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Abstract

We study the problem of actuator and sensor placement in a linear advection partial

differential equation (PDE). The problem is motivated by its application to actuator

and sensor placement in building systems for the control and detection of a scalar

quantity such as temperature and contaminants. We propose a gramian based ap-

proach to the problem of actuator and sensor placement. The special structure of the

advection PDE is exploited to provide an explicit formula for the controllability and

observability gramian in the form of a multiplication operator. The explicit formula

for the gramian, as a function of actuator and sensor location, is used to provide test

criteria for the suitability of a given sensor and actuator location. Furthermore, the

solution obtained using gramian based criteria is interpreted in terms of the flow of

the advective vector field. In particular, the almost everywhere stability property of

the advective vector field is shown to play a crucial role in deciding the location of

actuators and sensors. Simulation results are performed to support the main results

of this paper.
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1 Introduction

In this paper, we study the problem of actuator and sensor placement in a

linear advection partial differential equation. The problem is motivated by

its application to actuator and sensor location in building systems for the

purpose of control of temperature and detection of contaminants. Building

systems in US account for 39 percent of total energy consumption [1]. Design

of efficient building systems not only has a significant economic benefit but

also social and environmental benefits. Social benefits arise due to improved

overall quality of life by enhancing occupant health, comfort and heightened

aesthetic qualities. Improvement in water and air quality and reduced waste

lead to environmental benefits.

The optimal placement of actuators and sensors in a building system is a

difficult problem due to the complex physics that is involved. The governing

equations for building system fluid flows and scalar densities are coupled non-

linear partial differential equations subjected to disturbances, various sources

of uncertainties, and complicated geometry. Analysis of the building system

with its full scale complexity leads to a finite element based computational

approach to the actuator and sensor placement problem [2]. Such a purely

computational based approach provides little insight into the obtained solu-

1 Corr. author Email: ugvaidya@iastate.edu
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tion. An alternate system theoretic and dynamical systems based approach

under some simplifying assumptions and physics can also be pursued [3,4].

Such an approach provides useful insights and guidelines to the complex con-

trol problems involved in building system applications. In this paper, we pur-

sue a similar approach for the location of actuators and sensors problem in a

building system.

Under some simplifying assumptions and physics [3,4], the system equations

are modeled in the form of a linear advection partial differential equation with

inputs and outputs. We propose a gramian based approach to the actuator

and sensor location problem. The results are an important first step towards

its application to building systems. However, further research needs to be done

for relaxing some of the simplifying assumptions made in this paper for the

applicability of these results for the building systems problem. We believe that

the analytical methods developed in this paper combined with computational

techniques involving detailed physics of building systems is a right approach

moving forward. The main contribution of this paper is in providing explicit

formula for the controllability and observability gramians as a function of ac-

tuator and sensor locations and the advection velocity field. These explicit

formulas for the gramians are used to provide test criteria for deciding the

location of sensors and actuators. Technical conditions for the existence of in-

finite time gramians are also provided. In particular, we prove that the infinite

time controllability and observability gramians are well defined for almost ev-

erywhere stable and asymptotically stable advection vector fields respectively.

We provide simulation results using a two dimensional fluid flow vector field for

the computation of the finite time controllability and observability gramian.

An excellent review and classification of sensor and controller positioning for
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distributed parameter systems can be found in [5], where most of the methods

involve a finite dimensional approximation of the infinite dimensional system,

either before or after solving an optimization problem using the point spectrum

of the infinitesimal generator. It was noted in [5] that such an approximation

based method will not work for wave type systems because of the finite speed

of propagation. [6] is an excellent book on sensor and actuator placement for

distributed parameter systems governed by heat and diffusive type processes.

[7] describes sensor and actuator placement for flexible structures. A combina-

torial optimization approach for linear time invariant systems based on integer

programming using the controllability and observability gramians for sensor

and actuator placement can be found in [8].

The linear advection equation considered in this paper is akin to a unidirec-

tional wave equation whose wave speed is governed by a nonlinear smooth

vector field f(x). Hence, actuator and sensor placement analysis based on a

finite dimensional approximation as developed in earlier references will not

work well for our problem. Our selection criteria for actuators and sensors

uses the idea of controllability and observability gramians, but differs from

what is seen in the literature slightly. The advection equation has a funda-

mental limitation for control as described in Theorem (5), in the sense that

placing an actuator on the set B can only affect states ρ whose support is

Rτ
B = ∪τt=0φt(B). This set Rτ

B is precisely the support of the controllability

gramian CτB for the advection equation (see Claim (8)). This is the main reason

why we consider choosing a set B for actuators that maximizes the support

of CτB. For sets B that give the same support for CτB, we choose the one that

gives lesser L2 norm, since that will minimize the control effort (see Theorem

(5), where the minimum norm control formula has the controllability gramian
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appearing in the denominator).

The organization of the paper is as follows. In section 2, we describe the prob-

lem and some preliminaries from the theory of partial differential equations.

In section 3, we present the main results of the paper. In section 4, we discuss

technical conditions for the existence of the infinite time controllability and

observability gramians. Simulation results are presented in section 5 followed

by conclusion in section 6.

2 Preliminaries

We study the problem of optimal location of actuator in a linear advection

partial differential equation. The motivation for this problem comes from the

optimal location of actuators for the control of a scalar quantity, such as

temperature or contaminants, in a room denoted by ρ(x, t).

In building system applications, the evolution of ρ(x, t), is governed by the

velocity field v(x, t) of the fluid flow. This velocity field is obtained as a solution

of the following Navier Stokes equation:

∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t) = −∇p(x, t) +

1

Re
4 v(x, t)

∇ · v(x, t) = 0, (1)

where x ∈ X ⊂ RN (with N = 2 or 3) is the domain of the room, v(x, t)

is the velocity field, p(x, t) is the pressure, and Re is the Reynolds number.

The evolution of the scalar quantity ρ(x, t) is governed by the following linear

controlled partial differential equation
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∂ρ

∂t
+ v(x, t) · ∇ρ(x, t) =

1

PrRe
4 ρ(x, t) +

N∑
k=1

χBk(x)uk(t)

yk(x, t) =χAk(x)ρ(x, t), k = 1, . . . ,M (2)

where Pr is the Prandtl number, χAk(x) is the indicator function on set Ak ⊂

X, and uk(t) ∈ R is the control input for k = 1, . . . , N . The form of control

input χB(x)u(t) and output measurement χA(x)ρ(x, t) is motivated by the

fact that the actuation and sensing can be exercised only on a small region B

and A of the physical space X respectively.

Remark 1 The form of output equation in (2) is different than the one usu-

ally considered in the literature, where the sensors have access to the average

state information on a set (i.e., yk(t) =
∫
Ak
ck(x)ρ(x, t)). The interpretation

in our case is that the sensors have pointwise state information from the sets

Ak. We choose the form in (2) because it allows us to compute the observabil-

ity gramians as a explicit function of section location set Ak. Our proposed

approach can also be applied to the case where the sensors have access to av-

erage state information, however, the observability gramian in that case will

be a complicated function of the sensor location set Ak. Furthermore this form

of output measurement is also dual to the input actuation term, in particular

to Eq. (4).

The objective is to determine the optimal location of actuators and sensors,

and hence the determination of indicator function χBk(x) and χAk(x). The

terms v(x, t) · ∇ρ(x, t) and 4ρ(x, t) in (2) correspond to advection and diffu-

sion respectively, with D = 1
RePr

being the diffusion constant. Note that the

advection diffusion equation (2) is decoupled from the Navier Stokes equation

(1). In the case where the scalar density is temperature, this decoupling cor-

responds to the assumption that buoyancy forces have negligible or no effect.
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Furthermore, for simplicity of presentation of the main results of this paper,

we now make the following assumptions.

Assumption 2 We replace the time varying velocity field v(x, t) responsible

for the advection of scalar density with the mean velocity field f(x) i.e.,

f(x) :=
1

T

∫ T

0
v(x, t)dt

Remark 3 Typically the velocity field information v(x, t) is available over

a finite time interval [0, T ] either from a simulation or from an experiment.

Assumption (2) corresponds to linearizing the linear advection PDE along the

mean flow field f(x). It follows that if v(x, t) is volume preserving i.e., ∇ ·

v(x, t) = 0, then ∇ · f(x) = 0 as well.

Assumption 4 Again for simplicity of presentation of the main results of

this paper, we assume that the diffusion constant D in the advection diffusion

equation (2) is zero. As we see in the simulation section, the assumption of

zero diffusion constant is justified.

We next discuss a few preliminaries on semigroup theory of partial differential

equations. Consider the following ordinary differential equation (ODE):

ẋ = f(x), x(0) = x0, (3)

where x ∈ X ⊂ RN a compact set. We denote by φt(x) the solution of ODE

(3) starting from the initial condition x. ODE (3) is used to define two linear

infinitesimal operators, AK : L2(X) → L2(X) and APF : L2(X) → L2(X)

defined as follows:

AKρ = f · ∇ρ, APFρ = −∇ · (fρ).
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The domains of the above operators are given as follows:

D(AK) = {ρ ∈ H1(X) : ρ|Γo = 0},

D(APF ) = {ρ ∈ H1(X) : ρ|Γi = 0},

where Γo and Γi are the outflow and inflow portions of the boundary ∂X

defined as follows:

Γo = {x ∈ ∂X : f · η > 0}, Γi = {x ∈ ∂X : f · η < 0},

where η is the outward normal to the boundary ∂X. The semigroups cor-

responding to the AK and APF are called as Koopman (Ut) and Perron-

Frobenius (Pt) operators respectively. These operators are defined as follows:

Ut : L2(X)→ L2(X), (Utρ)(x) = ρ(φt(x)),

Pt : L2(X)→ L2(X), (Ptρ)(x) = ρ(φ−t(x))

∣∣∣∣∣∂φt(x)

∂x

∣∣∣∣∣
−1

,

where | · | denotes the determinant. These semigroups can be shown to satisfy

the following partial differential equations [9]:

∂ρ

∂t
−AKρ = 0, ρ|Γo = 0;

∂ρ

∂t
−APFρ = 0, ρ|Γi = 0.

The Koopman and Perron-Frobenius semigroup operators and their infinites-

imal generators are adjoint to each other i.e.,

∫
X

(Ptρ1)(x)ρ2(x)dx =
∫
X
ρ1(x)(Utρ2)(x)dx ∀ρ1, ρ2 ∈ L2(X).

3 Main results

The gramian based approach is one of the systematic approaches available for

the optimal placement of actuators and sensors. Controllability and observabil-
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ity gramians measure the relative degree of controllability and observability

of various states in the state space. Using the gramian based approach, actu-

ators and sensors are placed at a location where the degree of controllability

and observability of the least controllable and observable state is maximized

[10,11].

3.1 Controllability gramian

For the construction of the controllability gramian, the advection-diffusion

partial differential equation (2) using assumptions (2) and (4) for a single

input case can be written as follows:

∂ρ

∂t
+∇ · (f(x)ρ) = χB(x)u(x, t); (4)

ρ|Γi = 0; ρ(x, 0) = ρ0(x).

In Eq. (4), we are assuming that the control input u is both a function of spatial

variable x and time t. This assumption will typically not be satisfied in the

building system application, however, making this assumption allows us to use

existing results from linear PDE theory in the development of controllability

gramian [10]. Furthermore, since m(X) >> m(B), where m is the Lebesgue

measure, we expect the main conclusions of this paper to hold even when u is

assumed to be only a function of time. The set B is the region of control in

the state space X, and u(x, t) ∈ L2([0, τ ] : L2(B)) i.e., we have a control input

that is square integrable in time and space, acting on the set B. The solution

to (4) is given by the following:

ρ(x, t) = Ptρ0(x) +
∫ t

0
Pt−s(χB(x)u(x, s))ds.

9



We define the controllability operator Bτ : L2([0, τ ] : L2(B)) → L2(X) as

follows:

(Bτu)(x) :=
∫ t

0
Pt−s(χB(x)u(x, s))ds. (5)

The adjoint of the controllability operator Bτ∗ : L2(X) → L2([0, τ ] : L2(B))

can be calculated and is given as follows:

(Bτ∗z)(x, s) = χB(x)U(τ−s)z(x). (6)

We have the following theorem on the controllability property of the PDE (4).

Theorem 5 Let Rτ = ∪τt=0φt(B). The PDE (4) is exactly controllable in a

given time τ > 0 for all initial and terminal states in the space L2(Rτ ) i.e.

given initial and terminal states ρ0(x) and ρτ (x) in Rτ , there exists a control

u(x, t) ∈ L2([0, τ ] : L2(B)) such that ρ(x, 0) = ρ0(x), and ρ(x, τ) = ρτ (x),

where ρ(x, t) is the solution of (4).

PROOF. We prove the theorem by showing the following, which is equivalent

to showing that the range of the controllability operator Bτ is the same as

L2(Rτ ):

(1)

Bτ∗z = 0 ∀(x, s) ∈ B × [0, τ ]⇒ z = 0 in L2(Rτ ). (7)

(2) The range of Bτ is closed.

Assume that Bτ∗z = χB(x)U(τ−s)z(x) = 0 ∀(x, s) ∈ B × [0, τ ]. The assump-

tion simply means that z = 0 on ∪0
t=−τφt(B). Since the set ∪0

t=−τφt(B)

evolves into Rτ = ∪τt=0φt(B), we have that z = 0 in L2(Rτ ) . Next, we

recall that Bτ : L2([0, τ ] : L2(B)) → L2(X) is defined by (Bτu)(x) :=
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∫ τ
0 P−(τ−s)χB(x)u(x, s)ds. Let us assume that un(x, t)→ u(x, t) is a convergent

sequence in L2([0, τ ] : L2(B)). We need to show that (Bτun)(x)→ (Bτu)(x) in

L2(X). We have the following, where we have used ||Pt||L2(X) ≤ Mωe
ωt from

the semigroup property of Pt:

||(Bτun)(x)− (Bτu)(x)||2L2(X)

=
∫
X

∫ τ

0
|P(τ−s)χB(x)(un(x, s)− u(x, s))|2dsdx

=
∫ τ

0
||P(τ−s)χB(x)(un(x, s)− u(x, s))||2L2(X)

≤
∫ τ

0

∫
X
Mωe

ω(τ−s)|χB(x)(un(x, s)− u(x, s))|2dxds

≤ C(M, τ)
∫ τ

0

∫
X
|χB(x)(un(x, s)− u(x, s))|2dxds

= C(M, τ)||(un(x, s)− u(x, s))||2L2([0,τ ]:L2(B)) → 0.

This shows that the range of the controllability operator Bτ is closed. Hence

we have exact controllability in L2(Rτ ).

The objective of this paper is to provide a solution to the optimal actuator

placement problem and hence the optimal location of the set B. This motivates

us to consider the following definition of controllability gramian parameterized

over set B.

Definition 6 The finite time controllability gramian CτB : L2(X) → L2(X)

for the PDE (4) is given by the following:

CτBz = BτBτ∗z =
∫ τ

0
P(τ−s)(χB(x)U(τ−s)z(x))ds. (8)

Furthermore, we have the following definition for the induced two norm of the

operator CτB:

||CτB||22 = max
z∈L2(X),s.t.‖z‖L2(X)=1

〈CτBz, z〉L2(X) .
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Theorem 7 The controllability gramian CτB : L2(X)→ L2(X) can be written

as a multiplication operator as follows:

(CτBz)(x) =
(∫ τ

0
PtχB(x)dt

)
z(x) (9)

PROOF.

CτBz =
∫ τ

0
P(τ−s)(χB(x)U(τ−s)z(x))ds

=
∫ τ

0
Ps(χB(x)Usz(x))ds =

∫ τ

0
Ps(χB(x)z(φs(x)))ds

=
∫ τ

0
χB(φ−s(x)z(x)

∣∣∣∣∣∂φs(x)

∂x

∣∣∣∣∣
−1

ds =
[∫ τ

0
(PsχB(x))ds

]
z(x).

The explicit formula for the controllability gramian from Eq. (9) in terms of

multiplication operator can be used to provide an analytical expression for the

minimum energy control input.

Claim 8 ρτB(x) :=
∫ τ

0 PtχB(x)dt is strictly positive on Rτ = ∪τt=0φt(B) and

hence CτB is invertible on Rτ with the inverse given by

(CτB)−1z =
z

ρτB(x)
, ∀z ∈ L2(Rτ ). (10)

PROOF. Since m(B) > 0, and B evolves into φτ (B) in time τ , for every

x ∈ Rτ , there exist times 0 ≤ t1(x) < t2(x) ≤ τ such that x ∈ φt(B) ∀t ∈

[t1(x), t2(x)]. Hence, by the positivity of Pt we have that Pt(χB(x)) > 0 ∀t ∈

[t1(x), t2(x)] ⊆ [0, τ ]. Hence we have the following:

ρτB(x) =
∫ τ

0
PtχB(x)dt ≥

∫ t2(x)

t1(x)
PtχB(x)dt > 0 ∀x ∈ Rτ .

This proves the claim.
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Theorem 9 Let ρτ (x) and ρ0(x) be the elements of L2(Rτ ), then the mini-

mum energy control input that is required to steer the system from initial state

ρ0(x) to final state ρτ (x) is given by following formula

uopt(x, s) = Bτ∗(CτB)−1(ρτ (x)− Pτρ0(x))

= χB(x)Uτ−s

(
ρτ (x)− Pτρ0(x)

ρτB(x)

)
. (11)

The minimum energy required is given by

||uopt||
2 (12)

=
〈
(ρτ (x)− Pτρ0(x)), (CτB)−1(ρτ (x)− Pτρ0(x))

〉
L2(Rτ )

=

∣∣∣∣∣
∣∣∣∣∣(ρτ (x)− Pτρ0(x))

ρτB(x)

∣∣∣∣∣
∣∣∣∣∣
2

L2(Rτ )

.

PROOF. First, we note that controlling the initial state ρ0(x) to ρτ (x) is

equivalent to reaching the final state (ρτ (x) − Pτρ0(x)) from the zero ini-

tial state i.e. ρ0(x) ≡ 0. Hence, equivalently, we prove that ûopt(x, s) =

Bτ∗(CτB)−1(ρτ (x)) is the control input with minimum norm that reaches ρτ (x)

in time τ . This, along with an explicit calculation of Bτ∗(CτB)−1(ρτ (x)) will

prove the Theorem. Next, we consider the following set of admissible control

inputs:

U = {u(x, t) ∈ L2([0, τ ] : L2(B)) : Bτu = ρτ}.

We have the following:

Bτ ûopt = BτBτ∗(CτB)−1ρτ = BτBτ∗(BτBτ∗)−1ρτ = ρτ .

Hence, we have that ûopt(x, s) = Bτ∗(CτB)−1(ρτ (x)) ∈ U . Next, we define the

following operator on L2([0, τ ] : L2(B)) P τ = Bτ∗(CτB)−1Bτ . We observe the

following:
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(P τ )2 =Bτ∗(CτB)−1BτBτ∗(CτB)−1Bτ = Bτ∗(CτB)−1Bτ

=P τ , (P τ )∗ = (Bτ∗(CτB)−1Bτ )∗ = P τ . (13)

Hence, the operator P τ is a projection operator on the space L2([0, τ ] : L2(B)).

Then, we have the following from Bessel’s inequality:

||u||2 = ||(P τ )u||2 + ||(I − P τ )u||2 ≥ ||(P τ )u||2,

where the norm is on the space L2([0, τ ] : L2(B)). Now, let u ∈ U be arbitrary.

This means Bτu = ρτ . Applying Bτ∗(CτB)−1 on both sides, we get the following:

P τu = Bτ∗(CτB)−1Bτu = Bτ∗(CτB)−1ρτ = ûopt.

Hence, Bessel’s inequality above gives ||u||2 ≥ ||ûopt||2. Next, (11) and (12)

can be easily shown by an explicit calculation using (6) and (10).

Based on the formula for the controllability gramian, we propose the following

criteria for the selection of optimal actuator location and hence the set B∗.

Actuator placement criteria

(1) Maximizing the support of the controllability gramian operator i.e.,

B∗= arg max
B⊂X

supp
(∫ τ

0
PtχB(x)dt

)
(14)

(2) If the support of controllability gramian is maximized or if more than one

choice of set A leads to the same support then the decision can be made

based on maximizing the 2-norm of the support i.e.,

B∗ = arg max
B⊂X

‖
∫ τ

0
PtχB(x)dt ‖L2(X) .

Using the result of Theorem 5, it follows that criterion 1 maximizes the con-

trollability in the space X, so that the control action in a small region B ⊂ X
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will have an impact over larger portion of the state space. Furthermore, it

follows from the explicit formula for the minimum energy control (11) from

Theorem 9 that if the the actuator selection is made based on criteria 2 then

the amount of control effort is minimized.

3.2 Observability gramian

For the construction of observability gramian, we consider the advection par-

tial differential equation with a single output measurement as follows:

∂ρ

∂t
=∇ · (fρ), ρ|Γi = 0, ρ(x, 0) = ρ0(x)

y(x, t) =χA(x)ρ(x, t) (15)

The observability operator Aτ : L2(X)→ L2([0, τ ] : L2(A)) for (15) is defined

as follows:

(Aτz)(x, s) = χA(x)(Psz)(x).

The adjoint to the observability operator Aτ∗ : L2([0, τ ] : L2(A)) → L2(X)

can be written as follows:

(Aτ∗w)(x) =
∫ τ

0
(UsχA(x)w(x, s))ds.

Definition 10 (Observability gramian) The finite time observability gramian

OτA : L2(X)→ L2(X) for the PDE (15) is given by the following formula

(OτAz)(x) = (Aτ∗Aτz)(x) =
∫ τ

0
(UsχA(x)Psz(x))ds. (16)

The counterpart of Theorems (5) and (9) can be proved for the observability of

system (15) using a duality argument. The theorem on observability gramian

similar to Theorem (7) can be stated as follows:
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Theorem 11 The observability gramian for (15) can be written as a multi-

plication operator as follows:

(OτAz)(x) =
[∫ τ

0
(UsχA(x))ds

]
z(x). (17)

PROOF. The proof follows along the lines of proof of Theorem (7).

Following criteria can be used for the optimal location of sensor:

Sensor placement criteria

The finite time observability gramian can be used to decide the criteria for

the optimal location of the sensor.

(1) Maximizing the support of observability gramian operator

A∗ = arg max
A⊂X

supp
(∫ τ

0
UtχA(x)dt

)
.

(2) If the support of observability gramian is maximized or if more than one

choice of set B leads to the same support then the decision can be made

based on maximizing the 2-norm of the support i.e.,

A∗ = arg max
A⊂X

‖
∫ τ

0
UtχA(x)dt ‖L2(X)

4 Advective vector field and gramian

In this section, we provide an interpretation for the optimal actuator and

sensor location problem in terms of the flow of the advection vector field. In

particular, we show that the (almost everywhere uniform) stability property
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of the vector field plays an important role in deciding the location of actuators

and sensors.

4.1 Infinite time Controllability gramian

We show that the infinite time controllability gramian can be computed for

vector fields that are stable in the almost everywhere uniform sense. We now

define the notion of almost everywhere uniform stability for a nonlinear sys-

tem.

Definition 12 (Almost everywhere uniform stable) Let x0 = 0 be the

equilibrium point of ẋ = f(x) and Bδ be a δ neighborhood of x0 = 0. The

equilibrium point x0 = 0 is said to be almost everywhere uniform stable if for

every given ε > 0 there exists a T (ε) such that

∫ ∞
T

m(At)dt < ε, ; At = {x ∈ X : φt(x) ∈ A},

for all measurable sets A ⊂ X \Bδ and where m is the Lebesgue measure.

The notion of almost everywhere stability is extensively studied in [12] [13].

Furthermore, a PDE based approach is also provided for the verification of

almost everywhere stability in [14]. We have the following theorem regard-

ing the infinite time controllability gramian for vector fields that are almost

everywhere uniformly stable:

Theorem 13 For vector fields that are stable in the almost everywhere uni-

form sense, we have

(C∞B z)(x) =
∫ ∞

0
PtχB(x)dtz(x) = ρB(x)z(x), (18)
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where ρB(x) is the positive solution of the following PDE

∇ · (f(x)ρB(x)) = χB(x); ρ|Γi = 0. (19)

PROOF. In [14], it was shown that
∫∞
0 PtχB(x)dt solves (19) if x0 = 0 is

stable in the almost everywhere uniform sense. This proves the Theorem.

The integral
∫
X C∞B z(x)dx for the special case where z(x) = χA(x), the indica-

tor function for the set A, has the interesting interpretation of residence time,

which is defined as follows:

Definition 14 For an almost everywhere uniform stable vector field, consider

any two measurable subsets A and B of X \Bδ, then the residence time of set

B in set A is defined as the amount of time system trajectories starting from

set B will spend in set A before entering the δ neighborhood of the equilibrium

point x = 0. We denote this time by TAB .

In [15], the following was shown for a discrete time system:

TAB =
∫
A

∫ ∞
0

PtχB(x)dtdx =
∫
A
ρB(x)dx. (20)

The proof of (20) for a continuous-time case will follow along the lines of proof

in [15].

Theorem 15 The residence time TAB for an almost everywhere uniformly sta-

ble vector field f(x) is given by following formula

TAB =
∫
X
C∞B χA(x)dx.
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PROOF. We have the following calculation using the formula from Theorem

13 and Eq. (20):

(C∞B χA(x)) =
∫ ∞

0
PtχB(x)dtχA(x) = ρB(x)χA(x)

⇒
∫
X
C∞B χA(x)dx =

∫
X
ρB(x)χA(x)dx =

∫
A
ρB(x)dx = TAB .

4.2 Infinite time observability gramian

The infinite time observability gramian is defined under the assumption that

the vector field f(x) is globally asymptotically stable. First, we have the fol-

lowing Theorem that characterizes global asymptotic stability:

Theorem 16 Let Bδ be a δ neigborhood of x = 0. Let v(x) ∈ C1(X \ B̄δ)

denote the solution of the following steady state transport equation:

AKv = f · 5v = −v0(x); v|∂B̄δ = 0, (21)

where v0(x) satisfies

v0(x) = 0 ∀x ∈ B̄δ. (22)

Then x = 0 is globally asymptotically stable for (3) if and only if there exists

a positive solution v(x) ∈ C1(X/B̄δ) for (21) for all v0(x) > 0 ∈ C1(X/B̄δ)

satisfying (22).

PROOF. We prove necessity first. Let us assume that x = 0 is globally

asymptotically stable. We construct a positive solution for (21) as follows:

v(x) =
∫ ∞

0
v0(φt(x))dt. (23)
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For a given arbitrary x ∈ X/B̄δ, there exists a t+(x) ∈ [0,∞) such that

φt+(x)(x) ∈ ∂Bδ. Hence, we have that v0(φt(x)) = 0 ∀t ≥ t+(x). In particular,

this means that
∫∞

0 v0(φt(x))dt <∞ ∀x ∈ X/B̄δ. We also have that 0 < v(x) ∈

C1(X/B̄δ) by virtue of the regularity of v0(x). We show that (23) solves (21).

Let vN(x) =
∫N

0 v0(φt(x))dt. Then, we have the following:

AKvN(x) =
∫ N

0
AKv0(φt(x))dt =∫ N

0

d

dt
Utv0(x)dt = UNv0(x)− v0(x).

Global stability of x = 0 implies that lim
N→∞

UNv0(x) = lim
N→∞

v0(φN(x)) = 0 and

hence lim
t→∞
AKvN(x) exists. Also, by the Hille-Yosida semigroup generation

theorem, we have that the generator AK is a closed operator. Hence, we have

the following:

f · 5v = AKv(x) =
∫ ∞

0
AKUtv0(x) =

∫ ∞
0

d

dt
Utv0(x) = −v0(x).

The boundary condition v|∂B̄δ = 0 is satisfied by (23) automatically. To prove

sufficiency let us assume that there exists a solution 0 < v(x) ∈ C1(X/B̄δ)

that solves (21). Then, we have the following equation along the characteristic

curves which are solutions of (3):

d

dτ
v(φτ (x)) = −v0(φτ (x))⇒ v(φt(x))− v(x) (24)

= −
∫ t

0
v0(φτ (x))dτ.

Rewriting (24), we have v(φt(x)) +
∫ t

0 v0(φτ (x))dτ = v(x)

⇒
∫ t

0
v0(φτ (x))dτ ≤ v(x) ∀x ∈ X/B̄δ, t > 0

⇒ ||
∫ ∞

0
v0(φτ (x))dτ ||L∞(X/B̄δ) ≤ ||v(x)||L∞(X/B̄δ) <∞. (25)
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To the contrary, let us assume that x = 0 is not globally asymptotically

stable. Then, by virtue of the attractor property of x = 0, there exists a point

x0 ∈ X/B̄δ such that ω(x0) 6= {0}. This means that φt(x0) ∈ X/B̄δ ∀t > 0,

for some δ > 0. Then, the set D = ∪∞t=0φt(x0) is a compact subset of X/B̄δ.

Since v0(x) > 0 ∀x ∈ X/B̄δ, we have that v0(x) > ε > 0 ∀x ∈ D for some

positive ε by continuity of v0(x). Hence we have the following:

∫ ∞
0

v0(φτ (x0))dτ >
∫ ∞

0
εdτ =∞, (26)

contradicting (25). This proves the Theorem.

If x = 0 is globally asymptotically stable, then Γo ⊇ ∂B̄δ. Hence, by using

a standard density argument of C1(X \ B̄δ) in L2(X \ Bδ), and using trace

operator theory [16] for point values of H1 functions, we can show the following

Theorem:

Theorem 17 Let v(x) ∈ D(AK) ∩ L2(X \ B̄δ) denote the solution of the

following steady state transport equation:

AKv = f · 5v = −v0(x); v|Γo = 0, (27)

Then x = 0 is globally asymptotically stable for (3) if and only if there exists

a positive solution v(x) ∈ D(AK) ∩ L2(X/B̄δ) for (21) for all 0 < v0(x) ∈

D(AK) ∩ L2(X/B̄δ).

Theorem 18 Let x = 0 be a globally stable equilibrium point for ẋ = f(x),

then the infinite time observability gramian is well defined and we have

(O∞A z)(x) =
[∫ ∞

0
(UtχA(x))dt

]
z(x) = V (x)z(x), (28)
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where V (x) is the positive solution of following steady state partial differential

equation:

AKv = f · 5v = −χA(x); v|Γo = 0.

PROOF. For a given A, if we choose δ > 0 such that A ⊂ X \ Bδ, then we

automatically have that χA(x) = 0 ∀x ∈ B̄δ. Hence, global stability implies the

existence of a positive solution V (x) =
∫∞

0 (UtχA(x))dt ∈ D(AK)∩L2(X \Bδ)

from Theorems 16 and(17). This shows that V (x) is well defined. Finally, the

formula for the infinite time observability gramian (28) is obtained by letting

τ →∞ in Theorem 11. This proves the Theorem.

5 Simulation

In this section, we present simulation results on the computation of finite time

gramians. The purpose of the simulation section is to demonstrate the appli-

cability of the developed theoretical results in this paper. Detailed simulation

results based on the developed theoretical results will be the topic of our future

publication. The vector field that we use for the purpose of simulation is the

average velocity field obtained from a detailed finite element-based simulation

of Navier Stokes equation. For the purpose of simulation, we only employ a two

dimensional slice of the three dimensional velocity field as shown in Fig. 1a.

The dimensions of the room are as follows: 0 ≤ x ≤ 1.52m and 0 ≤ y ≤ 1.68m.

The order of magnitude for the velocity field is O(1). The Reynolds number

of the flow is Re = 76725 and the Prandtl number Pr = 0.729. This makes

1
PrRe

≈ O(10−5), and hence the zero diffusion constant assumption (Assump-

tion 4) made in this paper is justified. The Reynolds number for the flow rate
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is in turbulent range. The k − ε model, which is Reynolds Average Navier-

Stokes (RANS) model [17] is used to obtain the velocity field as shown in Fig.

1. A commercial CFD software Fluent was used to solve the coupled set of

governing equations for pressure, temperature, turbulent kinetic energy, tur-

bulent dissipation and velocity. No slip boundary condition was applied at all

the walls.

For the purposes of computation, we employ set oriented numerical methods

for the approximation of P-F semigroup Pt [18]. We divide the state space into

finitely many square partitions denoted by {Di}Ni=1. The set Di’s are chosen

such that Di∩Dj = ∅ for i 6= j and X = ∪Ni=1Di. The finite dimensional matrix

approximation of the P-F operator is obtained using the following formula [18]:

[P ]ij =
m(φδt(Di) ∩Dj)

m(Di)

where m is the Lebesgue measure and δt is the discretization time step and φt

is the solution of vector field shown in Fig. 1a. Using the adjoint property be-

tween the Koopman and P-F semigroup, the finite dimensional approximation

of the Koopman semigroup U can be obtained as a transpose of P , namely

U = P ′

The computation results for this section are obtained with actuators and sen-

sors located at three different sets B1, B2, and B3. The locations of these three

sets are shown in Fig. 1b.

In Fig. 2b and Fig. 3a, we show the plots for the support of the controllability

gramian after 10000 time steps corresponding to two different locations of ac-

tuator sets B2 and B3 respectively. The support of the controllability gramian

corresponding to B2 and B3 locations of actuator sets is approximately the
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(a) (b)

Fig. 1. (a) Velocity field; b) Actuator locations on sets B1, B2 and B3.
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Fig. 2. Controllability gramian after 10000 time iterations for actuator located at

set a) B1; b) B2.

same and equals 1.6. However the 2-norm of the gramian corresponding to

actuator location on set B2 is equal to 38, while for B3 it is equal to 35.

Comparing figures 2a, 2b, and 3a, we see that the support of the gramian

for actuator location at set B1 is considerably smaller but it has considerably

larger 2-norm compared to actuators locations at B2 and B3. The large value

of gramian with small support in Fig. 2a can be very effective if one desires to

perform localized control action. Comparing the support and the 2-norm of the

gramian function, one can conclude that the actuator location corresponding

to B2 is optimal among B1, B2, and B3.
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Fig. 3. a) Controllability gramian after 10000 time iterations for actuator located

at set B3; b) Observability gramian after 1000 iterations with sensor location at B1
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Fig. 4. Observability gramian after 1000 iterations with sensor location at a) B2; b)

B3.

In Fig. 3b, 4a, and 4b, we show the support and 2-norm of observability

gramian corresponding to sensor locations on sets B1, B2, and B3 respectively.

The large support of the observability gramian for sensor location on set B2

nearly outweigh the larger value and smaller support of gramian corresponding

to sensors locations on set B1 and B3.

Remark 19 The actuator and sensor locations in the simulation example

seem to be collocated. However, this is just a coincidence and in general this

may not be the case. However it will be interesting question for future investi-
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gation. In particular, the combined problem of sensor and actuator placement

will be the topic of our future investigation.

6 Conclusion

In this paper, controllability and observability gramian based test criteria

are used to decide the suitability of given actuator and sensor locations. As

compared to purely computational based methods currently existing in the lit-

erature, our proposed approach provides a systematic and insightful method

for deciding the location of actuators and sensors in building systems. In par-

ticular, stability properties of the advection vector field are shown to play an

important role in deciding the location of actuators and sensors. In our future

research work, the explicit formula for the gramians will be exploited to pro-

vide a systematic algorithm for determining the optimal location of sensors

and actuators. Furthermore some of the assumptions made in the derivation

of control equations will be removed by incorporating elements of complex

physics involved in building systems.
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