stabilization property manages to avoid hysteresis, but

pushes the compressor into large-amplitude surge cycles
instead. The new globally stabilizing controller in equation
(6), on the other hand, takes the compressor into and out of
rotating stall without hysteresis, and avoids surge altogether.

4 CONCLUSIONS

Axial compressors in jet engines operate in a severe envi-
ronment of high noise and large � uctuations due to distur-
bances, both external and from within the engine. Active
control techniques appear to promise safe, stable, and
ef� cient compressor operation under these harsh operating
conditions, provided the control laws are globally stabili-
zing. This ensures that the compressor returns to the desired
operating condition after experiencing any perturbation,
large or small. The best way to check for global stability
of a system is to carry out a numerical bifurcation analysis,
and this has been demonstrated in section 2 for the
compressor dynamic system given by the MG86 model.
Secondly, there are obvious advantages if the globally
stabilizing control could itself be devised using bifurcation
methods since the requirements for global stability are
naturally posed in terms of the presence or absence of
certain bifurcations. In section 3, we have derived a bifurca-
tion-based globally stabilizing controller, which appears to
provide a successful active control strategy for jet engine
axial compressors. It would, however, be of interest to test
the performance of the newly devised control law on a 2–3
stage, low-speed compressor rig.
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