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Abstract— In this paper, we propose a novel approach based on
tools from ergodic theory of dynamical systems for the identi-
fication of critical parameters responsible for the emergence of
complex dynamics in network systems. We consider a network
system with multiple uncertain parameters and operating in
nonequilibrium. The objective is to determine which of these
multiple parameters are critical for maintaining the stability
of nonequilibrium dynamics. Using combination of tools from
linear robust control theory and ergodic theory of dynamical
systems, we provide conditions on system parameters to main-
tain the stability of network systems. The proposed method
is applied for the identification of parameters responsible for
limit cycle oscillations in biochemical network involved in yeast
cell glycolysis and for robust synchronization in network of
Kuramoto oscillators with uncertainty in coupling parameters.

I. INTRODUCTION

The problem of analysis and design of robust network
systems has received considerable attention in recent liter-
ature [1], [2], [3], [4], [5], [6]. The various network sys-
tems of interest include biological networks, electric power
grid, Internet communication networks, and transportation
networks. In biological network, it is of interest to know
which of the multiple parameters are responsible for the
emergence of robust complex dynamics [7], [8]. In electric
power grid, due to uncertainty associated with various load
and system parameters it is important to know the relative
stability margin with respect to the uncertainty in these
systems parameters [9]. In problems involving cyber security
of electric power grid, it is of interest to identify the most
vulnerable link from where the malicious attack on the
grid could be launched [10]. Robust synchronization in
network systems at the backdrop of link failure or packet-
drop and time delay uncertainty is of interest in Internet
communication and sensor networks. The natural dynamics
in most of the above discussed network systems of interest is
away from equilibrium. For example, in biological networks
the nonequilibrium dynamics include limit cycling oscillating
solutions and bistable dynamics. The synchronized state of
coupled generators in electric power grid is periodic and
hence in nonequilibrium.
Because of the lack of systematic methods for the analysis
of nonequilibrium dynamics most of the existing approaches
for the robustness analysis in network systems focus on
equilibrium dynamics [11], [4]. The nonequilibrium network
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dynamics is not accounted explicitly in the robustness anal-
ysis. In this paper, we develop systematic approach for the
robust stability analysis of network systems in the presence
of stochastic uncertainty while explicitly accounting for the
nonequilibrium dynamics of the network. In particular, we
provide condition for the stability of network systems with
stochastic interaction among network components. Stability
condition is expressed in terms of the variance of the stochas-
tic interaction parameter and the input-output property of the
network. The problem set-up is general enough to model
various uncertain network systems of interest, including
biological network with stochastic uncertain parameters and
electric power grid with load uncertainty. Furthermore one
of the widely studied problem of robust synchronization
in a network with identical nonlinear component dynamics
interconnected via linear Laplacian and with link failure un-
certainty will form a special case of the results developed in
this paper. Our proposed framework for robustness analysis
is based on combinations of tools from linear robust control
theory [12] and ergodic theory of dynamical systems [13].
We provide computable conditions for the network stability
expressed in terms of the nominal or mean dynamics of the
network and the statistics of the uncertain interactions.
Following are the main contributions of this paper. We
propose a systematic framework for robust stability of un-
certain network system operating in nonequilibrium. Com-
putable necessary condition is provided to determine critical
interaction in network systems responsible for maintaining
the stability of nonequilibrium dynamics in the network.
Application of the developed framework is demonstrated to
the problem of robustness analysis in biological network
and synchronization in non-uniform Kuramto oscillator with
uncertainty in interactions. The organization of the paper is
as follows. In section II, we discuss the problem set-up along
with necessary assumption and stability definition. The main
results of this paper are presented in section III. Applications
of the developed framework is demonstrated in section IV
followed by conclusion in section V.

II. PROBLEM SET-UP AND ASSUMPTIONS

The individual components dynamics of the network system
is modeled as a single-input single-output discrete time
dynamical system as follows:

Sk =

{
xk

n+1 = fk(xk
n)+Bkuk

n
yk

n = Ckxk
n, k = 1, . . . ,M

(1)



where xk
n ∈ Xk ⊂ RNk , uk

n ∈Uk ⊂ R, and yk
n ∈ Yk ⊂ R is the

state, input, and output of the kth component sub-system
respectively. fk : Xk → Xk is assumed to be at least Cr,
with r ≥ 1, function of x. Bk and Ck are column and row
vectors of size Nk respectively. We use the notation X =
X1⊕X2 · · ·⊕XM ⊂ RN and Y = Y1⊕Y2 · · ·⊕YM ⊂ RM . The
interaction among the network components is assumed to
be nonlinear uncertain function of output and is modeled as
follows:

uk
n =

M

∑
`=1

ξ
k`
n gk`(y1

n, . . . ,y
M
n ) (2)

where ξ k`
n is uncertain and is assumed to be independent

identically distributed (i.i.d) random variable with mean
E[ξ k`

n ] = µk` and second moment E[ξ k`
n − µk] = σ2

k`. If
particular interaction is certain that will correspond to the
case of σk` = 0 The function gk` : Y → R is assumed to be
Cr, with r ≥ 1, function of the output for k, ` = 1, . . . ,M.
The single-input single-output components dynamics with
nonlinear uncertain interaction in Eqs. (1) and (2) can be used
to model various uncertain network systems of interest in en-
gineering and natural science. The objective is to determine
the most critical interaction responsible for the emergence
of complex dynamics in the network. To write the above

xn+1 = F (xn, µ)

∆n

ηn+1 = A(xn)ηn + Bvn

γn = D(xn)ηn

vn γn

Fig. 1. Schematic of the system as expressed by (4).

uncertain network system in compact form, we first define a
new random variable δ k`

n = ξ k`
n −µk`. So that E[δ k`

n ] = 0 and
E[(δ k`

n )2] = σk`. With the new random variable, the system
Eqs. (1) and (2) can be written in compact form as follows:

xn+1 = F(xn,µ)+
M

∑
k=1

M

∑
`=1

δ
k`
n B̄kgk`(y1

n, . . . ,y
M
n ) (3)

xn = (x1
n; . . . ;xM

n ),

F(xn,µ) = (F1(xn,µ); . . . ;FM(xn,µ))

Fk(xn,µ) := fk(xk
n)+

M

∑
`=1

µ
k`
n Bkgk`(y1

n, . . . ,y
M
n )

and B̄k is a column vector of size N =∑
M
`=1 N` and is obtained

by stacking zero and Bk column vector starting at ∑
k−1
`=1 N`

location. The network system can be written in feedback

control form as follows (refer to Fig. 1 for the schematic):

xn+1 = F(xn,µ)+Bun

yn = G(xn)

un = ∆nyn (4)

where B is a matrix of size N×M2

B = (B̄1 . . . , B̄1︸ ︷︷ ︸
M

, . . . , B̄M . . . , B̄M︸ ︷︷ ︸
M

)

∆n = diag(δ 11
n ,δ 12

n , . . . ,δ MM
n ) is a diagonal matrix of size

M2, G(xn)= (g12(Cxn),g13(Cxn), . . . ,gM2(Cxn)), C is a block
diagonal matrix of size M × N and is of the form C =
diag(C1,C2, . . . ,CM), and . We now make following assump-
tion on the nominal deterministic system

xn+1 = F(xn,µ) (5)

Assumption 1: We assume that the nominal system xn+1 =
F(xn,µ) has a globally stable periodic solution.
Furthermore following assumption is made on the pair
(F,gk`) for the feedback system (4).
Assumption 2: We assume for system described by Eq.
(5), the norm of Jacobian matrix is lower bounded i.e.
∂F
∂x

T
(xn)

∂F
∂x (xn)≥ H > 0.

Assumption 3: Consider the map T N−1
k (x) : RN → RN for

k = 1, . . . ,L, as

T N−1
k` (x) = (gk`(Cx),gk`(CF(x,µ)), . . . ,gk`(CFN−1(x,µ)))

where Fk(x,µ) denotes k times composition of F . We assume
that system (4) satisfies following rank condition

rank(
∂T N−1

k (x)
∂x

) = N, k, `= 1, . . . ,L

for almost all, with respect to Lebesgue measure initial
condition x ∈ X .
Remark 4: The assumption is equivalent to saying the lin-
earized pair ( ∂F

∂x ,
∂gk`
∂x ) is observable along the dynamics of

the nominal system (5).
We make following assumption on system (4).
Assumption 5: We assume that the system (4) has a globally
stable periodic solution {x∗n}.
The objective is to determine the critical parameter respon-
sible for maintaining the stability of periodic solution for
system (4). In particular, we want to determine the parame-
ter with smallest variance responsible for destabilizing the
periodic solution of system (4). Since the system (4) is
random in nature, we need to make appropriate notion of
stochastic stability. Instead of requiring the periodic solution
{x∗n} (Assumption 5) to be stable in some stochastic sense,
we make slightly stronger assumption on system (4). In
particular, we make following assumption.
Assumption 6: We assume that system (4) is incrementally
mean square exponentially (MSE) stable in a neighborhood
N of the periodic orbit i.e., there exists positive constants
K < ∞ and β < 1 such that

E∆n
0

[
‖ xn+1− yn+1 ‖2]≤‖ x0− y0 ‖2 (6)



for almost all initial condition x0,y0 ∈ N . Where, ∆n
0 =

{∆i|i = 0,1, . . .n}
Remark 7: The assumption (6) is stronger than requiring
stochastic stability of periodic solution as increment MSE
stability will imply MSE stability of periodic solution {x∗n}.
This is because incremental MSE stability implies converge
of all trajectories to each other and in particular to the
periodic solution as it is one particular trajectory of the
system. There are following reasons behind making the
stronger assumption of incremental MSE stability as opposed
to stochastic stability of periodic orbit. First, the proofs of
some of the main results of this paper are considerably
simplified with incremental MSE stability. Secondly, one
of the main results of this paper is on synchronization
of network systems and for synchronization problem the
incremental stability is a natural notion of stability. We
expect the main results of this paper to hold true under the
assumption that the periodic solution is MSE stable, however
the proofs will be substantially more complicated. In the rest
of the paper, we will refer to Assumption 6 as incremental
MSE stability of periodic solution. The objective will be
to determine necessary condition in terms of the variance
of uncertainty ∆ to maintain incremental MSE stability of
periodic solution.

III. MAIN RESULTS

The main result section is organized as follows. We first state
all the main results of this paper in the form of Theorems
8, 10, and 17. The proof of all the Theorems in differ to
section III-C. To state the first main result of this paper

∆n

xn+1 = F (xn, µ) + Bun

yn = G(xn)

un yn

Fig. 2. Schematic of the linearized system as expressed by (7).

on the stability of random dynamical system (4), we define
following quantities. We consider the linearization of the
system equation (4) along the trajectories of nominal system
(5) as follows (refer to Fig. 2 for schematic):

xn+1 = F(xn,µ)

ηn+1 =
∂F
∂x

(xn,µ)ηn +Bvn, γn =
∂G
∂x

(xn)ηn

vn = ∆nγn (7)

We will use following notation throughout the paper.

A(xn) :=
∂F
∂x

(xn,µ), Dk`(xn) :=
∂gk`

∂x
(Cxn,µ)

D(xn) :=
∂G
∂x

(xn)

We now state the first main result of this paper.
Theorem 8: The necessary condition for the MSE stability
for the periodic solution of feedback control system (4)
satisfying Assumption 3 is given by

σ2
k`B̄

T
k P(xn)B̄k < 1 (8)

AT (xn)P(xn+1)A(xn)−P(xn) =−Dk`(xn)DT
k`(xn) (9)

for k, `= 1, . . . ,M and P(x) is a positive definite matrix with
xn+1 = F(xn,µ).
We postpone the proof of this Theorem to section III-C.

A. Ergodic theory- based computable condition

Theorem 8 provides point-wise condition for the stability of
periodic solution for system (4). We now make use of results
from ergodic theory to provide computable condition for the
stability of (4). The central to this computation is the notion
of physical invariant measure which is defined as follows.
Definition 9 (Physical invariant measure): A probability
measure µ ∈M (X) is said to be invariant for the dynamical
system xn+1 = F(xn,µ) if µ(F−1(B)) = µ(B) for all sets
B ∈B(X), the Borel σ -algebra on X , and where F−1(B) is
the inverse image of set B. An invariant probability measure
is said to be physical if

lim
n→∞

1
n

n

∑
k=0

φ(xk) =
∫

X
φ(x)dµ(x) (10)

for all continuous function φ : X→R and positive Lebesgue
measure initial condition x0 ∈ X .
From Assumption 1, it follows that there exits a physical
measure supported on the globally stable periodic orbit for
system xn+1 = F(xn,µ). Typically, a periodic orbit in a
nonlinear systems will exhibit nonuniform behavior in space
and time i.e., different regions of periodic orbit are visited
with different frequency. The physical measure supported
on the periodic orbit captures this nonuniform behavior. In
particular, the physical measure not only provide information
about the location of the periodic orbit but also the relative
amount of time the system trajectories spend on the different
parts of the periodic orbit. It is important to explicitly
account for this nonuniform nature of the periodic solution
to determine the relative degree of robustness to various
parameters variations in the system.
Theorem 10: Let {x̄0, x̄1, . . . , x̄P} be the stable periodic so-
lution for the nominal deterministic system (5) with period
P, so that FP(x̄i,µ) = x̄i for i = 1, . . . ,P. Let µ(x) be the
physical invariant measure corresponding to the periodic
solution for the nominal deterministic system (5). The neces-
sary condition for the MSE stability of the periodic solution
of system (4) satisfying Assumption 3 is given by

logσ
2
k`+

∫
X

log B̄T
k P(x)B̄kdµ(x)< 0 (11)



where P(x) is a positive definite matrix and satisfies

A T (xi)P(xi)A (xi)−P(xi) =−Rk`(xi) (12)

for i = 1, . . . ,P, and k, `= 1, . . . ,M, and where

A (xi) =

[
P

∏
r=i

A(xr)

][
i−1

∏
s=1

A(xs)

]

R(xi) = Dk`(xi)DT
k`(xi)

+
P

∑
j=1, j 6=i

ˆA T (xi,x j)Dk`(x j)DT
k`(x j) ˆA (xi,x j)

ˆA (xi,x j) =

([
P

∏
r= j

A(xr)

][
min(i, j)−1

∏
s=1

A(xs)

])
We postpone the proof of this Theorem till the end of this
section. The results of Theorem 10 can be used to rank order
the various interaction parameters for the relative degree of
importance in maintaining the stability of periodic solution.
In particular, the stability margin Sm(k, `) for interaction
parameter ξ k` can be defined as

Sm(k, `) =−
∫

X
log B̄T

k P(xi)B̄kdµ(x) (13)

The larger the value of Sm(k, `), more robust the system
behavior is to the variation in the interaction parameter
ξ k` and hence can tolerate larger variance σk`. The critical
interaction parameter, ξ k∗`∗ , can then be defined as follows:

(k∗, `∗) = argmin(Sm(1,2), . . . ,Sm(M,M)).

B. Synchronization in network systems

To study the problem of robust synchronization in network
system, we make following assumption on the network
component dynamics.
Assumption 11: We assume that all the network components
dynamics in Eq. (1) are identical i.e., fk = f ,Bk = B, and
Ck =C for k = 1, . . . ,M.
Furthermore following assumption is made on the nonlinear
interaction in Eq. (2).
Assumption 12: We assume that the nonlinear interaction
terms vanishes for identical outputs of individual sub-systems
i.e., for x1

n = x2
n = . . .= xM

n = x̄n, we have

gk`(C(x̄n), . . . ,C(x̄n))≡ 0, k, `= 1, . . . ,M

The interaction term, gk`, in this case represent the general-
ized nonlinear Laplacian.
Assumption 13: We assume that the individual component
system xk

n+1 = f (xk
n) has unique physical invariant measure,

µ̄ .
Remark 14: The physical invariant measure captures the
nonequilibrium dynamics of the individual component sys-
tem. The nonequilibrium dynamics could range from simple
periodic solution to chaotic behavior.
The notion of mean square synchronization is introduced
next.

Definition 15: The system described in (4) is mean square
exponentially synchronizing if there exists Ms <∞ and βs < 1
such that for all x0,

E∆n
0
‖ xn+1−Zn+1 ‖2< Msβ

n
s ‖ x0−Z0 ‖2 (14)

Zn = [zn,zn, . . .zn]
T

zn+1 = f (zn)

for some z0.
Remark 16: The trajectories of the system described in Eq.
(4) synchronizes when x1

n = x2
n = · · · = xM

n = zn(say). This
implies gk`(C(zn), . . . ,C(zn)) = 0 and hence G(xn) = 0. This
means xn will evolve as,

xn+1 = [ f (zn), . . . f (zn)]

Hence the trajectory xn eventually converges upon Zn =
[zn, . . .zn]

T , and zn+1 = f (zn).
Theorem 17: Consider the uncertain network system (4) sat-
isfying Assumptions 11, 12, and 13. The necessary condition
for the synchronization of the network dynamics is given by

logσ
2
k`+

∫
X

log B̄T
k P(Z)B̄kdµ̄(z)< 0 (15)

where Z = [z,z, . . . ,z]T and P(Z) satisfies

AT (Zn)P(Zn+1)A(xn)−P(Zn) =−DT
k`(Zn)Dk`(Zn)

with Zn = [zn, . . .zn]
T and zn+1 = f (zn).

Remark 18: One of the main difference between the neces-
sary condition for stability provided in Theorem 10 for a gen-
eral network systems with Theorem 17 is that while condition
(11) involves integration with respect to physical measure
of the nominal coupled system (i.e., xn+1 = F(xn,µ)), the
integration in (15) is with respect to physical measure of
individual component system (i.e., zn+1 = f (zn)). This is
advantageous from the point of view of computation of
stability condition for a large size network system as we
demonstrate in our application section IV. This computation
advantage is possible because of the assumed identical nature
of individual component dynamics and also because of the
Laplacian nature of the nonlinear interaction term.

C. Proofs of main theorems

Proof of Theorem 8 relies on Lemma 19 and 20, which we
prove next.
Lemma 19: The necessary condition for the incremental
mean square exponential stability of perodic solution of
system (4) (Definition 6 and remark 7) is that the ηn
dynamics (Eqn. 7) is mean square exponentially stable i.e.
there exists positive constant M < ∞ and β < 1 such that

E∆n
0

[
‖ ηn+1 ‖2]≤Mβ

n ‖ η0 ‖2

Proof: Let us consider the system

zn+1 = F(zn,µ)+B∆nG(zn)−B∆nG(xn) (16)

Now let us assume two trajectories of starting with initial
conditions z1

0 and z2
0, evolving as Eqn. 16. Let us define ez

n =



z2
n− z1

n.

ez
n+1 = F(z1

n + ez
n,µ)−F(z1

n,µ)+B∆nG(z1
n + ez

n)−B∆nG(z1
n)

=

[∫ 1

0

(
A(z1

n + snez
n)+B∆nD(z1

n + snez
n)
)

dsn

]
ez

n

=

[
n

∏
i=0

∫ 1

0

(
A(z1

i + siez
i )+B∆iD(z1

i + siez
i )
)

dsi

]
ez

0

= M n
z (z

1
0,e

z
0,{∆i}n

i=0)e
z
0

E∆n
0

[
ez′

n+1ez
n+1
]
= ez′

0E∆n
0

[
M n

z
′(z1

0,e
0
z ,∆

n
0)M

n
z (z

1
0,e

0
z ,∆

n
0)
]

ez
0

Using exponential mean square incremental stability of 4,

ez′
0E∆n

0

[
M n

z
′(z1

0,e
0
z ,∆

n
0)M

n
y (z

1
0,e

0
z ,∆

n
0)
]

ez
0 < Mβ

nez′
0ez

0

Hence the system described by (16) is exponential mean
square incrementally stable. We consider two specific tra-
jectories with initial conditions z0 and x0, which evolve
according to (16). These two trajectories evolve as,

zn+1 = F(zn,µ)+B∆nG(zn)−B∆nG(xn)

xn+1 = F(xn,µ)

Let en = zn− xn. This gives us,

en+1 = F(xn + en,µ)−F(xn,µ)+B∆nG(xn + en)−B∆nG(xn)

=

[
n

∏
i=0

∫ 1

0
(A(xi + siei)+B∆iD(xi + siei))dsi

]
e0

= M n
z (x0,e0,∆

n
0)e

z
0

Using the above equation we get,

E∆n
0

[
e′n+1en+1

]
= e′0E∆n

0

[
M n′(x0,e0,∆

n
0)M

n(x0,e0,∆
n
0)
]

e0

We scale the initial error by {ωl} and take a sequence such
that lim

l→∞
ωl = 0. Using Bounded Convergence Theorem and

continuity property of M n(x0,e0,∆
n
0),

lim
l→∞

M n(x0,ωle0,∆
n
0) = M n(x0,0,∆n

0)

Where, Ai = A(xi), and Di = D(xi). Now,

E∆n
0

[
e′n+1en+1

]
< Kβ

ne′0e0

=⇒ e′0E∆n
0

[
M n′(x0,ωle0,∆

l
0)M

n(x0,ωle0,∆
l
0)
]

e0 <Mβ
ne′0e0

Using Fatou’s Lemma and taking limit l→ ∞ we get,

e′0E∆n
0

[
n

∏
i=0

(Ai +B∆iDi)
T

n

∏
i=0

(Ai +B∆iDi)

]
e0 < Mβ

ne′0e0,∀e0

Now, E∆n
0

[
∏

n
i=0(Ai +B∆iDi)

T
∏

n
i=0(Ai +B∆iDi)

]
matrix is

independent of e0. Hence it can be also be rewritten as,

η
′
0E∆n

0

[
n

∏
i=0

(Ai +B∆iDi)
T

n

∏
i=0

(Ai +B∆iDi)

]
η0 < Mβ

n
η
′
0η0

Hence, the proof.
Lemma 20: . The system ,described by (4), is mean square
incremental stable only if, for any arbitrary x0 and n, there
exists a symmetric, positive definite P̂(xl) such that,

E∆n
0

[
(An +B∆nDn)

T P̂(xn+1)(An +B∆nDn)
]
< P̂(xn) (17)

where Ai = A(xi), and Di = D(xi), xn+1 = F(xn,µ), and

γ0 ≤‖ P̂(xn) ‖≤ γ1 (18)
Proof: The system in (4) is mean square incrementally

stable. That in turn implies Lemma 19. We construct the
function P̂(xl) as following,

P̂(xn) =
∞

∑
l=n

E∆n
0

[
l

∏
m=n

(Am +B∆mDm)
T

n

∏
m=l

(Am +B∆mDm)

]
From the construction and using the fact {δ k,`

m } is a sequence
of i.i.d. random variables,

P̂(xn)> AT
n An +∑

k,`
σ

2
k`(̄D

n
k`)

T BT
k BkDn

k`

According to assumption 2, we get AT
n An ≥ H > 0, which

implies (17). Next, we prove the upper bound on norm of
P̂(xn).

η
T
0 P̂(xn)η0 = η

T
0

∞

∑
l=n

E∆n
0

n

∏
m=l

(Am +B∆mDm)
T

n

∏
m=l

(Am +B∆mDm)η0

< M
∞

∑
l=n

β
l−n

η
T
0 η0 = M

∞

∑
k=0

β
k
η

T
0 η0 =

M
1−β

η
T
0 η0

We have already shown P̂(xn) ≥ AT
n An ≥ H > 0. Hence we

can choose γ1,γ2 accordingly.
Next we continue to prove Theorem 8 using Lemma 20.
Proof: (17) simplifies to,

AT
n P̂(xn+1)An− P̂(xn)+∑

k,`
σ

2
k`(̄D

n
k`)

T BT
k P̂(xn)BkDn

k` < 0

(19)
This implies,

AT
n P̂(xn+1)An− P̂(xn)+σ

2
k`(̄D

n
k`)

T BT
k P̂(xn)BkDn

k` < 0

Let,

Q(xn) = AT
n P̂(xn+1)An− P̂(xn)+α

k`
n (Dn

k`)
T Dn

k`

and αk`
n > 0 is chosen such that R((Dn

k`)
T Dn

k`)⊂N (Q(xn)).
This is always possible as,

AT
n P̂(xn+1)An− P̂(xn)<−σ

2
k`(̄D

n
k`)

T BT
k P̂(xn)BkDn

k` ≤ 0

The inequality (19) can be rewritten as,

Q(xn)+
(

σ
2
k`B

T
k P̂(xn+1)Bk−α

k`
n

)
(Dn

k`)
T Dn

k` < 0 (20)

From (20) and using the fact R((Dn
k`)

T Dn
k`) ⊂ N (Q(xn))

we get,

Q(xn)≤ 0 and σ
2
k`B

T
k P̂(xn+1)Bk < α

k`
n

We have already shown ‖ P̂(xn) ‖≥ γ1. This in turn gives,

α
k`
n > σ

2
k`B

T
k P̂(xn+1)Bk ≥ σ

2
k`γ

2
1 ‖ Bk ‖2> 0

Using the fact Q(xn)≤ 0 from Eq. (20) we can obtain,

AT
n P̂(xn+1)An +α

k`
n (Dn

k`)
T Dn

k` < P̂(xn)

which implies,

α
k`
n (Dn

k`)
T Dn

k` < P̂(xn)



Utilizing ‖ P̂(xn) ‖≤ γ2, we get, αk`
n <

γ2
2

‖Dn
k`‖2

<∞. Combining
upper and lower bounds,

0 < σ
2
k`γ

2
1 ‖ Bk ‖2< α

k`
n <

γ2
2

‖ Dn
k` ‖2 < ∞

We define another symmetric, positive definite , matrix
function, which is also bounded above and below.

P̃(xn) =
1

αk`
n

P(xn)

AT (xn)P̃(xn+1)A(xn)− P̃(xn)≤−(Dk`(xn))
T Dk`(xn)

σ
2BT P̃(xn+1)B < 1

With some abuse of notations,

P̃n =
∞

∑
i=n

( i

∏
m=n

Am

)T

(
(
Di

k`
)T

Di
k`−

1
αk`

i
Qi)

(
i

∏
m=n

Am

)
We have already shown, Qi ≤ 0. Finally we define, matrix
function P by removing terms containing Qi from above
equation.

Pn =
∞

∑
i=n

(
i

∏
m=n

Am

)T

(Dn
k`)

T Dn
k`

(
i

∏
m=n

Am

)
It can be observed that Pn≤ P̃n. This means σ2

k`B
T
k Pn+1Bk < 1.

The lower bound of P can be proved by using observability
property and also,

AT
n Pn+1An−Pn =−(Dn

k`)
T Dn

k`

Hence the proof.
Proof: Finally we can proceed to prove Theorem 11.

By taking logarithm on both sides of Eq. (9) we get,

logσ
2
k`+ log B̄T

k P(xn)B̄k < 0, ∀n

Taking average upto nth step and taking limit n→∞ we get,

lim
n→∞

[
1
n

n

∑
i=0

logσ
2
k`+

1
n

n

∑
i=0

log B̄T
k P(xi)B̄k

]
< 0,

Using the definition of physical measure as in Eq. (10),

logσ
2
k`+

∫
X

log B̄T
k P(x)B̄kdµ(x)< 0,

The above equation simplifies to Eq. (12) in case of periodic
orbit.
Next we state two more Lemmas, which are required to
prove Theorem 17, which is the necessary condition for mean
square synchronization.
Lemma 21: If the system described in (4) is mean square
exponentially synchronizing, then there exists positive Ms
and βs such that

E{∆}n0 ‖ ηn+1 ‖2< Msβ
n
s ‖ η0 ‖2

where,

ηn+1 = A(Zn)ηn +Bvn, γn = Dk`(Zn)ηn

vn = ∆nγn

zn+1 = f (zn), Zn = [zn,zn, . . .zn]
T

Lemma 22: The system ,described by (4), is mean square
exponentially synchronizing only if, for any arbitrary z0 and
n, there exists a symmetric, positive definite Ps(Zl) such that,

E∆n
0

[
(An +B∆nDn)

T Ps(Zn+1)(An +B∆nDn)
]
< Ps(Zn)

and
γ0 ≤‖ Ps(Zn) ‖≤ γ1 (21)

where, Ai = A(Zi), Di
k` = Dk`(Zi), and

Zn = [zn, . . .zn]
T , zn+1 = f (zn

Finally, the proof of Theorem 17 is completed following the
approach outlined in proof of Theorem 8.
Remark 23: The proof of Lemmas 21 and 22 are similar to
that of the ones for Lemmas 19 and 20. The only difference
is the trajectory for which the Ps matrix is computed is
Zn. It is composed of M copies of zn, which evolves with
f . This reduces the dimention for trajectory computation.
This simplification is possible because for synchronization
we have the special property,

G(Z) = 0, where Z = [z,z, . . .z]T .

The proof of the main theorem on synchronization (i.e.,
Theorem 17) follows along the lines of proof of Theorem 11.
The only difference being the physical measure computation
gets reduced to the reduced order system zn+1 = f (zn).

IV. APPLICATIONS

A. Biological networks

We consider a model of biochemical network involved in
yeast cell glycolysis. The model consists of mass balances
for the proteins and metabolites, with the mass transfer
rates given by fluxes and reaction rate expressions [7]. The
biochemical network is described by following nine state
equation.

ẋ1 = J0− v1 (22)

ẋ2 = v1− v2, v1 = k1x1x8

[
1+
(

x8

Ki

)n]−1

ẋ3 = 2v2− v3− v8, v2 = k2x2

ẋ4 = v3− v4, v4 = k4x4(A− x8)

ẋ5 = v4− v5, v5 = k5x5

ẋ6 = v5− v6− J, v6 = k6x6x9, J = κ(x6− x7)

ẋ7 = φJ− v9, v7 = k7x8

ẋ8 = −2v1 + v3 + v4− v7, v8 = k8x3x9

ẋ9 = v3− v6− v8, v9 = k9x7

v3 =
(kGAPDH+kPGK+x3N1(A− x8)− kGAPDH−kPGK−x4x8x9

kGAPDH−x9 + kPGK+(A− x8)

where, N1 = N− x9. For the parameter values specified in
the Table I, the model exhibit sustained periodic oscillations
with time period of T=0.135 s (refer to Fig. 3). We have used
the parameter values for simulation purposes as prescribed
in [7]. We use Euler method to construct a discrete time
system from the continuous time ode (23) with time step for
the discretization ∆t = 5×10−5. For the robustness analysis



TABLE I
NOMINAL VALUES OF PARAMETERS

Parameter Value Parameter Value Parameter Value
J0 50 k1 550 Ki 1.0
k2 9.8 kGAPDH+ 323.8 kGAPDH− 57823.1
kPGK+ 76411.1 kPGK− 23.7 k4 80
k5 9.7 k6 2000 k7 28
k8 85.7 κ 375 φ 0.1
A 4.0 N 1.0 n 4

of limit cycle oscillating solution, we choose seven different
parameters namely k2,k5,k7,k9,k,k6,k8. The objective is to
determine which of these seven parameter is most critical for
maintaining the stability of limit cycle oscillating solution.
For the purpose of computation, we choose P = 27 repre-
sentative points over one period of the periodic oscillating
solution (Fig. 4). The approximation of the physical measure
supported on the periodic solution is obtained on these P
representative points as shown in Fig. 5. The approximation
of physical measure is used to rank order the seven selected
parameters with their relative degree of stability margin using
formulas (13) and (12). In Fig. 6, we show that plot of
stability margin for the seven parameters. From these plots
we see that while the parameter k6 can tolerate the maximum
amount of uncertainty, the uncertainty allowed in parameter
k2 is the least.
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Fig. 3. Limit cycle oscillation in biochemical network model

B. Robust Synchronization of Non Uniform Kuramoto Oscil-
lators

Here we study the problem of robust synchronization in a
network of Kuramoto oscillators, which in past has been
investigated by many researchers [14], [15].The dynamics
of individual oscillators is assumed to be identical and of
the form:

θ̇i = ω− r sinθi, i = 1, . . . ,N (23)
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Fig. 4. Representative point over one period of oscillating solution
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Fig. 5. Approximation of the physical invariant measure with support on
periodic orbit

where ω = 4π Hz, r = 1, textand N = 5. The coupled
dynamics is described by following equations

θ̇i = ω− r sinθi +
N

∑
j=1

ki j sin(θ j−θi), i = 1, . . . ,N (24)

where ki j = k ji are coupling parameters and are assumed
to be uncertain. In Fig. 8, we show the nominal values
of coupling parameters. Because of the identical nature of
individual oscillator dynamics and vanishing property of the
coupling terms for θi = θ j, the synchronized state of the
network is characterized by the steady state dynamics of the
individual oscillator system. The steady state dynamics of
the individual oscillator system is a periodic orbit. In Fig.
7, we show the periodic solution of the individual oscillator.
For the purpose of computation P = 38 representative points
are chosen on the periodic orbit and are shown in Fig. 7. The
approximation of the physical measure corresponding to the
periodic orbit and its support on the P = 38 representative
points is shown in Fig. 7. The maximum allowable variance
for each of the uncertain link is shown in Fig. 9 and is
calculated using the results of Theorem 10 from our main
results. Comparing Fig. 8 and Fig. 9, we notice that the
link with the smallest nominal value of coupling can tolerate
less amount of uncertainty compared to the link with larger
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Fig. 7. Periodic orbit and physical measure for an individual oscillator.

Fig. 8. Mean Value of coupling shown for different links.

V. CONCLUSIONS

We developed a systematic approach for the robust sta-
bility analysis of nonlinear network systems operating in
nonequilibrium. The framework is used for the identification
of critical interactions in uncertain network system. The
proposed framework is based on combination of tools from
linear robust control theory and ergodic theory of dynamical
systems. Application of the developed framework is demon-
strated on identification of critical parameters responsible for

Fig. 9. Allowable σi j for different links

limit cyclce oscillations in biochemical network involved in
yeast cell glycolysis and robust synchronization in netowork
of non-uniform Kuramoto oscillators.
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