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Motivated by the problem of microfluidic mixing, the problem of optimal control of
advective mixing in Stokes fluid flows is considered. The velocity field is assumed to
be induced by a finite set of spatially distributed force fields that can be modulated
arbitrarily with time and a passive material is advected by the flow. To quantify the
degree of mixedness of a density field, we use a Sobolev space norm of negative index.
We frame a finite-time optimal control problem where we aim to find the modulation
that achieves the best mixing for a fixed value of the action (time integral of the kinetic
energy of the fluid body) per unit mass. We derive the first order necessary conditions for
optimality that can be expressed as a two point boundary value problem(TPBVP) and
discuss some elementary properties that the optimal controls need to satisfy. A conjugate
gradient descent method is used to solve the optimal control problem and we present
numerical results for two problems involving arrays of vortices. A comparison of the
mixing performance shows that optimal aperiodic inputs can do better than sinusoidal
inputs with the same energy.

1. Introduction
From a practical engineering perspective, and in particular for microfluidic mixing de-

vices (Stroock et al. (2002)), it is often necessary to design mixing protocols to mix a
specific initial density field in finite time. The advent of new microfluidic technologies
(see Stone et al. (2004)) that make use of phenomena like dielectrophoresis and electro-
osmosis make it possible to generate arbitrarily time-varying velocity fields, thus opening
up the possibility of using the tools of optimal control theory to facilitate microfluidic
mixing. The Peclet numbers (ratio between advective and diffusive transport) for typ-
ical microscale flows are large(Pe > 100) and given the typical velocities used at the
microscale, the channel lengths required for diffusion alone to cause uniform spreading
of material are prohibitively long (>> 1 cm) (See Stroock et al. (2002)). For this reason,
microscale mixing processes need to be advection dominated.

Research on fluid mixing has been dominated by studies that are geometric in nature
and applied to steady and time-periodic flows (see Aref (1984); Ottino (1989); Wiggins
(1992)). There have been relatively few studies of flows that are aperiodic in time (see

† This work was supported by NSF/IGERT DGE-0221715 and AFOSR Grant No.
F49620-03-1-0096.
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e.g. Chrisohoides & Sotiropoulos (2003); Haller & Poje (1998)). In ergodic-theoretic ap-
proaches to mixing (Lasota & Mackey (1994); Arnold & Avez (1968); Petersen (1983)),
geometric properties of the underlying dynamical system are implicit and the empha-
sis is usually on infinite-time averaged properties. An example of a study dealing with
finite-time statistical properties associated with finite-time geometric properties is the
work by Poje et al. (1999). The objective of our paper is to advance a new formalism
for optimal control of advective mixing in aperiodic flows, by building upon the ideas
for quantifying mixing that are discussed in our previous work (Mathew et al. (2005))
and by combining it with concepts from finite horizon optimal control theory. A variety
of previous approaches to control of mixing include the study of control protocols that
destroy symmetries (Franjione & Ottino (1992)), maximization of mixing by enhancing
Lyapunov exponents (Sharma & Gupte (1997)), the study of optimal mixing protocols
for combinations of shear flows (D’Alessandro et al. (1999)), feedback control of mixing
optimizing Eulerian velocity based measures of mixing (Balogh et al. (2005)), and the
control of unstable manifolds emanating from separation points (Wang et al. (2003)).
All these approaches aim to control geometric features of the flow and suffer from the
drawback that the mixing protocols are designed without any consideration to an initial
density field (or fluid configuration). Our approach in this paper is to set aside geometric
aspects and to control the evolution of advected density fields in a manner that is optimal
for mixing.

The problem considered in this paper is that of a Stokes fluid flow where the velocity
field is assumed to be induced by a finite set of spatially distributed force fields that
can be modulated arbitrarily with time. A passive material is advected by the flow. To
quantify the degree of mixedness of a density field, we use a Sobolev space norm of
negative index. The optimal control problem is to find the modulation of the force fields
that achieves the best mixing for a fixed value of the action (time integral of the kinetic
energy of the fluid body) per unit mass. We derive the first order necessary conditions for
optimality that can be expressed a two point boundary value problem (TPBVP). We seek
numerical approximations to solutions of the TPBVP using a conjugate gradient descent
method. We also discuss two other related optimal control problems. One is where we
require a fixed degree of mixedness to be achieved with minimum action. The other is
where we minimize a cost-function that is a weighted sum of the degree of mixedness
and the action per unit mass. A weighting parameter w > 0 decides how much the action
is penalized relative to the degree of mixedness achieved. The relevance of the solutions
that minimize this weighted sum is discussed with more detail in Section 2.2.2

In the planar case, it is impossible to achieve chaotic advection with a velocity field
of the type α(t)u(x), where u is a velocity field and α could be an arbitrary function
of time. This is because the Lagrangian fluid elements are constrained to flow along the
streamlines of the velocity field u and therefore it is impossible for a particle to visit every
portion of the phase space. To be able to cause chaotic advection, it is necessary to have at
least two independent velocity fields that are superimposed upon each other and are mod-
ulated independently with time. i.e., a velocity field of the type α1(t)u1(x)+α2(t)u2(x).
It would be desirable to have none of the streamlines of the independent velocity fields
coincide. In the three-dimensional case, it is possible to have chaotic advection even with
a time-steady velocity field. However, in the presence of symmetries (Mezić & Wiggins
(1994); Grigoriev (2005)) it may be necessary to have two or three independent veloc-
ity fields with complex time-dependence to cause efficient mixing. For simplicity, all the
discussion and examples in this paper are for two-dimensional toroidal domains †.

† This is a square domain with periodic boundary conditions in both coordinates.
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2. Setup of the Problem
2.1. Evolution equations

Consider the incompressible Navier-Stokes equation with external body forcing, with
the appropriate scalings for a Stokes flow regime on a two-dimensional toroidal domain
T 2 = [0, 1]2

(Re.St)ut + (Re)u · ∇u = −∇p + F +∇2u; ∇ · u = 0, (2.1)

where Re = ρUL/µ is the Reynolds number, St = L/UT is the Strouhal number, U a
characteristic velocity, L a length scale, and T a time scale †. The density of the fluid is ρ
and its viscosity µ. For Re → 0 and St → 0, the equation reduces to the Stokes equation

∇2u = ∇p− F; ∇ · u = 0. (2.2)

We assume the force field to be of the form F(x, t) =
∑n

i=1 αi(t)Fi(x). If ui is the velocity
field induced by the force field Fi (i.e., ui is the solution to equation (2.2) for F = Fi),
then the velocity field can be written as

u(x, t) =
n∑

i=1

αi(t)ui(x). (2.3)

If one had the ability to create arbitrary force fields, we could assume the velocity field
to be of the form (2.3), but with possibly infinite modes chosen from a convenient ba-
sis, and proceed to consider scalar field control as in the sequel, and then return to
the Stokes equation or Navier-Stokes equation to find the appropriate force F(x, t) to
generate u(x, t). But, this is not likely to be realizable in practice. Here, we study the
special case where it is possible to generate a finite set of force fields (Fi’s) using some
mechanisms, and assume that they can be modulated with time arbitrarily. Then we find
the corresponding ui’s and find the modulation in time that is optimal for mixing. Now,
consider a density field c(x, t) that is being advected by the velocity field (2.3). Then

ct(x, t) = −u(x, t) · ∇c(x, t) = −
n∑

i=1

αi(t)ui(x) · ∇c(x, t); c(x, 0) = c0(x). (2.4)

The control system (2.4) is a bilinear system where c(., t) is the infinite-dimensional state
and α(t) is the finite-dimensional control input. Issues of stabilizability and controllability
have been studied both for finite-dimensional bilinear systems (see e.g. Jurdjevic & Quinn
(1978); Slemrod (1978)) and infinite-dimensional bilinear systems (see e.g. Ball et al.
(1982)).

Note that since each ui is volume-preserving and there is no diffusion, the mean and
variance of the density field is preserved under the evolution by equation (2.4). In fluid-
mechanical terms, this corresponds to the limit as the Peclet number(Pe) goes to infinity.
Recall that the Peclet number is the ratio of advective transport to diffusive transport.
In any realistic system, there would be some non-zero diffusion. But in a typical mixing
process there is an initial stage during which the diffusive effects are negligible and
the variance remains almost constant. It is during this initial stage, which is commonly
referred to as “stirring”, that stretching and folding of fluid elements occur and eventually
facilitate diffusion to efficiently homogenize the passive material. Therefore, to optimize

† All vectors are written in bold font (eg: x) and their respective elements are written in usual
font with indices as subscripts (eg: x1, x2, ..). Subscript t (eg: ct) indicates partial differentiation
with time. ∇ is the gradient.
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this initial stage of “stirring”, we need to consider the pure advection problem and use
a measure for mixing different from the variance.

2.2. The cost function and the optimal control problem
2.2.1. Measure of mixedness

In our previous work (Mathew et al. (2005)), a multiscale measure for mixing, referred
to as the Mix-Norm, was presented to quantify the degree of mixedness of a density field.
This measure is based on the concept of weak convergence and is related to the classical
ergodic-theoretic notion of mixing. The definition of the measure is based on averaging
the function over all scales and integrating the L2 norms of the averaged functions over all
scales. On an m-dimensional toroidal domain, the Mix-Norm Φ(c) is defined as follows:

For s ∈ (0, 1), φ2(c, s) =
∫

T m

d2(c,p, s)dp, where d(c,p, s) =

∫
B(p,s)

c(x)dx

V (s)
. (2.5)

V (s) is the volume of the spherical set B(p, s) = {y : ‖y − p‖ 6 s
2}. d(c,p, s) is the

average value of the function c within the spherical set B(p, s) and φ(c, s) is the L2 norm
of the averaged function d(c, ., s) at a fixed scale s. Then Φ(c) is defined as

Φ2(c) =
∫ 1

0

φ2(c, s)ds. (2.6)

Φ2(c) can also be written as the inner product 〈c, [M ]c〉, where 〈., .〉 is the standard inner
product and [M ] is a self-adjoint, positive semi-definite and spatially invariant operator.
Thus its eigenfunctions are the Fourier basis functions (i.e. ei2π(k·x)). The eigenvalue Λk

corresponding to a Fourier mode with wavenumber vector k satisfies the inequality
µ1

(1 + (2π‖k‖)2) 1
2

6 Λk 6 µ2

(1 + (2π‖k‖)2) 1
2
, (2.7)

where µ1, µ2 > 0 are constants. For a density field with a Fourier expansion c(x) =∑
k ckei2π(k·x), the Mix-Norm can be computed as Φ2(c) =

∑
k Λk|ck|2. It follows from

inequality (2.7) that the Mix-Norm is equivalent to a Sobolev space norm of negative
index s = − 1

2 , which is defined for every c ∈ L2
T m as

‖c‖
H− 1

2
=




∑

k

1
(
1 + (2π‖k‖)2

) 1
2
|ck|2




1
2

. (2.8)

i.e., for all c ∈ L2
T m , √

µ1‖c‖
H− 1

2
6 Φ(c) 6 √

µ2‖c‖
H− 1

2
. (2.9)

The mathematical equivalence of the Mix-Norm and the ‖.‖
H− 1

2
norm makes them in-

terchangeable. If one of the norms decays to zero for a sequence of functions, it implies
the decay of the other. Moreoever, the asymptotic rate of decay of both norms would
be exactly the same. In particular, if the ‖.‖

H− 1
2

norm can be shown to decay exponen-
tially to zero for a given sequence of functions, it implies that the magnitudes of average
function values over almost every spherical set converge to zero at an exponential rate.
In all further references and computations of the Mix-Norm, we will be actually using
the ‖.‖

H− 1
2

norm. In other words, the linear operator [M ] would be assumed to have

eigenvalues Λk =
(
1 + (2π‖k‖)2

)− 1
2
. Note that when computing Φ2(c), the eigenvalues
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Λk act as a weighting on the energy contained in various Fourier modes. Larger the
magnitude of the wavenumber vector, smaller the weighting.

The Mix-Variance of a density field c is defined as Φ2(c − c̄), where c̄ is the mean of
the field c over the whole space. It can be proven that the underlying flow field is mixing
in the classical ergodic-theoretic sense if and only if the Mix-Variance of any advected
density field decays to zero or equivalently the evolving density field converges weakly
to a field of constant value c̄ (see Mathew et al. (2005)). Decay of the Mix-Variance of
an evolving density field implies that energy is transferred from low wavenumber Fourier
modes to high wavenumber Fourier modes. In the sequel, we will always assume that c
has zero mean and therefore the Mix-Variance would be the same as the square of the
Mix-Norm. For the case of a density field c with non-zero mean, one can define the new
field d = c− c̄ and study the evolution of d.

2.2.2. The optimal control problem

In optimal control problems, it is common to have various competing performance
objetives. Here, we use two such objectives. One is the degree of mixedness of the density
field at the final time, which is quantified in terms of the Mix-Variance, and the second
is the action †, which is the time integral of the kinetic energy per unit mass of the fluid
body. Computing the kinetic energy per unit mass at time t, we have

1
2

∫
T 2

ρu(x, t) · u(x, t)dx
∫

T 2

ρdx
=

1
2

∫

T 2

(
n∑

i=1

αi(t)ui(x)

)
·
(

n∑

i=1

αi(t)ui(x)

)
dx

=
n∑

i=1

n∑

j=1

αi(t)


1

2

∫

T 2

ui(x) · uj(x)dx


αj(t)

= α(t) ·Rα(t),

where Ri,j :=
1
2

∫

T 2

ui(x) · uj(x)dx.

(2.10)

Then the action caused by a control α is given as

A(α) :=
∫ tf

0

α(t) ·Rα(t)dt. (2.11)

In the rest of the paper, we will assume that the set of velocity fields {ui} are linearly
independent. This guarantees that the matrix R will be symmetric positive definite.
Given below are three possible optimal control problems.

Optimal Control Problem I: Fixed Action caused by the controls

Min
α∈L2

[0,tf ]

{W (α) := 〈c(., tf ), [M ]c(., tf )〉}

subject to (2.4) and such that A(α) = A∗.
(2.12)

† Throughout the rest of the paper, the term ”action” would actually refer to the action per
unit mass.
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Optimal Control Problem II: Fixed degree of mixedness at the final time

Min
α∈L2

[0,tf ]

{A(α) :=
∫ tf

0

α(t) ·Rα(t)dt}

subject to (2.4) and such that 〈c(., tf ), [M ]c(., tf )〉 = (Φ∗)2.

(2.13)

Optimal Control Problem III: Weighted combination of mixedness and action as the
cost-function

Min
α∈L2

[0,tf ]

{C (α) := 〈c(., tf ), [M ]c(., tf )〉+ w.

∫ tf

0

α(t) ·Rα(t)dt}

subject to (2.4),

(2.14)

where tf is a finite time-span and w > 0 is a weighting parameter that decides how
much the action caused by the control should be penalized relative to the mixedness. In
general, the matrix R may be set arbitrarily, but here we choose R as discussed above
because of the nice physical interpretation of the resulting cost-function. Solutions to
the optimal control problem (2.14) are Pareto optimal solutions in the following sense.
Let α∗ be the α that minimizes C (α) for some w. Let α∗ lead to a certain degree of
mixedness (Φ∗)2 and to a certain value for the action A∗. Then α∗ is a solution to both
optimal control problems I and II.

The arguement that α∗ also solves optimal control problem II is as follows. The proof
is by contradiction. Let ᾱ be a solution to optimal control problem II. Therefore, ᾱ
achieves a degree of mixedness (Φ∗)2. Now, assume that A(ᾱ) < A∗. Then C (ᾱ) <
C (α∗) = (Φ∗)2 + w.A∗, and therefore ᾱ would be a better solution to optimal control
problem III than α∗, thus contradicting the assumption that α∗ minimizes C (α). Now,
assume ᾱ is such that A(ᾱ) > A∗. But, then A(α∗) < A(ᾱ), thus contradicting the
assumption that ᾱ is a solution to optimal control problem II. Therefore, it is necessary
that A(α∗) = A(ᾱ). A similar arguement shows that α∗ also solves optimal control
problem I.

Existence of solutions to optimal control problem II depend on the issue of controllabil-
ity. i.e., it must be possible to achieve the desired degree of mixedness with the available
velocity fields. Whereas, existence of solutions to optimal control problems I and III are
irrespective of this issue of controllability. The relevance of each one of these optimal
control problems may depend on the specific engineering situation. If one is interested
only in finding pareto optimal solutions, one could do so by generating solutions to opti-
mal control problem III for various values of w. In this paper, for convenience, we focus
on optimal control problem I. i.e., we aim to achieve optimal mixing for a fixed value of
the action.

3. Solving the Optimal Control Problem
Solving the optimal control problems discussed in the previous section are both ana-

lytically and numerically challenging. There are only limited results available for optimal
control of infinite-dimensional bilinear systems (see e.g. Banks (1987)). Here, we use a
gradient-based method to find numerical approximations of solutions to the optimal con-
trol problem. The partial differential equation (2.4) is treated as a constraint and using
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the Lagrange multiplier formalism, an augmented functional Ŵ is defined as

Ŵ (α, c, λ, z) := 〈c(., tf ), [M ]c(., tf )〉 − z.

(
A∗ −

∫ tf

0

α(t) ·Rα(t)dt

)

−
∫ tf

0

∫

T 2

λ(x, t)

(
ct(x, t) +

n∑

i=1

αi(t)ui(x) · ∇c(x, t)

)
dxdt.

(3.1)

The variables z and λ(x, t) play the role of Lagrange multipliers. Finding the Fréchet
derivatives of Ŵ with respect to α, c, λ and z and setting them to zero, gives the
first order necessary conditions for optimality in terms of the two point boundary value
problem (TPBVP)

[
DŴ

Dλ

]
∂λ = 0;=⇒ c∗t (x, t) +

n∑

i=1

α∗i (t)ui(x) · ∇c∗(x, t) = 0, c∗(x, 0) = c0(x),

[
DŴ

Dc

]
∂c = 0;=⇒ λ∗t (x, t) +

n∑

i=1

α∗i (t)ui(x) · ∇λ∗(x, t) = 0, λ∗(x, tf ) = 2[M ]c∗(x, tf ),

[
DŴ

Dz

]
∂z = 0; =⇒

∫ tf

0

α(t) ·Rα(t)dt = A∗,

[
DŴ

Dα

]
∂α = 0;=⇒ 2zRα∗(t) + β∗(t) = 0,

where β∗i (t) = −〈λ∗(., t),ui(.) · ∇c∗(., t)〉 , for i = 1, 2, .., n.

(3.2)

For the basic concepts behind the derivation of these necessary conditions, refer to the
books by Gelfand & Fomin (1963) and Kirk (1970). For the sake of completeness, we
have included the derivation of the TPBVP (3.2) in Appendix A. The variable λ(x, t)
would be referred to as the costate field. α∗ is the optimal control and c∗ and λ∗ are the
solutions of the state and costate fields (c and λ) corresponding to the optimal control.

3.1. Conservation of kinetic energy by the optimal controls

An important feature of the optimal controls is that the resulting system evolves in a
manner such that the kinetic energy of the fluid body is conserved. i.e., the solutions α∗

to the TPBVP are such that

α∗(t) ·Rα∗(t) = constant. (3.3)

This statement can be verified as follows. From equation (3.2) we have

α∗(t) =
−1
2z

R−1β∗(t). (3.4)

Computing the time-derivative of α∗(t) ·Rα∗(t), we get

d

dt
(α∗(t) ·Rα∗(t)) = 2α∗(t) ·R d

dt
(α∗(t)) = 2α∗(t) ·R

(−1
2z

R−1 d

dt
(β∗(t))

)

=
−1
z

α∗(t) · d

dt
(β∗(t)) =

−1
z

n∑

i=1

α∗i (t)
dβ∗i (t)

dt
.

(3.5)
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Now,

dβ∗i (t)
dt

= −〈λ∗t (., t),ui(.) · ∇c∗(., t)〉+ 〈ui(.) · ∇λ∗(., t), c∗t (., t)〉
= 〈u(., t) · ∇λ∗(., t),ui(.) · ∇c∗(., t)〉 − 〈ui(.) · ∇λ∗(., t),u(., t) · ∇c∗(., t)〉 .

(3.6)

Therefore,

d

dt
(α∗(t) ·Rα∗(t))

=
−1
z

n∑

i=1

α∗i (t) (〈u(., t) · ∇λ∗(., t),ui(.) · ∇c∗(., t)〉 − 〈ui(.) · ∇λ∗(., t),u(., t) · ∇c∗(., t)〉)

=
−1
z

〈
u(., t) · ∇λ∗(., t),

n∑

i=1

α∗i (t)ui(.) · ∇c∗(., t)

〉

+
1
z

〈
n∑

i=1

α∗i (t)ui(.) · ∇λ∗(., t),u(., t) · ∇c∗(., t)

〉

=
−1
z
〈u(., t) · ∇λ∗(., t),u(., t) · ∇c∗(., t)〉+

1
z
〈u(., t) · ∇λ∗(., t),u(., t) · ∇c∗(., t)〉 = 0.

(3.7)

Conservation of kinetic energy implies that the vector α∗(t) evolves on the ellipsoid
described by equation (3.3). For the special case when there are just two basis velocity
fields(two controls) and when R is a diagonal matrix, the following properties hold true
for all the optimal controls:

i) If the magnitude of one of the control inputs is increasing, the magnitude of the
other control input must be decreasing.

ii) When the time-derivative of one of the control inputs is zero, the time-derivative
of the other control input must also be zero. i.e., maximum or minimum peaks of one of
the control inputs must appear simultaneously with the maximum or minimum peaks of
the other.
In the next section, we describe how we find numerical approximations of the solutions
to the two point boundary value problem using a conjugate gradient descent method
(Luenberger (1984)).

3.2. Description of the Conjugate Gradient Descent Method

For a given α, solutions of the density field c and costate field λ are explicitly known in
terms of Lagrangian tracer particle trajectories. For this purpose we need to introduce
the mapping Sα that is defined as follows. For tf > t0, Sα is such that if

dx(t)
dt

=
n∑

i=1

αi(t)ui(x(t)); x(t0) = x0, (3.8)

then x(tf ) = Sα(x0, t0, tf ). Also, for tf < t0, Sα is such that Sα(., t0, tf ) = S−1
α (., tf , t0).

Therefore, for a given α, the state and costate fields can be computed as

c(x, t) = c0(Sα(x, t, 0)); λ(x, t) = λ(Sα(x, t, tf ), tf ) = 2[M ]c(Sα(x, t, tf ), tf ). (3.9)
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Note that, at a given α, the Fréchet derivative of the cost-function W = 〈c(., tf ), [M ]c(., tf )〉
with respect to α is given as

[
DW
Dα

]
∂α =

∫ tf

0

β(t) · ∂α(t)dt,

where βi(t) := −〈λ(., t),ui(.) · ∇c(., t)〉 .
(3.10)

In equations (3.9) and (3.10), the implicit dependence of the variables β, c and λ on
α is suppressed in the notation. It is assumed that c and λ are the solutions of the
respective partial differential equations corresponding to the α under consideration. As
described in the previous section, the optimal controls are such that the kinetic energy
of the fluid body is conserved or the vector α∗(t) evolves on the ellipsoid described by
α∗(t) · Rα∗(t) = constant. Therefore, it is desirable to search for solutions that satisfy
this property. For this purpose, we describe how we find approximations to the optimal
controls for the case when there are two basis velocity fields and such that the kinetic
energy is conserved. We assume the optimal controls to be of the form

α(t) = R−
1
2 b(t), (3.11)

where

b1(t) = acos(θ(t))
b2(t) = asin(θ(t)).

(3.12)

This ensures that α(t)·Rα(t) = a2 is a constant †. Also, since the action is fixed at A∗, we
have a =

√
A∗/tf . Thus, we only need to optimize for the angle function θ to minimize

the cost-function W . The Fréchet derivative of the cost-function W with respect to θ is
given as

[
DW

Dθ

]
∂θ =

[
DW

Dα

]
◦

[
Dα

Dθ

]
∂θ =

∫ tf

0

∂Wθ(t)∂θ(t)dt,

where ∂Wθ(t) : = β(t) ·R− 1
2
∂(b(t))

∂θ
.

(3.13)

Now, an initial guess (θ)0 is made for θ. The corresponding solutions for the state and
costate fields, (c)0 and (λ)0, are computed using equation (3.9). Once (c)0 and (λ)0 are
computed, the following iteration is performed:

(θ)n+1(t) = (θ)n(t) + (h)n(s)n(t),

(s)n+1(t) = −(∂Wθ)n+1(t) + (γ)n(s)n(t),
(3.14)

where (∂Wθ)n+1 is ∂Wθ computed for θ = (θ)n+1. (h)n is a scalar chosen so that it
minimizes W ((θ)n + h(s)n). i.e.,

W ((θ)n + (h)n(s)n) = Min
h>0

W ((θ)n + h(s)n). (3.15)

The initial search direction (s)0 is set to (∂Wθ)0. (γ)n is a scalar computed using the
so-called Polak-Ribiere formula

(γ)n = max

{〈
(∂Wθ)n+1, (∂Wθ)n+1 − (∂Wθ)n

〉

〈(∂Wθ)n, (∂Wθ)n〉 , 0

}
. (3.16)

† b2(t) = −asin(θ(t)) is also a possibility.
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Figure 1. Velocity fields defined in (4.1).

When (γ)n is identically set to zero, the method reduces to the steepest descent method.
We note that the solutions to which the conjugate gradient descent method converge
are not guaranteed to be global minima. They could very well be local minima of the
functional W . But still, these local minima provide upper bounds on the minimum value
of the Mix-Variance attainable for a fixed value of the action.

4. Examples and Numerical Results
The examples in this paper are motivated by the experiments performed by Rothstein

et al. (1999), where an ordered array of magnets with alternating polarity is used to
create an array of vortices with alternating rotations, by means of Lorentz forces in a two-
dimensional fluid layer that carries an electric current. In the examples here, we consider
two separate arrays with different alignments that can be independently controlled. The
kinematics corresponding to this setup can be captured by the velocity fields

u1(x) =
[ −sin(2πx1)cos(2πx2)

cos(2πx1)sin(2πx2)

]
;

u2(x) =
[ −sin(2π(x1 − 0.25))cos(2π(x2 − 0.25))

cos(2π(x1 − 0.25))sin(2π(x2 − 0.25))

]
.

(4.1)

For these velocity fields, the corresponding matrix R as defined in (2.10) can be computed
to be R = diag{0.25, 0.25}. The initial density field is chosen to be

c0(x) = sin(2πx2). (4.2)

We set tf = 1, A∗ = 1.25 and make an initial guess of (θ)0(t) = π/3 for the angle
function θ. The conjugate gradient descent algorithm described before is performed for
20 iterations. All the computations are done with a uniform grid of 250 × 250 in the
spatial domain and by discretizing the time domain with 250 time steps. A second-order
Runge-Kutta method is used for all the Lagrangian particle simulations. Figure 2(a)
shows the gradient information corresponding to the initial guess and Figure 2(b) shows
the converged solution. Note how the computed optimal solution has clear oscillatory
components in spite of the initial guess having no oscillations. Figure 3 shows the decay
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Figure 2. a) An initial guess of (θ)0(t) = π/3 is made. The solid and dash-dot curves are
respectively the functions β1 and β2 corresponding to the initial guess. b) The optimal solution
obtained after 20 iterations of the conjugate gradient descent algorithm. Note how the computed
optimal solution has oscillatory components in spite of the initial guess having no oscillations
(Results for velocity fields defined in (4.1)).
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Figure 3. The plot on the left shows the decay of the Mix-Variance with time and the plot
on the right shows the corresponding linear-log plot. The decay rate of the Mix-Variance is
not unform, while the linear-log plot indicates that on average, the Mix-Variance decays at an
exponential rate (Results for velocity fields defined in (4.1)).

of the Mix-Variance with time corresponding to the computed optimal solution. Figure
4 shows snapshots at various times of the evolving density field advected by the optimal
control.

In Figure 3, it can be observed that the time-derivative of the Mix-Variance comes
close to zero within small time intervals even with the optimally mixing controls. It is
possible that no choice of α(t) would make the time-derivative strictly less than zero.
For instance, if c(x, t) = cs(x) is an eigenfunction of [M ] with eigenvalue s, then

dΦ2(c(., t))
dt

= −2 〈u(., t) · ∇cs(.), [M ]cs(.)〉 = −2s 〈u(., t) · ∇cs(.), cs(.)〉

= −s

∫

T 2

div(uc2
s)dx = 0.

(4.3)

In fact, for different initial guesses, it is observed that the computed optimal solutions
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Time,t=0.0 Time,t=0.2 Time,t=0.4

Time,t=0.6 Time,t=0.8 Time,t=1.0

Figure 4. Snapshots at various times of the density field advected by the optimal control
(Results for velocity fields defined in (4.1)).

cause a non-monotonic decay of the Mix-Variance. This stresses the drawback of using a
Lyapunov-based feedback method to achieve mixing. A Lyapunov-based feedback method
would try to choose values for the controls αi(t) so as to make the time-derivative of the
Mix-Variance less than zero. But, as shown in the calculation in (4.3), this may be
impossible. This also emphasizes the fact that efficient mixing is caused by a sequence
of stretching and folding actions (Ottino (1989)), neither action of which by itself is an
efficient mixing process.

As a second demonstrative example, we use the velocity fields

u1(x) =
[ −sin(4πx1)cos(2πx2)

2cos(4πx1)sin(2πx2)

]
;

u2(x) =
[ −sin(4π(x1 − 0.125))cos(2π(x2 − 0.25))

2cos(2π(x1 − 0.125))sin(2π(x2 − 0.25))

]
.

(4.4)

For these velocity fields, the corresponding matrix R can be computed to be R =
diag{0.625, 0.625}. We use the same set of parameters and initial guess as in the previous
example, but set A∗ = 1.0 . Figures 5-8 show the relevant information for this example.
Here also, it can be observed that the time-derivative of the Mix-Variance comes close
to zero within small time intervals. Also, oscillatory components appear very clearly in
the optimal solutions.

Figure 9 shows how the mixing performance of the optimal controls vary with respect
to the action A∗. The computations to generate these plots are done as follows. We start
with a low value for the action A∗. We find the optimal solution using the iterative process
described before. For a slightly higher value of the action, we use the optimal solution
from the previous computation as the initial guess for the iterative process. We repeat
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Figure 5. Velocity fields defined in (4.4).
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Figure 6. a) An initial guess of (θ)0(t) = π/3 is made. The solid and dash-dot curves are
respectively the functions β1 and β2 corresponding to the initial guess. b) The optimal solution
obtained after 20 iterations of the conjugate gradient descent algorithm (Results for velocity
fields defined in (4.4)).
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Figure 7. The plot on the left shows the decay of the Mix-Variance with time and the plot on
the right shows the corresponding linear-log plot (Results for velocity fields defined in (4.4)).
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Figure 8. Snapshots at various times of the density field advected by the optimal control
(Results for velocity fields defined in (4.4)).
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Figure 9. The log-log plots above show the minimum value of the Mix-Variance attainable
((Φ∗)2) as a function of the action A∗.

this process upto the highest value of action desired. This makes it likely that for each
value of the action, the iterative process starts near to a local minimum and therefore the
iteration converges faster. This also makes it more likely that the local minima obtained
for two nearby values of the action are not significantly different. From the log-log plots
in Figure 9, it can be seen that the minimum value of the Mix-Variance attainable varies
almost linearly with respect to the action A∗.
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a) Sinusoidal inputs have same mean and
energy as control inputs shown in
Figure 2 (For velocity fields (4.1)).
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Figure 10. Mix-Variance at the final time (Φ2(c(., tf ))) as a function of the frequency(f) of
sinusoidal inputs with mean and L2 norm comparable to that of the optimal controls α∗i . The
horizontal dashed line indicates the level of mixedness achieved by the optimal controls α∗i .

4.1. Comparison with sinusoidal inputs
To compare the mixing effectiveness of the optimal controls α∗ with that of sinusoidal
inputs, we consider inputs of the form

αp
i (t) = mi + risin(2πft + ψi). (4.5)

So that αp
i and α∗i have approximately the same mean and L2 norm, mi and ri are chosen

as

mi =

∫ tf

0
α∗i (t)dt

tf
,

ri =

√√√√
∫ tf

0
(α∗i (t)−mi)

2
dt∫ tf

0
sin2(2πt)dt

.

(4.6)

Figure 10 compares the mixing performance of sinusoidal inputs with that of the op-
timal controls computed in the two examples before. The Mix-Variance at the final
time (Φ2(c(., tf ))) is plotted as a function of the frequency f for two different cases:
(ψ1 = 0, ψ2 = π) and (ψ1 = π, ψ2 = 0). For both examples, it can be seen that the
mixing performance of the optimal aperiodic controls is better than that of sinusoidal
inputs of all frequencies. The value of the Mix-Variance achieved by the optimal aperiodic
controls is roughly half of that achieved by the sinusoidal input with optimal frequency.
This means that the dominant wavenumbers differ roughly by a factor of two.

Figure 11 shows the density fields at the final time when the inputs are sinusoidals
with optimal frequencies. A visual inspection of the density fields may not suggest a
significant difference in the mixedness achieved by sinusoidal and optimal inputs, but
there is a significant quantitative difference as confirmed by the plots in Figure 10. We
also expect the difference to become more pronounced for higher values of the action.
However, at this time, we are unable to demonstrate this numerically. This intuition
is confirmed by the results by Pierrehumbert (1994), Rothstein et al. (1999) and Liu
& Haller (2004). In these works, numerical, experimental and theoretical explorations
are made and it is shown that persistent spatial patterns emerge in passive scalar fields
when advected by time-periodic flows. These persistent spatial patterns are clearly not
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a) For velocity fields (4.1). b) For velocity fields (4.4).

Figure 11. a) Advected density field at the final time when the inputs are sinusoidals with
same energy as optimal aperiodic controls in Figure 2 and with optimal frequency fopt = 2.25.
b) Advected density field at the final time when the inputs are sinusoidals with same energy as
optimal aperiodic controls in Figure 6 and with optimal frequency fopt = 2.6.

conducive for mixing. However, it must be noted that various flow parameters (frequencies
and amplitudes in this case) can be optimized so that these persistent spatial patterns
have high spectral content in large wavenumbers, thus possibly making the distinction
between periodic inputs and optimal aperiodic controls not very significant over short
time scales.

5. Discussion
We note that the computed optimal solutions for the examples presented in this paper

are guaranteed only to be local minima. The solution to which the conjugate gradient
descent algorithm converges clearly depends on the initial guess one makes. It may be
possible to make finer adjustments to the computed optimal controls to attain better
approximations to the optimal solutions. But, given the spatial resolutions with which
it is possible to do the computations in a reasonable time, it is not possible to probe
into the finer scales and make these finer improvements. For our examples, it is observed
that there is no substantial change in the cost-function after around 20 iterations of the
conjugate gradient descent algorithm.

At present, very little is known about the general structure of the optimally mix-
ing protocols. The infinite-dimensionality of the state makes it difficult to state general
comments about the behaviour of the optimal solutions. This is typically the case for
high-dimensional optimal control problems. However, we can make one important ob-
servation. As discussed in Section 3.1, the optimal solutions are such that the vector
α∗(t) evolves on the circle for the case when the matrix R is diagonal. Kinematically,
this translates into each basis velocity field taking turns in moving material across the
streamlines of the other. Still, the exact sequence and timing of switchings between the
different basis velocity fields has to be numerically computed using methods as described
in our paper.

Numerous variants of the optimal control problem posed here can be considered. One
version is where the action is not taken into consideration, but the inputs are constrained
by inequalities of the form

0 6 |αi(t)| 6 αmax
i , (5.1)

and the objective is to achieve a desired degree of mixedness (say Φ2(c(., tf )) = Φ2
des)

within minimum time(tf ). Using Pontryagin’s maximum principle, it can be predicted
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that the optimal controls are going to be of the bang-bang type (see Kirk (1970)). i.e., the
optimal controls α∗i would assume only the three values {−αmax

i , 0, αmax
i }. The equations

describing the evolution of the costate field would be the same as in the TPBVP discussed
in this paper, but with a slightly different boundary condition and the optimal controls
would be such that

α∗i (t) = sign (〈λ∗(., t),ui(.) · ∇c∗(., t)〉)αmax
i . (5.2)

However, existence of solutions to this problem depends on the issue of controllability.
It must be possible to achieve the desired degree of mixedness with the available basis
velocity fields. An interesting aspect of this problem is the nature of the switching of the
optimal controls between the extreme values. We expect the switchings to occur faster
and faster with time as the density field gets more and more mixed. All of these issues
would be the subject of future work.

Appendix A. Derivation of necessary conditions for optimality and
the two point boundary value problem

The goal is to find the extrema of the functional W (α) = 〈c(., tf ), [M ]c(., tf )〉, where
c(x, t) is the solution to

ct(x, t) +
∑

i

αi(t)ui(x) · ∇c(x, t) = 0; c(x, 0) = c0(x), (A 1)

and such that ∫ tf

0

α(t) ·Rα(t)dt = A∗. (A 2)

The partial differential equation (A 1) is treated as a constraint together with the con-
straint (A 2) and using the Lagrange multiplier formalism, an augmented functional Ŵ
is defined as

Ŵ (α, c, λ, z) = 〈c(., tf ), [M ]c(., tf )〉 − z.

(
A∗ −

∫ tf

0

α(t) ·Rα(t)dt

)

−
∫ tf

0

∫

T 2

λ(x, t)

(
ct(x, t) +

∑

i

αi(t)ui(x) · ∇c(x, t)

)
dxdt

:= Wa(α, c, λ, z) + Wb(α, c, λ, z) + Wc(α, c, λ, z),

(A 3)

where

Wa(α, c, λ, z) := 〈c(., tf ), [M ]c(., tf )〉 ,

Wb(α, c, λ, z) := −z.

(
A∗ −

∫ tf

0

α(t) ·Rα(t)dt

)
,

Wc(α, c, λ, z) := −
∫ tf

0

∫

T 2

λ(x, t)

(
ct(x, t) +

∑

i

αi(t)ui(x) · ∇c(x, t)

)
dxdt.

(A 4)

The first variations of the individual functionals Wa, Wb and Wc are given as follows:

∂Wa(∂α, ∂c, ∂λ, z) = 2 〈[M ]c(., tf ), ∂c(., tf )〉 . (A 5)
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i. e.,

Wa(α + ∂α, c + ∂c, λ + ∂λ, z + ∂z) = Wa(α, c, λ, z) + ∂Wa(∂α, ∂c, ∂λ, ∂z)
+ higher order terms.

(A 6)

And,

∂Wb(∂α, ∂c, ∂λ, ∂z) = 2z.

∫ tf

0

α(t) ·R∂α(t)dt−
(

A∗ −
∫ tf

0

α(t) ·Rα(t)dt

)
∂z. (A 7)

Now computing Wc(α + ∂α, c + ∂c, λ + ∂λ, z + ∂z), we get

−Wc(α + ∂α, c + ∂c, λ + ∂λ, z + ∂z)

=
∫ tf

0

∫

T 2

(λ + ∂λ)

(
(ct + ∂ct) +

∑

i

(αi + ∂αi)ui · ∇ (c + ∂c)

)
dxdt

=
∫ tf

0

∫

T 2

λ

(
(ct + ∂ct) +

∑

i

(αi + ∂αi)ui · ∇ (c + ∂c)

)
dxdt

+
∫ tf

0

∫

T 2

∂λ

(
(ct + ∂ct) +

∑

i

(αi + ∂αi)ui · ∇ (c + ∂c)

)
dxdt

=
∫ tf

0

∫

T 2

λ

(
ct + ∂ct +

∑

i

αiui · ∇c +
∑

i

αiui · ∇∂c +
∑

i

∂αiui · ∇c

)
dxdt

+ higher order terms

+
∫ tf

0

∫

T 2

∂λ

(
ct +

∑

i

αiui · ∇c

)
dxdt + higher order terms.

(A 8)

Therefore,

Wc(α + ∂α, c + ∂c, λ + ∂λ, z + ∂z)−Wc(α, c, λ, z)

= −
∫ tf

0

∫

T 2

(
λ∂ct + λ

∑

i

αiui · ∇∂c + λ
∑

i

∂αiui · ∇c

)
dxdt

−
∫ tf

0

∫

T 2

∂λ

(
ct +

∑

i

αiui · ∇c

)
dxdt + higher order terms

:= ∂Wc(∂α, ∂c, ∂λ, ∂z) + higher order terms,

(A 9)

where

∂Wc(∂α, ∂c, ∂λ, ∂z) :=−
∫ tf

0

∫

T 2

(
λ∂ct + λ

∑

i

αiui · ∇∂c + λ
∑

i

∂αiui · ∇c

)
dxdt

−
∫ tf

0

∫

T 2

∂λ

(
ct +

∑

i

αiui · ∇c

)
dxdt.

(A 10)
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Now, applying integration by parts to the first two terms on the right hand side of the
equation above, we get

∫ tf

0

∫

T 2

λ(x, t)∂ct(x, t)dxdt =
∫

T 2

λ(x, tf )∂c(x, tf )dx−
∫ tf

0

∫

T 2

λt(x, t)∂c(x, t)dxdt, (A 11)

and

∫ tf

0

∫

T 2

λ
∑

i

αiui · ∇∂c dxdt =
∫ tf

0

∫

T 2

(∑

i

λαiui

)
· ∇∂c dxdt

=
∫ tf

0

∫

Γ

(∑

i

λαiui

)
· η∂c dΓdt−

∫ tf

0

∫

T 2

∇ ·
(∑

i

λαiui

)
∂c dxdt

=
∫ tf

0

∫

Γ

(∑

i

λαiui

)
· η∂c dΓdt−

∫ tf

0

∫

T 2

λ∇ ·
(∑

i

αiui

)
∂c dxdt

−
∫ tf

0

∫

T 2

(∑

i

αiui

)
· ∇λ ∂c dxdt.

(A 12)

In the expressions above, Γ is the surface bounding the domain and η is the normal to
the surface bounding the domain. Since the domain in these discussions is a torus, the
first term on the right hand side of the above equation is zero. On general domains too,
the first term is zero if there is no wall-normal velocity. The second term on the right
hand side of the above equation is zero too because each ui is divergence free. Therefore,
we have

∂Wc(∂α, ∂c, ∂λ, ∂z) = −
∫

T 2

λ(x, tf )∂c(x, tf )dx +
∫ tf

0

∫

T 2

λt(x, t)∂c(x, t)dxdt

+
∫ tf

0

∫

T 2

(∑

i

αi(t)ui(x) · ∇λ(x, t)

)
∂c(x, t) dxdt

−
∫ tf

0

∫

T 2

λ(x, t)

(∑

i

(ui(x) · ∇c(x, t)) ∂αi(t)

)
dxdt

−
∫ tf

0

∫

T 2

(
ct(x, t) +

∑

i

αi(t)ui(x) · ∇c(x, t)

)
∂λ(x, t) dxdt.

(A 13)

The necessary conditions for an extremum requires that the sum of all first variations of
the augmented functional be zero. Thus, requiring ∂Wa + ∂Wb + ∂Wc = 0, for all ∂α,
∂c, ∂λ and ∂z, gives the set of equations
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ct(x, t) +
∑

i

αi(t)ui(x) · ∇c(x, t) = 0; c(x, 0) = c0(x);

λt(x, t) +
∑

i

αi(t)ui(x) · ∇λ(x, t) = 0; λ(x, tf ) = 2[M ]c(x, tf );

∫ tf

0

α(t) ·Rα(t)dt = A∗;

(A 14)

and

2z.

∫ tf

0

α(t) ·R∂α(t)dt =
∫ tf

0

∫

T 2

λ(x, t)

(∑

i

(ui(x) · ∇c(x, t)) ∂αi(t)

)
dxdt

=
∫ tf

0

∑

i




∫

T 2

λ(x, t) (ui(x) · ∇c(x, t)) ∂αi(t)


 dxdt

=
∫ tf

0

∑

i

〈λ(., t),ui(.) · ∇c(., t)〉 ∂αi(t) dt

=
∫ tf

0

−β(t) · ∂α(t) dt,

(A 15)

where

βi(t) := −〈λ(., t),ui(.) · ∇c(., t)〉 for i = 1, 2, .., n. (A 16)

Therefore

2zRα(t) + β(t) = 0. (A 17)

Equations (A 14) and (A 17) constitute the two point boundary value problem in (3.2).
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