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Absbact-In this paper we study the controllability for 
a class of discrete-time nonlinear systems which arise from 
a discretization of a continuous-time integrable Hamiltonian 
systems. We give necessary and sufficient condition for the 
global contmllability of the discrete-tie nonlinear systems. 
The result in this paper are inspired from Ergodic theory. The 
hasic idea is as follows : for the uncontrolled (drift) system, 
there exists a ergodic partition, partition of phase space into a 
subsets. On each of the subset the drin is ergodic i.e., system 
trajectory will reach any positive measure set within the subset. 
The aim of the control is only to steer the system from one subset 
of the partition to another subset 

I. INTRODUCTION 
Control of Hamiltonian systems has attracted lot of atten- 

tion lately because of their applications in the areas like quan- 
tum control [l], [Z], control of satellite [3], control of mixing 
[4] and control of power systems. In this paper we study 
the controllability of a class of discrete-time systems that 
arise from the discretization of continuous-time integrable 
Hamiltonian systems. We have combined ergodic theory 
and control theory ideas to give necessary and sufficient 
conditions for controllability for a class of discrete-time 
systems. This particular controllability approach introduced 
in this paper also gives insight for ways of constructing a 
control, which is very important from practical point of view. 

The approach in this paper is different from the traditional 
Lie-theoretic approach for proving controllability. In the early 
1970s, Brocken, Jurdjevic, Sussmann and others introduced 
the theory of Lie groups and their associated Lie algebras into 
the context of nonlinear continuous-time control to express 
the notions such as controllahility, observability. Characteri- 
zation of controllability for discrete-time systems using Lie- 
theoretic approach is carried out in [5], [6].  The basic fact 
that underlines this approach is that one has as analogue for 
difference equations of the infinitesimal information obtained 
in the continuous-time case by taking derivatives with respect 
to time. One uses here derivation with respect to control 
values. The approach introduced in this paper is inspired 
from ergodic theory. The key concept is that of the ergodic 
partition of the drift partition of the phase space into subsets 
on which drift is ergodic (for more details on ergodic theory 
refer 171). Control is only used to steer the system from one 
subset of the ergodic partition to another subset. This method 
of control does not require large control effort because natural 
dynamics of the system is used very effectively and hence 

it is advantageous when the control authority is not very 
big. Controllability result for a two dimensional twist maps 
using this approach is derived in [SI and for continuous time 
system in [9]. Methods developed in this paper prove to 
very powerful when the drift part of the system is integrable, 
in this case the ergodic partition can be constructed easily. 
This is particularly true for the case of integrable Hamilto- 
nian systems. For integrable Hamiltonian systems suitable 
coordinate exist called action-angle coordinates (for more 
details refer [ 101). Control using action-angle coordinate can 
be related to so called Energy control method introduced by 
Astrom and Furuta [ll].  Action-angle coordinates generalize 
the idea of the energy of the system for the case where more 
than one quantity of the system is conserved. Control of 
quantum systems using action-angle coordinates is studied 
in [12]. Although the controllability result are proved for 
the class of discrete-time integrable Hamiltonian systems, the 
control philosophy is more general and can be applied to a 
class of discrete-time system for which the drift dynamics is 
integrable. 

This paper is organized as follows. In section 2 we develop 
some preliminaries for integrable Hamiltonian systems. We 
derive our discrete-time system by constructing a Poincark 
map of continuous time system under the assumption that the 
control input is small and is held constant over one period of 
periodic control Hamiltonian. Main result follows in section 
3 and conclusion in section 4. 

11. PRELIMINARIES 

In this section we develop some preliminaries of integrable 
Hamiltonian systems and show how the discrete-time systems 
arise from taking the Poincar6 map of the continuous-time 
system. Let MZn be smooth 2n- dimensional Poisson man- 
ifold with the system of local coordinates x = ( q , p )  E M2" 
and standard Poisson structure [IO], [13]. Let F,G E C'(Mz") 
(smooth real valued function defined on Mh), then we define 
their Poisson bracket as follows 

Consider an affine controlled Hamiltonian system (CHS) 
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where Ho(p,q) E C?(Mzn) is a Hamiltonian function of 
unforced controlled Hamiltonian system. Hj  E G-(M2"),j = 
l , . . ,n  are the interaction Hamiltonian being independent 
functions (in the sense that the corresponding one-form 
d H j  E T'(M2") are linearly independent) and are periodic 
in t with period T ,  u j , j  = l,..,n are control inputs of 
CHS. The equation (1) provide a convenient mathematical 
description for various controlled physical and mechanical 
systems. The q and p components of the phase vector are 
called "generalized coordinates" and "generalized momenta" 
correspondingly. 

Let the set of independent functions fi  E C"(M2"),i = 
1, .., k,k  5 n and the set of real numbers fi,i = 1, .., k be given. 
Then the level set of functions fi  

(2) 

is a (2n - k)-dimensional submanifold of M2" by of 
implicit function theorem. It is well known [lo] that the 
condition 

Mf = { ( p , q )  E MZ" : Fi(q,p) = fi,i = 1 ,.., k }  

{H0,Fj}  = 0, j = I ,  ___, k 

implies that the manifold Mf is invariant set of the unforced 
controlled Hamiltonian system. We are interested in the case 
where the unforced controlled Hamiltonian system is inte- 
grable. This correspond to the case where k = n (we assume 
that fi = Ho). In this case manifold Mf is compact, connected 
and is diffeomorphic to a n-dimensional torus. Moreover 
there exists a neighborhood U(Mf) c M" such that U(Mf) 
is diffeomorphic to B x T", where B c R" and T" is n-  
torus. There exists canonical coordinates ( I ,  cp)  on B x T" 
such that the functions F, depends only on 1. I is called action 
coordinates and cp is called angle coordinates. In action- 
angle coordinates the Hamiltonian system is represented by 
differential equation of the form 

J H o  @ ( I )  (modl) i =  l,..,n. (3) CPi = --= 

We see that I ,  is constant along the trajectory of (3). So the 
action coordinates { I ; } ,  i =  1, ..,n are the conserved variables 
of the system. If we assume that the system is non-degenerate 
i.e., the determinant 

a ii 

am J Z ~ o  
a i  a12 

det[-] =del[-] # 0. 

Then we can make one more coordinate transformation de- 
fined as co,(I) = & for i = l, .., n.  In these new coordinate after 

removing the over-bar notation we get following equation of 
motion 

i, = 0 

= I, (modl) i = l,..,n. (4) 

Now consider following form of controlled Hamiltonian 
in action-angle coordinates 

X = Ho(1) + & x H , ( I , ( P , f ) u d f )  
i= 1 

where Ho(1) is the drift or uncontrolled Hamiltonian and 
H, are the control Hamiltonian which are periodic in f with 
period T > 0, ul(r) E [-1,1] are control inputs and E << 1 
is a perturbation parameter. We have following equation of 
motion for the controlled Hamiltonian system. 

a H  
I = -&-U 

a H  
@ = I + & - u  (modl) i = l , . . , n  

a9 

ai  (5 )  

where 
r I = ( 4  , . . I  I#, cp=(cp1 I . . ,  %)T, u = b I  I . . ,  U") 

and the n x n matrix 
_ -  a H  a H j  a H  a H j  , , 

a/ - [=I, = [GI *,I= 1,..,n 

We will derive an approximate form of 2n-dimensional 
Poincark map of the system (5). We will assume that the 
control inputs .,(I) are constant over the period T of the 
control Hamiltonian Hi. Using regular perturbation theory, 
the solution of ( 5 )  are O(E)  close to the unperturbed solution 
on the time scale O( 1). Hence we have following expansion 
for the solution of (5).  

I&) = P + & l ' ( f ) + O ( E 2 )  
cp&) = c p O + P f + E ( p l ( t )  + O ( E Z )  (6) 

where l l ( t )  and $(r) satisfy following first variational 
equations 

Our aim is to find 2n- dimensional Poincar6 map that 
takes variable iE(0),cpe(O) to their values after flowing along 
the solution trajectories of ( 5 )  for time T. This map is given 
by 
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The expression for I ' ( T )  and cp'(T) can be obtained 
by integration under the assumption that the input is held 
constant over the period of the perturbation. We get 

denote I ( k )  =: I k  and I i (k)  =: If (value of action coordinate 
on V h  iterate) and similarly q ( k )  =: p' ,u(k)  =: up 

We assume the the perturbation g i j  are bounded i.e., 1gijl 5 
M and satisfies the following regularity condition 

I ' ( T )  = - / T  aH(P'cpo+Ior 'r )d tu(0)  =G(In,cp0)u(O). (9) 
n acp Forany fixed1 let 91 = {cp E I"' : Idet[G(I,cp)]l> tY} 

Similarly the expression for cp'(T) is 

aH(P,cpo + P ~ J ) ~ ( ~ ) ~ ~  
a/  

(10) 

Relabelling (Io,cpo)=(I,cp)and (I(T),cp(T))=(i,cp')we 

+ I  
= F ( I o ,  q0)u(O) 

get following form for the discrete-time control system 

where we have assumed without loss of generality that T = 1. 
For U = 0, we write the system as 

~ ( I , c p ) = ( i , c p ' ) = ( I , c p + I )  (12) 

For U = 0 case, the system dynamics are easy to under- 
stand. The phase space is foliated with n-dimensional tori 
parameterized by I and on each of the tori the motion is 
either periodic, quasiperiodic or dense orbit depending upon 
whether I satisfies the resonance condition or not. We say 
a toms is resonant if the action I parameterizing the torus 
satisfy following relationship 

PI 11 + ... + Pnln + n = 0 for (PI, .., Pn,i i )  E z"+' \ {0} 

A toms parameterized by I is said to be minimal if orbit 
from every point on the toms is dense on the toms. It can 
be shown that [14] on the minimal torus following relation 
is m e  

Pill + ... + P,,I" + n # o for any ( P I ,  .., Pn, n )  E z"+' \ {o} 
111. MAIN RESULT 

Consider the discrete-time nonlinear system (1  1). in index 
notation it can be written as 

n 

1: = I i + E C u j g i j ( / , c p )  
j= l  

cp8! = @ + I i + & ~ u j f i l ( l , f p )  (modl )  i=1 , . . ,<13)  
j=l 

( .  hi1 .. .. fin . ) = F  ( .  611 .. .. g1n . ) = G  

f n l  .. h. g"' .. gnn 

I E B c R", cp E T" (n-torus), d = B x T", U E U = 1-1, l]", 
hj and gij are functions which are at least C' and are periodic 
in cp with period 1, E << 1 is a perturbation parameter. We 

Then ~(9,) > 6 > 0 (14) 

where p is the lebesgue measure on the toms Tn 
Theorem 1: The system (13) is globally controllable under 

the regularity condition (14) if and, only if following control- 
lability conditions are satisfied 

I )  ForallI=(II  ,.., I,)ER"\Z" s.t.,II ,.., I,satisfiesreso- 
nanceconditionie., 1~='=,/3i/i+n=Ofor (PI ,.., P, , ,~)E 

If det[G(@,l)] = 0, then there exists an integer kl E Z+ 
and a sequence of control input {U~,U',..,U'~-~} such 
that TUo,.,:s,-1 ( I , @ )  = ( I k l  ;cp ' I )  and 1'1 does not satisfy 
resonance condition i.e., there exists no ( P I ,  .., a,.) E 
Znil \ {0} such that & 

Z"+' \ {O} 

+n = 0 
2)  For I E 2" 

a) Both F and G does not vanish simultaneously i.e., 
IfijI+lg~iI # O  for some i , j , k , l E  [l,n] 

b) If det[G($,I)] = 0 then there exists an inte- 
ger kz E Z+ and a sequence of control in- 
put {u',u' ,.., &'} such that Tuo ,,,, (I,@) = 
( I k 2 , c p k 2 )  and l k 2  does not satisfy resonance con- 
dition i.e., there exists no (PI ,.., /3",n) E Z"+' \ 
{0} such that & 

Remark 2: Condition I ensures that for any initial condi- 
tion on the torus, which is resonant there exist a sequence 
of control inputs by which the initial condition is steered to 
a minimal torus 

Condition 2 ensures that there exist no jixed point for the 
system. 

To prove the theorem we need to prove following lemma 
Lemnla 3: The system (13) satisfying the regularity con- 

+ n = 0 

dition (14) is backward accessible. 
Prooft 

Consider any point (If,@) E d. We have to show that 
the set of points controllahle to (If,@) contains an open 
set 9. To prove this we will show that there exists a 
sequence of control inputs {&} such that the inverse image 
of the map under the sequence of control inputs contains an 
open set. First we will consider the case where If does not 
satisfy the resonant condition i.e., there exists no integers 
(PI, ..,W,n) E Z"" such that P,l{ + ... + P,J{ + n = 0. We 
know the following: 

-Y-k(/ ,cp')  = ( / , c p ' - k i )  
and 

, I  

z - ' ( I  ,cp ) =  {(I ,cp):I+&Gu-I'  =O; cp+/+~Fu-cp'  =0} 
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Now since I f  does not satisfy the resonance condition we 
know that the inverse image of ( I / ,  cpf) with control inputs 
zero is dense in { I f }  x T" and because of the regular- 
ity assumption (14), there exists an integer KO such that 
Idet[G(If,(d-KoIf)]l > 79. Now consider the inverse image 
of (If, cpf) under the following sequence of control input. 

5.' 0 9 - 1  o..oY-'(/f,cpf) - 
= { ( I ,  (P) :I + EGUO -I* = 0, cp +I+EFuO - cp* = 0) 

where cp' = @f - (KO - I)// and I* = I f .  So I and cp satisfies 

cp ; cp'-I'- ~F( I , cp )uO+~G( l , cp )u~  

I = I* -&G(I,cp)uo. (15) 

Since I* = /f is nonresonant, we know that there exist 
an integer K I  such that Idet[G(l*,cp'-K11*)]l > 79. Now 
consider the inverse image of (I,cp) under the following 
sequence of control inputs. 

5 7 1 ~ 9 - ( K l - ' l ( 1 , c p )  = 5 ' ~ ; ' ( / ' - ~ G ( I , c p ) u ~ ,  ?*-I* 
+ & G ( I , ~ ~ ) u ~ - & F ( I , ~ ) u ~ - ( K I  - 1)(1* -~G(I,cp)u'))  

Hence, by the implicit function theorem, there exists an open 
neighborhood 0 of (uO,ul )  = (0 ,O)  and unique functions Yl 
and "2 defined on 0 and taking values in W" such that 

@I ( Y ' ( U ~ , U ~ ) , Y * ( U ~ , U ' ) , ~ ~ , U ~ )  = o  (18) 

@ 2 ( Y l ( U ~ , U ~ j , Y y 2 ( U ~ , U ' ) , U ~ , U ~ )  = o  (1% 

for all (uo,u' )  E 8. Now we have to show that the image of 
Y contains an open set. This is true if det[g]l(o.o) # 0. We 
know that in the neighborhood of (uo ,u l )  = (O,O), we have 

[2] = [E] + [Z] [E] = O  

det [ g] a@ -' 
det ['I (0.0) =-det (If,pf-Nlf.O.0) ( I f , p f - N I f . O . 0 )  

Substituting the value of I' and cpl from (16), we get = E F ( i , @ )  = B  

= & G ( f , @ ) = D  (20) 

following equation to be satisfied by i and @, ['I (If,pf-NIf.O.O) 

[S] ( I f~qf-NIf~O~O] Q + i+ EF(i,qqul - cp* + I *  - E G ( I , ~ ~ ) u O  + E F ( I , ~ ~ ) u O  

+ (KI - 1)(/' -&G(/,cp)uo) = O  and i = f = I f ,  Q=cpf-KoIf,@=(d-N/f.  From matrix 
f + EG(~,Q)ul -I*+&G(I ,cp)uO=O (17) analysis we h o w  that 

So (Q,n satisfying equation (17) with (1,cp) satisfying det i) = detDdet(A --BD-'C) (21) 
equation (15) are the set of all points which are mapped to 
(If, cpf) under the following sequence of control input. if D is invertible. Since G ( f , @ )  is invertible, using (21), we 
?;lou-l  o... 0 9 - I  o ~ ~ - ' o ~ - ~ o . . . o s - ~ ( I ~ : ( ~ ) =  (i,@ get 

function of ( f ,@,uo,u ' )  and are defined as follows - G(f ,~ ) [G( i ,@) l - 'F ( f ,~ ) l  (22) 

- - 
K I  -'I 6 - 1  = ~~det[G(f,Q)]det[F(i ,Q)-K~G(i,Q) 

Now let @ = (01,@2) : R4" + R" x R" he a vector valued 

weknowthatdet[G(f:@)]#Oanddet[G(f,@)]#O,hencethe 

larze. The large choice of KI is alwavs oossihle because E F ( I ,  q)u0 + (KI - 1)(1* - ~ G ( c p , l ) u ~ )  
I I , .  

a2(i, p,u0 ,u1 )  = i+ EG(i,q)d - I *  + E G ( I , ~ ~ ) ~ O  

Let Ko+Kl =N. Then@(/f,cpf-Nlf,O,O)=O and 

3 %  det [E] =det a JO, 

we know that points iterated under 9 - l  land in the set for 
which Idet[G]I > 0 infinitely many times. This proves that 
the inverse image of (If,cpf) contains an open set, when If 
does not satisfy the resonance condition. 

= 1 Now we consider the case when If satisfies the resonance 1 (~/.,+,-N~/.o.o) condition. In this case, we only need to show that there exists (If.pf-Nlf.O.0) Jr 
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a sequence of control inputs {uk} such that inverse image of 
(If, (6) under the sequence of control inputs contains a point 
(I,cp) such that I does not satisfy the resonance condition. 
Once we have proved this, we can show that inverse image 
contains an open set by using the previous argument. We 
know that arbitrary close to If there exists r, which does not 
satisfy resonance condition. We write 

if = i+ & 

Since i is irrational the inverse image of (i, cpf) are dense in {o x T" and hence there exists integers K1 and K such that 
Idet[G(i,cpf-Ki)]I > I9 and Ide t [G( i ,cppf- (K+K~)f ) ] l>  19. 
Let N = KI + K and g = (d - N i .  We claim that there exists 
control inputs U; and U* such that 

~ ~ - ~ ~ z ; - ~ ~ ~ ~ - l ~ ~ ~ ( i , g )  = ( ~ f , c p f ) .  

rli.I~(ul,u) = y°K-l o z 0 ( i , g )  
Conside? a following map 

Now it can be shown that 

de1 

and 

where 

"'1 = &'det[G]det( [P + (K- I)&] 
J ( U l , U )  (0.0) 

- [ F  + (KI + K - l)G][G]-I [e]) 

iverbar notation stands for the matrix being evalu- 
ated at (i,@) and the overhat for the matrix evaluated at 
(f,cpf - K O .  Since ldet[G]I and Idet[e]l are greater than 
0, Idet[& can be made nonzero by choosing large 
value of 1 s show that r is a local diffeomorphism and 
maps open neighborhood of (0,O) to open neighborhood of 
(1, cpf). The volume of the image set mapped by r is directly 
proportional to the determinant of %and can be made 
large by choosing large value of K1 s large choice of 
K1 is independent of 61 because points iterated under Y 
lands in the set 9 1  infinitely many times. So by choosing 
61 sufficiently small and K I  sufficiently large we can ensure 

To prove the theorem we need estimate on 1 1  G I ( / ,  cp)  I /_  
that the image of r contains the point (If,cpf). 

for cp E 91, G-l = & adj(G) 

1 1 )I G-' I\_.< iu 1) adj (G)  l).A ~ 2 n M " - '  =6f 

The control strategy is as follows: Starting from any initial 
state, the aim is to reach 9 (set backward accessible from 
final state). From given initial state steer the system to a 
minimal torus (by using controllability conditions of the 
theorem). On the minimal torus t u n  OFF the control inputs 
till the orbit reaches the set 9,. In 91 the inputs will he 
turned ON to a proper value to advance in the action space. 
This process is repeated until1 the orbit reaches the set 9. 

Pmof Let ( I o , @ )  and (If,pf) he the initial and final 
state respectively. By lemma (3) we know that set of points 
controllable to (If,cpf) contains an open set 9. Let Y be a 
open parallelepiped such that Y c 9. Let x , (Y )  = "4 and 
z?(Y) =.YT where x is the projection map and m(1,cp) = I  
and x m ( / ,  cp)  = cp. We will show that there exist L sequence 
of control inputs {U' ,.., UN}  such that ~ I ( T , N  ....U o(Io,cpo))  E 
V, and zm(T~,,.:,o(P,cpo)) E Yq. We assume that Io  does 
not satisfy the resonance condition, because if P satisfy 
the resonance condition then we know by condition of the 
theorem that there exist a finite sequence of control inputs 
{U' ,..., SI-'} suchthat Tuo,,,~2,-,(P,cpo) =(I'I,cp'') ,  where 
Ikl does not satisfy resonance condition. Hence by relabelling 
the initial state we can always assume that Io  does not satisfy 
the resonance condition. Let i E V, be such that - @ is 
rational for all i = l , 2 . . , n .  Let 

--!-=& for ;=I,.. ,  nLet A = ( A 1  ,.., &)and A=max(lLil) 
& - / P  
m 

Since 
where m E Z be sufficiently large so that A E (- 6, $) 

does not satisfy the resonance condition we know 
that the orhit starting from (I0,cp0) with zero control input 
is dense in { Io}  x T". So by regularity condition (14) there 
exists an integer nl E Z+, such that ( I"]  ,cp"l) = (P,cp"I) E 
91. Once ( I " ] ,  c p " ] )  E 91, turn ON the control inputs U to a 
value 

A 
= - U = G-'Q where 

E 

So we have 
I"'+' = I"' +A = p + ;I ( 2 3 )  

we need to show that 11 U 11-5 1 

- 14 I/ U 11_=11 c-la 11-<11 c-I 1 1 _ ( 1  a Il-.<M-- I 1 
E 

Since P does not satisfy resonance condition and all the com- 
ponents of A = (AI,..,&) are rational, P+' also does not 
satisfy the resonance condition. Since I"'+' does not satisfy 
the resonance condition the orbit starting from (I"l+',cp"l+') 
with zero control input is dense in x T". So there 
exists an integer nz such that ( I n l t n 2 , q n l + ' Q )  E 9,. With 
(/"1+"2,(~"1+"2) E 9 1  turn on the control input to a value 
u = G - ' $  sothatI"I+"Z+' =I"~+"~+AZ=P+2L.Repeating 
the above procedure m - 2 times more we get 

= P i m A  = i 
where N = ni + 1. Since i E V, does not satisfy the 
resonance condition, we turn OFF the control input till the 
orbit reach the set Ym. With i€ V, and cp E Ym, (i,cp) E Y 
and hence the system is controllable. 

To prove the necessary part we have to show that if the 
controllability conditions are not satisfied then the system is 
uncontrollable. Consider an initial condition (P, q0) which 
does not satisfy the controllability condition 1 and any final 
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state (If,& such that the torus parameterized by I f  is 
minimal. We claim that this final state cannot be reached 
from (p,cpo). Assume that this final state can be reached 
then there exists a sequence of control inputs {u0,u’,..,uk-’} 
such that ZO ,,,,U t -~(I ’ ,cp’ )  = (If,@). This contradict the 
controllability condition 1 because there exists no sequence 
of control input by which this initial condition can be steered 
to the minimal toms. 

If controllability condition 2a is not satisfied then there 
exists a fixed point for the system from which the system is 
not controllable. This is clear because if I E 2” and both F 
and G vanish simultaneously then for any sequence of control 
input we have 

I = I  
q’ = c p + i  (modi) = c p  

and hence there exists a fixed point. If the controllability 
condition 26 is not satisfied, then again by the same argument 

~n easy consequence of the above theorem is the foilowing 
corollary. Before stating the corollary we give the definition 
of almost every where controllable. 

Defrnirion 4; The system is said to be controllable almost 
everywhere if for almost every (with respect to Lehesgue 
measure) given initial ‘state (P,cp’) and almost every final 
state (If,@), there exists a sequence of control inputs 
u0, ..,uk such that T&: ..,U o(Io,cp’) = (If,cp’) 

Corollary 5; Under the regularity condition (14), the sys- 
tem (13) is almost everywhere controllable. 

Proofi Arbitrary close to any given initial state (P, q’), 
there exists (I,cpo), where I does not satisfy resonance 
condition. Starting from the state ( I , p o )  we know from the 
proof of the theorem (1) that we can always reach the set 
9, which is the backward accessible from the final state 

as above, the system is uncontrollable. 

(14 c p f ) .  81 

Iv.  CONCLUSION AND FUTURE WORK 

The key ideas introduced in this paper is the ergodic par- 
tition of the drift system. By exploiting the ergodic property 
of the drift system it is possible to control using arhitrary 
small hounds on the control input. The ideas presented in 
this paper can be generalized to more general discrete time 
nonlinear system, where drift part of the system has nice 
ergodic panition. 
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