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Abstract— We provide a numerical approach to estimating
nonlinear stochastic dynamic models from time-series data.
After possible dimensional reduction, time-series data can
be used to construct an empirical Markov model. Spectral
analysis of the Markov model is then carried out to detect
the presence of complex limit cycling, almost invariant, and bi-
stable behavior in the model. Model parameters are expressed
as a linear combination of basis functions over the phase space.
A least squares minimization is used to fit the basis function
coefficients in order to match the spectral properties of the
respective Markov operators. The approach is demonstrated
on the estimation of a nonlinear stochastic model describing
combustion oscillation data.

I. I NTRODUCTION

This paper is concerned with reduced order modeling of the
dynamical systems exhibiting complex behavior and whose
description is available in the form of time series data. In
many problems of applied interest the system information is
available in the form of time series data, which is typically
of large dimension. Examples includes problems in turbulent
fluid flows, climate and weather prediction, systems biology,
social and behaviorial modeling, cognitive measurement, bio-
sensing and applications involving large numbers of sensors
and actuators. Reduced order models for all the data driven
application will help in more accurate analysis, prediction,
and more precise control. Models from measurement can
also guide the measurement process, and determine when,
where and how it is best to gather additional data, has
itself the potential of enabling more effective measurement
methodologies.
In the present paper, we provide an approach for estimating
nonlinear dynamic models, possibly driven by noise. The
estimation approach is based on comparing the spectral
properties of the empirically constructed Markov operator
with the model-based Markov operator. A nonlinear model
is fit such that its associated Markov operator has similar
spectral properties as the empirical Terms in the stochas-
tic differential equation model are estimated by a linear
combination of basis functions. The coefficients appear in
the numerical approximation of the Markov model, and
are fit using least squares minimization. Model validation
is motivated spectral methods developed in [5] [4] for the
comparison of dynamical systems.
This paper is organized as follows. In section II, we describe
the spectral methods for the analysis and comparison of
dynamical systems. In section III we outline an approach
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to numerically approximate the stochastic dynamical system
(1) based on the empirically obtained Markov matrixP. In
section IV the techniques are illustrated on the estimationof
a nonlinear stochastic differential equation model of unsteady
combustion oscillations.

II. SPECTRAL METHOD FOR ANALYSIS AND COMPARISON

In this section, we describe spectral methods for the analysis
and comparison of the dynamical systems. The material for
this section is taken from [2][5][4]. Also, see [3] for an
introduction to these concepts.
Consider the stochastic dynamical system

∂x
∂ t

= b(x)+ σ(x)ξ , x∈ X ∈ R
d
, (1)

or its discrete time equivalent,

xk+1 = T(xk,ξk) (2)

where eachxk ∈ X ⊂ R
d is the state vector andξk ∈ U

is sequence of i.i.d. random noise. Associated withT is
a stochastic transition functionp(x,A), which gives the
transition probability to jump from pointx ∈ X to set A ∈
B(X), whereB(X) is the Borel sigma algebra ofX. For
deterministic dynamics i.e., whenξn = 0, we havep(x,A) =
δT(x)(A), where δ is the Dirac delta measure. Stochastic
transition function can be used to define two linear transfer
operators called as Perron-Frobenius and Koopman operator
defined as follows
Definition 1 (Perron-Frobenius operator):The Perron-
Frobenius (P-F) operatorP : M (X)→M (X) corresponding
to p(x,A) is defined by

P[µ ](A) =

∫

X
p(x,A)dµ(x). (3)

whereM (X) is the vector space of all measures onX.
For deterministic dynamics, the P-F operator is given by

P[µ ](A)=
∫

X
δT(x)(A) dµ(x)=

∫

X
χA(Tx) dµ(x)= µ(T−1(A))

(4)
whereχA(·) is the indicator function with support onA, and
T−1(A) is the pre-image set.
Definition 2 (Koopman Operator):U : C 0(X) → C 0(X) is
defined by

(U f )(x) =

∫

X
p(x,dy) f (y) (5)

whereC 0(X) is the space of all continuous function.
For deterministic dynamics Koopman operator is given by

(U f )(x) = f (T(x)) (6)



So the P-F operator is used to propagate the sets or the
measure supported on the sets in the forward direction and
the Koopman operator is used to propagate functions in back-
ward direction. Perron-Frobenius and Koopman operators are
dual to each other and the duality is expressed using the
following inner product [3]

〈U f ,µ〉X = 〈 f ,Pµ〉X

Global transport properties of a nonlinear system can be
very effectively studied using P-F and Koopman operators. In
particular, complex behavior such as chaotic attractor, limit
cycles, periodic orbits, almost invariant and bistable behavior
can be easily characterized using eigenvalues and eigenvec-
tors of these operators [2][1][6]. This dynamical analysis
of a nonlinear systems can be carried out by considering
the finite dimensional approximation of the operators. Here
we consider the finite dimensional approximation of the P-F
operator. To do this we consider the finite partition of the
state spaceX i.e.,

X = {D1, ...,Dm} (7)

such thatDi ∩D j = /0 for i 6= j and∪m
i=1Di = X. This finite

partition can be used to identify the infinite dimensional
measure space to finite dimensional vector spaceR

m, each
box Di can be associated with a numberµi and the measure
µ ∈ M (X) can be approximated as

dµ(x) =
m

∑
i=1

µiχi(x)
dµL(x)
µL(Di)

whereχi(x) is the indicator function on setDi andµL is the
Lebesgue measure. P-F operator on the finite dimensional
vector spaceRm can be represented by a matrixP : R

m→R
m

as follows:

Pi j =
µL(T−1(D j)∩Di)

µL(Di)
, i, j = 1, ...,m (8)

The resulting matrix is non-negative and becauseT : Di →X,
∑m

j=1Pi j = 1 i.e., P is a Markov or a row-stochastic matrix.
In the present case, the entries of the matrixP are com-
puted from the time-series data. Computationally, several
short term trajectories are used to compute the individual
entriesPi j . The mappingT is used totransport M “initial
conditions” chosen to be uniformly distributed within a set
Di . The entryPi j is then approximated by the fraction of
initial conditions that are in the boxD j after one iterate of
the mapping.
Important complex dynamical features of the dynamical
systemT can be captured using its Markov matrixP. For
example long term or asymptotic behavior of the dynamical
system T is captured by the invariant measure or more
appropriately physically relevant measure. Finite dimensional
approximation of the invariant measure or the outer approxi-
mation to the support of the invariant measure can be obtain
from the left eigenvector of Markov matrixP with eigenvalue
one. i.e.,

µP = 1 ·µ

Similarly the presence of periodic or limit cycling behavior in
T can be captured by the complex unitary spectrum and the
corresponding eigenvectors ofP. Moreover if the Markov
matrix P has real eigenvalue close to one then it is the
indicator for the presence of almost invariant or bistable
behavior in the dynamical systemT. For more detail on this
topic refer to [1][2].
Now we provide a brief overview of some of the key results
from [5] and [4] on spectral methods based on Koopman and
P-F operator for model comparison. The key idea proposed in
these paper is that the model comparison involving compari-
son of time averages or the invariant measures fail to capture
the essential spectral characteristics of the possible behavior.
This essential spectral characteristics can be captured intwo
different ways: either by computing the harmonic averages,
which is the subject of study in [5], or by computing the
eigenmeasure corresponding to the complex unitary spectrum
of the P-F operator as done in [4]. Both these approaches
lead to the same result. An psuedometric between dynamical
systems can be constructed by appropriately chosen distance
function between the harmonic averages or the eigenmeasure
corresponding to complex unitary eigenvalues. In [5], har-
monic averages are constructed as follows. For the partition
X of the phase spaceX, let χ j(x) be the indicator function
for the setD j . Harmonic average for a given normalized
frequencyω and correspondingλ = ei2πω is constructed
using Koopman operator as follows

χ∗
j ,λ (ω) =

1
N

N−1

∑
k=0

λ k(Ukχ j)(x0)

If the system has a periodic orbit of periodω∗, then harmonic
averages for allλ , except for the one corresponding to
ω∗ will be zero. This frequencyω can be obtained by
performing the DFT of the signal first. In [4], it is shown
that

χ∗
j ,λ (ω) = µλ (ω)

j

whereµλ
j is the j component of the eigenvector ofP with

complex unitary eigenvalueλ = ei2πω i.e.,

µλ P = λ µ µλ = (µλ
1 , ...,µλ

m)

Hence instead of using the harmonic averages one can
also use the eigenvector corresponding to complex unitary
eigenvalues in the construction of pseudometric on the space
of dynamical systems.

III. N UMERICAL APPROACH FORMODEL

IDENTIFICATION

We outline an approach to numerically approximate the
stochastic dynamical system (1) based on the empirically
obtained Markov matrixP.
Set

ai j (x) =
d

∑
k=1

σik(x)σ jk(x) (9)



Under certain regularity conditions [3], the evolution of the
density,ρ under (1) satisfies the Fokker-Planck equation,

∂ρ
∂ t

=
1
2

d

∑
i, j=1

∂ 2

∂xi∂x j
(ai j ρ)−

d

∑
i=1

∂
∂xi

(biρ)

:= Fρ , t > 0,x∈ R
d
. (10)

Let us consider the finite-dimensional (discrete-space) ap-
proximation of F by discretizing the underlying phase
spaceX with the partitionX following (7). Therefore, the
distributionρ is approximated by a finiite-dimensional vector
u(x) ∈ R

m and let

U = diag{u} ∈ R
m×m

, (11)

where diag{u} is a diagonal matrix whose entries are the
elements of the vectoru. Similarly, the operators are ap-
proximated by their finite-dimensional matrices:

F ≈ F , F ∈ R
m×m

.

Continuing this way, write the discretized approximationsof
ai j(x) andbi(x), respectively,

ai j (x) ≈ Ai j (x) ∈ R
m
, bi(x) ≈ Bi(x) ∈ R

m
. (12)

Similarly we write the discretized differential operators

1
2

∂ 2

∂xi∂x j
≈ D2

i j ∈ R
m×m

,
∂

∂xi
≈ Di ∈ R

m×m
. (13)

Next, define the matrices:

D2(U) :=
[

D2
11U, . . . ,D2

i jU, . . . ,D2
ddU

]

∈ R
m×md2

(14)

D1(U) := [D1U, . . . ,DiU, . . . ,DdU ] ∈ R
m×md (15)

D(U) :=
[

D2(U),D1(U)
]

∈ R
m×(md2+md) (16)

and

A :=

















A11
...

Ai j
...

Add

















∈ R
md2

, B :=

















B1
...

B j
...

Bd

















∈ R
md

,

C :=

[

A
B

]

∈ R
(md2+md)

. (17)

The infinite-dimensional Fokker-Planck operator is approxi-
mated in finite dimensions by

Fρ ≈ Fu = D(U)C. (18)

We next write (10) in discrete time, with

∂u
∂ t

≈
ut+1−ut

δ t
,

where δ t is the time step which the time-series data was
obtained. Substituting this into the left side of (10) results in
the Markov matrix appearing equation (8),

ut+1 = ut + δ tFut

= [ut + δ tD(U)C]

:= Put . (19)

We empirically obtainP directly from data by discretizing
the underlying phase space (R

d) to obtain this discrete-space
approximation. The spectrum ofP is given byPV = V Λ,
where

V = [v0,v1,v2, . . . ,vm] , Λ = diag(λ0,λ1, . . . ,λm). (20)

Under suitable conditions there exists a steady distribution
v0 whereλ0 = 1.
Consider a single eigenvectorv∈ R

m with eigenvalueλ . We
have

Pv= [v+ δ tD(V)C] = λv, (21)

and after rearranging,

D(V)C =
λ −1

δ t
v := w. (22)

This can be solved forC which will give the functional forms
of b(x) and σ(x) appearing in (1). Of course, for a single
eigenvector, there are multiple solutions. We solve (22) for
multiple eigenpairs; the firstk for example. We have







D(V0)
...

D(Vk−1)






C =







w0
...

wk−1






. (23)

Again, for k small, there are multiple solutions. We next
restrict C to be a linear combination ofk basis functions.
Let {φ j} be a set of basis functions whereφ j : R

d → R, j =
0,1,2, . . . ,n− 1, such as Hermite polynomials. Define the
matrix consisting of these basis functions as column vectors:

Φ := [φ0,φ1, . . . ,φn−1] ∈ R
m×n

. (24)

We rewrite (17) in terms of these basis functions. For each
i, j take

Ai j = Φαi j , αi j ∈ R
n
, (25)

Bi = Φβi , βi ∈ R
n
, (26)

and

α :=

















α11
...

αi j
...

αdd

















∈ R
nd2

, β :=

















β1
...

β j
...

βd

















∈ R
nd

,

c :=

[

α
β

]

∈ R
(nd2+nd)

. (27)

As in (14-16), define the differential operators restrictedto
these basis functions:

D2
Φ(U) :=

[

D2
11UΦ, . . . ,D2

i jUΦ, . . . ,D2
ddUΦ

]

∈ R
m×nd2

(28)

D1
Φ(U) := [D1UΦ, . . . ,DiUΦ, . . . ,DdUΦ] ∈ R

m×nd (29)

DΦ(U) :=
[

D2
Φ(U),D1

Φ(U)
]

∈ R
m×(nd2+nd)

. (30)



Rewrite equation (23) as

DΦ,kc :=







DΦ(V0)
...

DΦ(Vk−1)






c =







w0
...

wk−1






:= Wk, (31)

whereDΦ,k ∈ R
km×(nd2+nd)

, c∈ R
(nd2+nd)

, Wk ∈ R
km.

We solve forc through least squares:

min
c

[

DΦ,kc−Wk
]∗ [

DΦ,kc−Wk
]

, (32)

which results in

c =
[

D∗
Φ,kDΦ,k

]−1
D∗

Φ,kWk. (33)

We would like to compare the eigenfunctions of the approx-
imated model with the eigenfunctions appearing in equation
(20). We compute the approximate Markov matrix:

D̂(c) :=
d

∑
i, j=1

D2
i j diag{Φαi j }+

d

∑
i=1

D1
i j diag{Φβi}. (34)

The approximate Markov matrix is then

P̂ = I + δ tD̂(c). (35)

We then compare the spectrum ofD̂(c) with the spectrum in
(20).

IV. A PPLICATION EXAMPLE

In this section, we construct a reduced order model describ-
ing nonlinear oscillations of flame dynamics. High-speed
video data was obtained from the UTRC combustion rig de-
scribed in [7], and proper orthogonal decomposition (POD)
was used for dimension-reduction. We briefly describe how
the Markov matrix was empirically constructed.

A. Data Reduction using POD Modes

From the image data, the mean field was removed from each
of the images and the POD modes were computed. It was
found that the first two POD modes account for more than
80% of the energy found in the data set. Hence, we consider
a two dimensional state spacex∈ R

2. The two-dimensional
time series is constructed via

xk =

[

x1,k

x2,k

]

=

[

〈φ1, ỹk〉
〈φ2, ỹk〉

]

(36)

where ỹk denotes thek-th image with the mean field sub-
tracted.
The time series of POD coefficients, given by{xk}, were
obtained from projecting the original data onto the POD
modes. The resulting phase space (plottingx1,k vs. x2,k, for
k= 1, . . . ,N) is shown in figure (1). The phase portrait shows
a noisy limit cycle where the density of points is clearly
non-uniform. The rotational speed of the limit-cycle varies
depending on the state. This indicates that a nonlinear model
is necessary to match this time series.
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Fig. 1. The phase space of the coefficients resulting from projection of
the data onto the first two POD modes

B. Empirical Markov Model

A Markov model was computed from this time series data
through equation (8). The result is a non-reversible Markov
model with many eigenvalues, as shown in Figure 2. Note
that the eigenvalues can be collapsed toward the origin
by taking powers ofP. The eigenvector corresponding to
the unit eigenvalue, shown in Figure 3 confirms the steady
distribution of the trajectories.
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Fig. 2. The eigenvalues of the Markov model.
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Fig. 3. The first eigenvector shows the invariant distribution

The phase of the eigenvector associated with the 2nd eigen-
value is shown in Figure 4. It reveals the oscillatory nature



of the dynamics.
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Fig. 4. Magnitude(left) and phase(right) of the second eigenvector

C. Nonlinear Model Extraction

In this section we develop a second order stochastic differ-
ential equation model of the form

ẋ1 = b1(x1,x2)+ σ11ξ1

ẋ2 = b2(x1,x2)+ σ22ξ2 (37)

to capture the essential dynamical behavior of the reduced
set of data from the previous section.
Before going into the details of the model we would like
to summarize some of the key dynamical features of the
reduced set of data as captured by phase portrait in Figure
1.

• Dynamics consist of stable limit cycle where the motion
along the limit cycle is in clockwise direction.

• The limit cycle is parameterized by angleθ . Speed
along the limit cycle is nonuniform, speed of the limit
cycle is less forθ ∈ [0,− π

2 ] compared to other value of
θ .

We would like the model to capture this essential dynamical
behavior along with the amplitude of the limit cycle and
the average speed or the frequency of the limit cycle. We
choose a reduced set of eigenvalues closest to the unit circle
to approximate the Markov model. Due to the cyclic nature
of the data, we use basis functionsΦ in radial coordinates,
expressed as separable functions inr andθ

φk,0(x1,x2) = rk

φk,2 j(x1,x2) = rk cos( jθ )

φk,2 j+1(x1,x2) = rk sin( jθ ),

k = 0,1,2, . . . , j = 0,1,2, . . .

where

x1 = r cosθ
x2 = r sinθ

The least squares fit (33) resulted in basis function coef-
ficients producing the terms appearing on the right hand
side of (37). The functionsb1(x1,x2) and b2(x1,x2) appear
in Figures 5 and 6, respectively. The resulting functions
σ11(x1,x2) andσ22(x1,x2) are qualitatively similar.
The resulting approximate eigenfunctions of the estimated
Markov matrix are shown in Figure 7 and 8. Figure 7 shows
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Fig. 5. The estimatedb1(x1,x2) appearing in (37).
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Fig. 6. The estimatedb2(x1,x2) appearing in (37).

the approximate invariant distribution which closely resem-
bles that shown in Figure 3. Similarly, the second complex-
valued approximate eigenfunction is shown in Figure 8 which
closely resembles the second eigenfunction shown in Figure
4. The match in the eigenfunction indicates a good match
between the model and the data in terms of long term
dynamics.
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Fig. 7. The approximate first eigenvector of the estimated Markov matrix

V. CONCLUSION AND DISCUSSION

This paper present results on the construction of reduced
order model from a time series data obtained from a ex-
periments. After possible dimensionality reduction, a low-
dimensional phase space is identified. We construct a non-
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Fig. 8. The approximate magnitude(left) and phase(right) of the second
eigenvector of the estimated Markov matrix

linear stochastic differential equation model on the lower
dimensional phase space. Terms on the right hand side of
the differential equation model are approximated by a linear
combination of suitable basis functions. The coefficients are
estimated through numerical approximation of the Markov
operator, and a least squares fit of basis function coeffi-
cients. Model validation is conducted using spectral meth-
ods developed in [5] [4] for the comparison of dynamical
systems. Parameters of the model are identified such that
the time series data generated by the model and from the
experiment are close under the pseudometric provided by
the spectral method. The proposed approach for reduced
order modeling is applied to estimating a nonlinear model
describing unsteady combustion dynamics. Future research
efforts may focus on determining optimal basis function for
the approximation, including forcing terms to the model, and
applying the techniques to identigy hidden Markov models.
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