An Approach for Nonlinear Model Extraction from Time-Serie s Data

Gregory Hagen and Umesh Vaidya

Abstract—We provide a numerical approach to estimating to numerically approximate the stochastic dynamical sgste
nonlinear stochastic dynamic models from time-series data (1) based on the empirically obtained Markov matfixIn
After possible dimensional reduction, time-series data @&  gection |V the techniques are illustrated on the estimation

be used to construct an empirical Markov model. Spectral . e . -
analysis of the Markov model is then carried out to detect a nonlinear stochastic differential equation model of eady

the presence of complex limit cycling, almost invariant, ad bi- ~ combustion oscillations.

stable behavior in the model. Model parameters are expresde
as a linear combination of basis functions over the phase spa.  |l. SPECTRAL METHOD FOR ANALYSIS AND COMPARISON

A least squares minimization is used to fit the basis function |, yhis section, we describe spectral methods for the aisalys
coefficients in order to match the spectral properties of the

respective Markov operators. The approach is demonstrated 2nd comparison of the dynamical systems. The material for
on the estimation of a nonlinear stochastic model describip  this section is taken from [2][5][4]. Also, see [3] for an

combustion oscillation data. introduction to these concepts.
Consider the stochastic dynamical system
I. INTRODUCTION
This paper is concerned with reduced order modeling of the % =b(X)+0(X)&, xe X eRY, (1)

dynamical systems exhibiting complex behavior and whose
description is available in the form of time series data. 1r its discrete time equivalent,

many problems of applied interest the system information is o

available in the form of time series data, which is typically Xer1 =T &) 2)
of large dimension. Examples includes problems in turbulenvhere eachx, € X ¢ RY is the state vector andy € U

fluid flows, climate and weather prediction, systems bioJogys sequence of i.i.d. random noise. Associated wifithis
social and behaviorial modeling, cognitive measuremeat, b a stochastic transition functiop(x,A), which gives the
sensing and applications involving large numbers of sensafransition probability to jump from poink € X to setA

and actuators. Reduced order models for all the data drives(X), where %(X) is the Borel sigma algebra of. For
application will help in more accurate analysis, predicfio deterministic dynamics i.e., whefy = 0, we havep(x,A) =

and more precise control. Models from measurement ca§ , (A), where J is the Dirac delta measure. Stochastic
also guide the measurement process, and determine whgansition function can be used to define two linear transfer
where and how it is best to gather additional data, hagperators called as Perron-Frobenius and Koopman operator
itself the potential of enabling more effective measuremeniefined as follows

methodologies. Definition 1 (Perron-Frobenius operator)The Perron-

In the present paper, we provide an approach for estimatifgobenius (P-F) operatoP : .7 (X) — .4 (X) corresponding
nonlinear dynamic models, possibly driven by noise. They p(x,A) is defined by

estimation approach is based on comparing the spectral

properties of the empirically constructed Markov operator Plu](A) :/ p(x, A)du(X). 3)

with the model-based Markov operator. A nonlinear model X

is fit such that its associated Markov operator has similavhere.# (X) is the vector space of all measuresXn

spectral properties as the empirical Terms in the stochaser deterministic dynamics, the P-F operator is given by

tic differential equation model are estimated by a linear - :

combination of basis functions. The coefficients appear iR[H](A) = /)(5T(x) (A)dH(X):/XXA(TX)dH(X):H(Tfl(A))

the numerical approximation of the Markov model, and ' (4)

are fit using least squares minimization. Model validationvhere xa(-) is the indicator function with support o, and

is motivated spectral methods developed in [5] [4] for thd ~%(A) is the pre-image set.

comparison of dynamical systems. Definition 2 (Koopman Operator)lU : €°(X) — €°(X) is
This paper is organized as follows. In section I, we describdefined by

the spectral methods for the analysis and comparison of (UF)(x) = / p(x,dy) f (y) (5)
dynamical systems. In section Il we outline an approach JX

O . . .
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So the P-F operator is used to propagate the sets or tBémilarly the presence of periodic or limit cycling behaviio
measure supported on the sets in the forward direction afidcan be captured by the complex unitary spectrum and the
the Koopman operator is used to propagate functions in backerresponding eigenvectors & Moreover if the Markov
ward direction. Perron-Frobenius and Koopman operaters amatrix P has real eigenvalue close to one then it is the
dual to each other and the duality is expressed using tlredicator for the presence of almost invariant or bistable

following inner product [3] behavior in the dynamical systein For more detail on this
topic refer to [1][2].
(U, )x = (f.PH)x Now we provide a brief overview of some of the key results

Global transport properties of a nonlinear system can H&M [5] and [4] on spectral methods based on Koopman and
very effectively studied using P-F and Koopman operatars. IP-F operator for model comparison. The key idea proposed in
particular, complex behavior such as chaotic attractoritli these paper is that the model comparison involving compari-
cycles, periodic orbits, almost invariant and bistabledwédr ~ SON of time averages or the invariant measures fail to captur
can be easily characterized using eigenvalues and eigenvg@ essential spectral characteristics of the possiblavieh
tors of these operators [2][1][6]. This dynamical analysiér his essential spectral characteristics can be capturtdoin

of a nonlinear systems can be carried out by considerirdifferent ways: either by computing the harmonic averages,
the finite dimensional approximation of the operators. Her@hich is the subject of study in [5], or by computing the
we consider the finite dimensional approximation of the P-gigenmeasure corresponding to the complex unitary spactru

operator. To do this we consider the finite partition of th@f the P-F operator as done in [4]. Both these approaches
state spac« i.e., lead to the same result. An psuedometric between dynamical

systems can be constructed by appropriately chosen déstanc
2 ={Dy,...,Dm} (7)  function between the harmonic averages or the eigenmeasure

such thatD; N D; = 0 for i # | andUM ,D; = X. This finite corresponding to complex unitary eigenvalues. In [5], har-

artition can be used to identify the infinite dimensiona[noniC averages are constructed as follows. For the partitio
P L . Y Z of the phase spack, let xj(x) be the indicator function
measure space to finite dimensional vector sga€e each

: . for the setD;. Harmonic average for a given normalized
box D; can be associated with a numiegrand the measure : 27100 :
. frequency w and correspondingl = € is constructed
U € .#(X) can be approximated as

using Koopman operator as follows

c dp(x)
du(x) =% Hixi(x) . 1 N-1
izi H(Di) Xirw =N 2 AKX (%0)
: - . . K=0
wherexi(x) is the indicator function on sé; and_is the
Lebesgue measure. P-F operator on the finite dimensiorthe system has a periodic orbit of periad, then harmonic
vector spac®™ can be represented by a matBxR™ — R™ averages for allA, except for the one corresponding to

as follows: w* will be zero. This frequencyw can be obtained by
Py . performing the DFT of the signal first. In [4], it is shown
gy = T OIADY 5 5 ®) that
H(Di) . Mw)
Xia(w) = Hj

The resulting matrix is non-negative and becalis®; — X,
Yi1Rj =11ie.,Pis a Markov or a row-stochastic matrix. where ' is the j component of the eigenvector 8fwith

In the present case, the_ entries of the mat?nare COM-  complex unitary eigenvalug = €2 i.e.,

puted from the time-series data. Computationally, several

short term trajectories are used to compute the individual PP=Ap =, md)

entriesRj. The mappingT is used totransport M “initial

conditions” chosen to be uniformly distributed within a seHence instead of using the harmonic averages one can
Di. The entryR; is then approximated by the fraction ofalso use the eigenvector corresponding to complex unitary
initial conditions that are in the boR; after one iterate of eigenvalues in the construction of pseudometric on theespac

the mapping. of dynamical systems.

Important complex dynamical features of the dynamical

systemT can be captured using its Markov matx For I11. NUMERICAL APPROACH FORMODEL
example long term or asymptotic behavior of the dynamical IDENTIFICATION

systemT is captured by the invariant measure or more ] ) )
appropriately physically relevant measure. Finite dinemed Ve outline an approach to numerically approximate the
approximation of the invariant measure or the outer approxftochastic dynamical system (1) based on the empirically
mation to the support of the invariant measure can be obta@ptained Markov matrip.
from the left eigenvector of Markov matrR with eigenvalue Set §
one. i.e.,

UP=1.p aj (x) = k;Gik(X)Ujk(X) ©)



Under certain regularity conditions [3], the evolution bt
density,p under (1) satisfies the Fokker-Planck equation,

0
JZ:L(?X.OXJ ajp) — 210 (bip)

Fp, t>0,xeRY,

at "2,

(10)

We empirically obtainP directly from data by discretizing
the underlying phase spadg¥) to obtain this discrete-space
approximation. The spectrum &f is given by P¥ = YA,
where

V= [VOaV].aVZa te ,Vm] ’ N= diag()\Oa)\la ce 7/\m)- (20)

Let us consider the finite-dimensional (discrete-space) ap/nder suitable conditions there exists a steady distobuti

proximation of .# by discretizing the underlying phase
spaceX with the partition. 2™ following (7). Therefore, the

Vo whereAp=1
Consider a single eigenvectoe R™ with eigenvaluel . We

distributionp is approximated by a finiite-dimensional vectorhave

u(x) € R™ and let

U = diag{u} € R™™ (11)

where diagu} is a diagonal matrix whose entries are the

elements of the vectou. Similarly, the operators are ap-
proximated by their finite-dimensional matrices:

F~%, FER™M

Continuing this way, write the discretized approximatiohs
aj(x) andbj(x), respectively,

aij(x) = Aij(x) € R™, bi(x) = Bi(x) eR™ (12

Similarly we write the discretized differential operators

1 0? ) a
—_ 7 ~DZeRrR™M T oD e R™M 13
2oxax; ISR g FHIE (13)
Next, define the matrices:
D2(U) := [D}U,...,D3U,...,D3U] e ™™ (14)
DY(U) :=[DyU,...,DiU,...,DgU] € R™™Md (15)
D(U) := [D3(U),D}(U)] € R™<(md*+md) (16)
and
[ Agq ] [ Bp ]|
A=| Aj | erR™ B:=| B | eR™,
| Add | | Bd |
C:= [ g } ¢ R(MF+md) (17)

The infinite-dimensional Fokker-Planck operator is approx
mated in finite dimensions by

Fp~=Fu=D(U)C. (18)
We next write (10) in discrete time, with

@ U1 — U
ot ot

where ot is the time step which the time-series data wa

obtained. Substituting this into the left side of (10) résirh
the Markov matrix appearing equation (8),

U1 = W+ OtFu
= [u + otD(U)C]

= Pu. (19)

Pv=[v+8tD(V)C] = Av, (21)

and after rearranging,

22
5t (22)
This can be solved fa€ which will give the functional forms
of b(x) and o(x) appearing in (1). Of course, for a single
eigenvector, there are multiple solutions. We solve (22) fo
multiple eigenpairs; the firdt for example. We have

D(Vo) Wo

C= (23)

D(Vi-1) W1

Again, for k small, there are multiple solutions. We next
restrict C to be a linear combination df basis functions.
Let {¢} be a set of basis functions whegp: RY — R, j =

0,1,2,...,n—1, such as Hermite polynomials. Define the
matrix consisting of these basis functions as column vector
q) = [%7%77%71] eRmxn' (24)

We rewrite (17) in terms of these basis functions. For each
i,] take

Aj = ®aij, ajj €R", (25)
Bi = ®B, BeR", (26)
and
a11 B
ai=| aj |eR¥ B:i=| B |er™
Qdd Bd
ci= { g } € R(¢*+nd), (27)

As in (14-16), define the differential operators restricted
ese basis functions:

D3(U) := [D3,U®,...,DFUD,...,D3Ud] € R™ "
(28)

DL(U):=[DUD,...,DiUD,..., DgUd] € R™Nd  (29)

Do(U) := [D3(U),Dh(U)] € R™ (nd*+nd) (30)



Rewrite equation (23) as Projected Phase Space

Do (Vo) Wo 8ot
Dqg)kC: c= :\/\4(, (31) 60F
Do (Vic-1) W1 aof -

whereDo € kax(ndernd)7 ce R(nd2+nd)’ W € RKM g 20r

We solve forc through least squares: g °

-20

min [DoC—W] " [Doxc— W], (32) ~a0f

which results in |
-80r . ; ; ;

« —1 - - -

c— [Dqg,chb,k} Dq>,kV\4<- (33) 150 100 F?gM . 0 50

We would like to compare the eigenfunctions of the approx-
imated model with the eigenfunctions appearing in equatiofig. 1. The phase space of the coefficients resulting fronjeption of
(20). We compute the approximate Markov matrix: the data onto the first two POD modes

d d
D(c) =3 Dizjdiag{qbaij}+_21Dﬁdiag{¢ﬁi}. (34) B. Empirical Markov Model
i=

hi=1 A Markov model was computed from this time series data

The approximate Markov matrix is then through equation (8). The result is a non-reversible Markov
. . model with many eigenvalues, as shown in Figure 2. Note
P=1+4tD(c). (35) that the eigenvalues can be collapsed toward the origin

by taking powers ofP. The eigenvector corresponding to
the unit eigenvalue, shown in Figure 3 confirms the steady
distribution of the trajectories.

We then compare the spectrumidfc) with the spectrum in
(20).

IV. APPLICATION EXAMPLE

In this section, we construct a reduced order model describ- 7 -
ing nonlinear oscillations of flame dynamics. High-speed
video data was obtained from the UTRC combustion rig de-
scribed in [7], and proper orthogonal decomposition (POD)
was used for dimension-reduction. We briefly describe how
the Markov matrix was empirically constructed.

Fig. 2. The eigenvalues of the Markov model.

A. Data Reduction using POD Modes

From the image data, the mean field was removed from each magnitude of first eigenvector
of the images and the POD modes were computed. It was
found that the first two POD modes account for more than
80% of the energy found in the data set. Hence, we consider
a two dimensional state spages R?. The two-dimensional
time series is constructed via

X1,k <(R|-ayk>
= ? = ~ 36
X [ X k } { (@, ¥) } (36)
whereyi denotes thek-th image with the mean field sub- -20

tracted.

The time series of POD coefficients, given By}, were
obtained from projecting the original data onto the POD \
modes. The resulting phase space (plottag vs. Xz, for -150  -100 50 0 50
k=1,...,N) is shown in figure (1). The phase portrait shows

a noisy limit cycle where the density of points is clearly Fig. 3. The first eigenvector shows the invariant distrituti
non-uniform. The rotational speed of the limit-cycle varie

depending on the state. This indicates that a nonlinear modgnhe phase of the eigenvector associated with the 2nd eigen-
is necessary to match this time series. value is shown in Figure 4. It reveals the oscillatory nature




of the dynamics. !
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Fig. 5. The estimated (x1,x2) appearing in (37).

C. Nonlinear Model Extraction

b,

In this section we develop a second order stochastic differ-

ential equation model of the form 60 4
. 400 2
X1 = b1(x1,%2) + 01161
v 0
X2 = ba(x1,%2) + 022&2 (37) = L
-2
0
to capture the essential dynamical behavior of the reduced ¥ ‘g i
set of data from the previous section. 20 "v .
Before going into the details of the model we would like a0
to summarize some of the key dynamical features of the 8
reduced set of data as captured by phase portrait in Figure -150  -100  -50 0 50
1.
« Dynamics consist of stable limit cycle where the motion Fig. 6. The estimateth;(x(,xz) appearing in (37).

along the limit cycle is in clockwise direction.

« The limit cycle is parameterized by angl Speed h . . . distributi hich closel
along the limit cycle is nonuniform, speed of the limit "€ approximate invariant distribution which closely mese

cycle is less fog e [0, —Z] compared to other value of bles that shown in Figure 3. Similarly, the second complex-
0 $2 valued approximate eigenfunction is shown in Figure 8 which

closely resembles the second eigenfunction shown in Figure

we wquld like the_model to capture this esse_znt_ial dynamicq{. The match in the eigenfunction indicates a good match
behavior along with the amplitude of the limit cycle andbetween the model and the data in terms of long term

the average speed or the frequency of the limit cycle. W%ynamics.

choose a reduced set of eigenvalues closest to the uni circ
to approximate the Markov model. Due to the cyclic nature abs evecl

of the data, we use basis functioéhsin radial coordinates, 7% )
0.25
0.2
0.15
% 0.1

expressed as separable functions iand 6
0

Bo(Xa, %) = r¢

@ 2j (X1, %2) = rkcogj6)
B2j+1(X1, %) = r¥sin(j0),
k=0,1,2,..., j=0,1,2,...

where

X1 =rcosf -150  -100  -50 0 50

Xo =rsinf
) . . . Fig. 7. The approximate first eigenvector of the estimatedkilamatrix
The least squares fit (33) resulted in basis function coef-

ficients producing the terms appearing on the right hand

side of (37). The function®; (x1,%2) and by(x1,%2) appear V. CONCLUSION AND DISCUSSION
in Figures 5 and 6, respectively. The resulting function¥his paper present results on the construction of reduced
011(X1,X2) and 022(X1,X%2) are qualitatively similar. order model from a time series data obtained from a ex-

The resulting approximate eigenfunctions of the estimatgueriments. After possible dimensionality reduction, a-ow
Markov matrix are shown in Figure 7 and 8. Figure 7 showdimensional phase space is identified. We construct a non-



-2

i ‘
-1561006-50 0 50 -156106-50 0 50

Fig. 8. The approximate magnitude(left) and phase(rightthe second
eigenvector of the estimated Markov matrix

linear stochastic differential equation model on the lower
dimensional phase space. Terms on the right hand side of
the differential equation model are approximated by a linea
combination of suitable basis functions. The coefficiemés a
estimated through numerical approximation of the Markov
operator, and a least squares fit of basis function coeffi-
cients. Model validation is conducted using spectral meth-
ods developed in [5] [4] for the comparison of dynamical
systems. Parameters of the model are identified such that
the time series data generated by the model and from the
experiment are close under the pseudometric provided by
the spectral method. The proposed approach for reduced
order modeling is applied to estimating a nonlinear model
describing unsteady combustion dynamics. Future research
efforts may focus on determining optimal basis function for
the approximation, including forcing terms to the modelj an
applying the techniques to identigy hidden Markov models.
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