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Abstract— In our recent paper [1], Lyapunov measure is intro-
duced as a new tool for verifying almost everywhere stability of
an invariant set in a nonlinear dynamical system or continuous
mapping. It is shown that for almost everywhere stable system
explicit formula for the Lyapunov measure can be obtained as
a infinite series or as a resolvent of stochastic linear operator.
This paper focus on the computation aspects of the Lyapunov
measure. Methods for computing these Lyapunov measures are
presented based upon set-oriented numerical approaches, which
are used for the finite dimensional approximation of the linear
operator. Stability results for the finite dimensional approxima-
tion of the linear operator are presented. The stability in finite
dimensional space results in further weaker notion of stability
which in this paper is referred to as coarse stability.

I. INTRODUCTION

In nonlinear dynamical systems Lyapunov function based
methods play a central role in carrying out stability analysis
and control synthesis. However as opposed to linear systems
there are very few computational algorithm [2] to construct
these functions in general nonlinear systems. This forms an
important barrier for the wide spread use of Lyapunov based
methods in nonlinear system theory. This paper is an effort
towards overcoming this barrier.

In [3], Rantzer’s introduced a weaker notion of almost
everywhere stability. Density function is proposed for the
verification of almost everywhere stability. Existence of
density function guarantee global attractive property of the
equilibrium solution from almost every with respect to
Lebesgue measure initial condition in the phase space. This
density function is shown to be dual to the Lyapunov
function. In our paper [1], Lyapunov measure is proposed
for verifying almost everywhere stability of an invariant set
for dynamical systems or continuous mapping. Lyapunov
measure is also shown to be dual to Lyapunov function. This
duality between Lyapunov function and Lyapunov measure
is shown to be connected to the dual nature of two stochastic
linear operators called as Koopman and Frobenius-Perron (P-
F) operators [4]. For stable and almost everywhere stable
system, explicit formulas for the Lyapunov function and
Lyapunov measure were obtained in terms of resolvent of
Koopman and Frobenius-Perron operator respectively.

Koopman and Frobenius-Perron operators are used in the
study of transport properties of ODE, dynamical systems
or continuous mapping. While dynamical system describe
the evolution of single trajectory, Koopman and Frobenius-
Perron operators are used to study the evolution of ensembles
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of trajectories. Most recently there has been a significant
interest in the applied dynamical system community to de-
velop a computational tool for the study of global dynamics
using these operators [5]. In particular set-oriented numerical
methods have recently been used to approximate the infinite-
dimensional stochastic linear operator using their finite-
dimensional counterpart [6]. These tools have been used in
the study of approximation and visualization of complex
behavior and invariant sets [5], [7], for transport problem
in celestial mechanics and chemistry [8], [9] and for the
comparison of complex behavior [10], [11].

Almost everywhere stability results for the infinite dimen-
sional Frobenius Perron operator in terms of existence of
Lyapunov measure are proved in [1]. In this paper we present
the stability result for the finite dimensional approximation
of the infinite dimensional Frobenius Perron operator. The
result are motivated from the computation view in mind.
Interestingly the stability in finite dimensional case result in
further weaker notion of almost everywhere stability which
in this paper is referred to as coarse stability. The explicit
formula for the Lyapunov measure in the infinite dimensional
case provides us with various methods for the computa-
tion of Lyapunov measure in finite dimensional space. For
the computation of the finite dimensional approximation
of the Lyapunov measure we used set oriented numerical
approaches developed in ([5], [6])

The outline of this paper is as follows. In Section II,
we summarize some of the key stability result from [1]
for the infinite dimensional P-F operator. In Sections III
we present set-oriented numerical methods for the finite
dimensional approximation of the infinite dimensional P-F
operator. In section IV, we prove result on the coarse stability
in finite dimensional case and give different formulas for
the computation of Lyapunov measure in finite dimensional
case. Examples are presented in section V and conclusion
and discussion follows in section VI

II. STABILITY IN INFINITE DIMENSION

In this paper, discrete dynamical systems or mappings of
the form

xn+1 = T (xn) (1)

are considered. T : X → X , where X ⊂ R
n is a compact set.

B(X) denotes the Borel σ -algebra on X and M (X) the
vector space of bounded real valued measures on B(X). The
mapping T is assumed to be continuous and non-singular.
The mapping T is said to be non-singular with respect to
measure µ ∈ M (X) if µ(T−1B) = 0 for all B ∈ B(X) such
that µ(B) = 0. The stochastic P-F operator for a mapping
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T : X → X is given by

P[µ](A) = µ(T−1(A)), (2)

where µ ∈M (X) and A ∈B(X). The invariant measure are
the fixed points of the P-F operator P that are additionally
probability measures. A set A ⊂ X is said to be invariant for
the dynamical system T if T (A) = A. We use following two
definitions for the stability of the invariant set A

Definition 1 (Almost everywhere (a.e.) stable): An
invariant set A for the dynamical system T : X → X is said
to be stable almost everywhere (a.e.) with respect to finite
measure m ∈ M (Ac) if

m{x ∈ Ac : ω(x) /∈ A} = 0 (3)
where ω(x) is the ω− limit set of A [12].

Definition 2 (a.e. stable with geometric decay): The in-
variant set A ⊂ X for the dynamical system T : X → X is
said to be stable almost everywhere with geometric decay
w.r.t. to a finite measure m ∈ M (Ac) if given ε > 0, there
exists K(ε) < ∞ and β < 1 such that

m{x ∈ Ac : T n(x) ∈ B} < Kβ n ∀ n ≥ 0 (4)

for all sets B ∈ B(X \U(ε)), where U(ε) is the ε neighbor-
hood of the invariant set A for ε > 0.
It can be shown that if A is an invariant set for the dynamical
system T , then the P-F operator associated with T admits
following lower triangular decomposition [1].

P =
(

P0 0
× P1

)
(5)

where P0 : M (A) → M (A) is the Markov operator and
P1 : M (Ac) → M (Ac) is the sub-Markov operator. Using
this decomposition, we give following definition of Lyapunov
measure in terms of sub-Markov operator P1.

Definition 3 (Lyapunov measure): is any non-negative
measure µ̄ ∈ M (Ac), which is finite on B(X \U(ε)) and
satisfies

P1µ̄(B) < αµ̄(B), (6)

for every set B ⊂ B(Ac) with µ̄(B) > 0 and α ≤ 1 is some
positive constant.
Now we state the main result on almost everywhere stability
of the invariant set A in terms of existence of Lyapunov
measure.

Theorem 4: Consider T : X → X in Eq. (1) with an
invariant set A ⊂ X and Ac = X \A. Suppose there exists a
Lyapunov measure µ̄ with α = 1(α < 1), then the invariant
set A is almost everywhere stable (with geometric decay)
w.r.t. to any absolutely continuous measure m ≺ µ̄ .
For proof refer [1]. This in brief summarize the stability
result for the infinite dimensional P-F operator as appear in
[1]. In the remaining sections, we study how these result can
be implemented in the finite dimensional approximation of
the P-F operator.

Fig. 1. (a) Eigenvalues and (b) the invariant measure of the discretized
P-F matrix for the logistic map

III. DISCRETIZATION OF THE P-F OPERATOR

In order to obtain a finite-dimensional (discrete) approxi-
mation of the continuous P-F operator, one considers a finite
partition of the phase space X , denoted as

XL
.= {D1, · · · ,DL}, (7)

where ∪ jD j = X . These partitions can be constructed by
taking quantization for states in X . Instead of a Borel σ -
algebra, consider now a σ -algebra of the all possible subsets
of XL. A real-valued measure µ j is defined by ascribing
to each element D j a real number. Thus, one identifies
the associated measure space with a finite-dimensional real
vector space R

L. In particular for µ = (µ1, ...,µL)∈R
L define

a measure on X as

dµ(x) =
L

∑
i=1

µiκi(x)
dm(x)
m(Di)

(8)

where m is the Lebesgue measure and κi denotes the in-
dicator function with support on set Di. The discrete P-F
approximation arises as a matrix on this “measure space”
R

L and is given by

Pi j =
m(T−1(D j)∩Di)

m(Di)
, (9)

m being the Lebesgue measure. The resulting matrix is non-
negative and because T : Di → X , ∑L

j=1 Pi j = 1 i.e., P is a
Markov or a row-stochastic matrix.

The finite-dimensional Markov matrix P is used to nu-
merically study the approximate asymptotic dynamics of the
Dynamical system T ; cf., [13], [5]. In particular, suppose
µ ≥ 0 is an invariant probability measure (vector), i.e.,

Pµ = 1 ·µ, (10)

such that ∑ µi = 1 then the support of µ gives the approxi-
mation of the attractor and µi = µ(Di) gives the “weight” of
the component Di in attractor A [14].

As an example, Figure 1 depicts the spectrum of the P-
F operator and the invariant measure for the logistic map
T (x;λ ) = λx− x3, where λ = 3

2

√
3 + 10−2. The support of

the invariant measure captures the the chaotic attractor of the
logistic map.
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Fig. 2. A schematic of the three sets A ⊂ X0 ⊂U : A denotes the attractor
set, X0 is the support of its invariant measure approximation, and U is some
neighborhood. The finite partition is shown as the rectangular grid in the
background.

IV. STABILITY IN FINITE-DIMENSION

In this section, discretization methods are used to approx-
imate the Lyapunov measure. The existence of an approxi-
mation is related to yet weaker notions of stability, termed
as coarse stability.

A. Matrix decomposition

We begin by presenting a decomposition result for the
approximation P corresponding to a finite partition. It is
assumed that an approximation µ0, to the physical measure
µ of an attractor set A⊂X , has been computed by evaluating
a fixed-point the matrix P. An indexing is chosen such that
the two non-empty complementary partitions

X0 = {D1, ...,DK}, X1 = {DK+1, ...,DL} (11)

with domains X0 = ∪K
j=1D j and X1 = ∪L

j=K+1D j distinguish
the approximation of the attractor set from its complement
set respectively. In particular, A ⊂ X0, µ0 is supported and
non-zero on X0, and one is interested in stability w.r.t the
initial conditions in the complement X1. For an attractor A
with a physical measure defined w.r.t a neighborhood U ⊃ A,
such sets exist for a sufficiently fine partition such that A ⊂
X0 ⊂U ; cf., Figure 2. The following Lemma summarizes the
matrix decomposition result.

Lemma 5: Let P denote the Markov matrix for the map-
ping T in Eq. (1) defined w.r.t the finite partition X in
Eq. (7). Let M ∼= R

L denote the associated measure space
and µ denote a given invariant vector of P. Suppose X0 and
X1 are the two non-empty components as in Eq. (11) defined
w.r.t µ such that µ > 0 on X0; µi > 0 iff Di ∈X0. Let M0

∼=
R

K and M1
∼= R

L−K be the measure spaces associated with
X0 and X1 respectively. Then for the splitting M = M0⊕M1,
the P matrix has a lower triangular representation

P =
[

P0 0
× P1

]
(12)

where P0 : M0 → M0 is the Markov matrix with row sum
equal to one and P1 : M1 → M1 is the sub-Markov matrix
with row sum less than or equal to one.

Proof: Refer [15] for the proof
Our strategy is to study the stability in terms of properties of
the matrix P1 and define coarser (weaker) notions of stability
with respect to initial conditions corresponding to this.

Fig. 3. A schematic comparing a.e. stability in infinite-dimensional setting
(part (a)) to the coarse stability with finite partitions (part (b) and (c)). In
either case, appropriate notion of stochastic stability is assumed (P1 and P1
transient).

B. Coarse stability

In this section ,stability of the finite dimensional approxi-
mation of P-F operator is expressed in terms of the transient
properties of the stochastic matrix P1.

Definition 6 (Transient states): A sub-Markov matrix P1

has only transient states if Pn
1 → 0, element-wise, as n → ∞.

Intuitively, it makes sense that transience be necessary given
stability or a.e. stability w.r.t initial conditions. Conversely,
transience is shown to imply yet weaker forms of stability
referred to as coarse stability in this paper.

Definition 7 (Coarse Stability): Consider an attractor A ⊂
X0 together with a finite partition X1 of the complement set
X1 = X −X0. A is said to be coarse stable w.r.t the initial
conditions in X1 if for an attractor set B ⊂ U ⊂ X1, there
exists no sub-partition S = {Ds1 ,Ds2 , . . . ,Dsl} in X1 with
domain S = ∪l

k=1Dsk such that B ⊂ S ⊂U and T (S) ⊆ S.
For typical partitions, coarse stability means stability modulo
attractor sets B with domain of attraction U smaller than the
size of cells within the partition. In the infinite-dimensional
limit, where the cell size (measure) goes to zero, one obtains
stability modulo attractor sets with measure 0 domain of
attraction, i.e., a.e. stability. Figure 3 compares some of the
possibilities with a.e. stability in infinite-dimensional settings
and coarse stability using finite partitions. The part (a) shows
that measure 0 invariant sets such as unstable equilibrium
(denoted by o) or a (dashed) line in the plane may arise
in the complement X1 even with a.e. stability. However,
stable equilibrium with a domain of attraction of positive
measure is ruled out. The parts (b) and (c) consider coarse
stability in discrete settings with a rectangular partition in
the background. The part (b) shows that a stable equilibrium
(denoted by x) or an elongated attractor set with a smaller,
than cell size, domain of attraction is possible with coarse
stability. However, an attractor whose domain of attraction
contains a sub-partition S (marked with bold lines in the
Fig. 3) in the complement set is not possible. In particular,
coarse stability rules out the case where the cell containing a
stable equilibrium itself lies in its domain of attraction. The
part (c) shows that it is possible to construct a partition where
coarse stability holds, yet the domain of attraction is very
large w.r.t the partition. This is because the cell containing
the stable equilibrium is not itself contained in the domain

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrA18.5

5230



of its attraction. We believe this to be atypical for reasonable
choices of fine enough finite partition with the lower figure in
part (c) being a better representative. Nevertheless, the scale
of partition is important in deducing stability. The theorem
below formally links the transience of matrix P1 to various
notions of stability considered in this paper. Before stating
the theorem and its proof, we present a simple Lemma that
is needed in the proof.

Lemma 8: Consider two equivalent measures µ ≈ m, and
two sets S1, S with S1 ⊂ S. Then

µ(S1) = µ(S) ⇔ m(S1) = m(S). (13)
Proof: Denote Sc

1
.= S\S1 to be the complement set. We

have, µ(S1) = µ(S) ⇔ µ(Sc
1) = 0 ⇔ m(Sc

1) = 0 ⇔ m(S1) =
m(S).

Theorem 9: Assume the notation of the Lemma 5. In
particular, A is an attractor set in X0 ⊂ X with approximate
invariant measure supported on the finite partition X0 of X0.
P1 is the sub-Markov operator on M (Ac). P1 is its finite-
dimensional sub-Markov matrix approximation obtained with
respect to the partition X1 of the complement set X1 = X \X0.
For this

1) Suppose a Lyapunov measure µ̄ exists such that
P1µ̄(B) < µ̄(B) for all B ⊂ B(X1), and addition-
ally µ̄ ≈ m, the Lebesgue measure. Then the finite-
dimensional approximation P1 is transient.

2) Suppose P1 is transient then A is coarse stable w.r.t the
initial conditions in X1.

Proof: 1. We first present a proof for the simplest case
where the partition X1 consists of precisely one cell, i.e.,
X1 = {DL}. In this case, P1 ∈ [0,1] is a scalar given by

P1 =
m(T−1(DL)∩DL)

m(DL)
, (14)

where m is the Lebesgue measure. We need to show that
P1 < 1. Denote,

S = {DL}, S1 = {x ∈ DL : T (x) ∈ DL}. (15)

Clearly, S1 ⊂ S and existence of Lyapunov measure µ̄
satisfying Eq. (1) implies that

µ̄(S1) = P1µ̄(S) < µ̄(S). (16)

Using Lemma 8, m(S1) �= m(S) and since S1 ⊂ S, we have
m(S1) < m(S). Using Eqs. (14) and (15), this implies P1 < 1,
i.e., P1 is transient. We prove the result for the general case,
where X1 is a finite partition, by contradiction. Suppose P1

is not transient. Then using either the following Theorem 10,
or a general result from the theory of finite Markov chains
[16], [17], there exists atleast one non-negative invariant
probability vector ν such that

ν ·P1 = ν . (17)

Let S = {x ∈ Di : νi > 0}, S1 = {x ∈ S : T (x) ∈ S}. (18)

Claim : m(S1) = m(S). (19)

We first assume the claim to be true and show the desired
contradiction. Clearly, S1 ⊂ S and if the claim were true,
Lemma 8 shows that

µ̄(S1) = µ̄(S). (20)

Next, because S ⊂ X1,

P1µ̄(S) = µ̄(T−1(S)∩X1) ≥ µ̄(T−1(S)∩S). (21)

and this together with Eq. (20) gives P1µ̄(S)≥ µ̄(S) for a set
S with positive Lebesgue measure. This contradicts Eq. (1)
and proves the theorem.

It remains to show the claim. Let {ik}l
k=1 be the indices

with νik > 0. Eq. (17) gives

l

∑
k=1

νik [P1]ik jm = ν jm for m = 1, . . . , l. (22)

Taking a summation ∑l
m=1 on either side gives

l

∑
k=1

νik

l

∑
m=1

[P1]ik jm = 1. (23)

Since, individual entries are non-negative and ν is a proba-
bility vector, this implies ∑l

m=1[P1]ik jm = 1 k = 1, . . . , l
i.e., the row sums are 1. Using formula (9) for the

individual matrix entries, this gives

m(T−1(∪l
m=1D jm)∩Dik) = m(Dik) for k = 1, . . . , l,(24)

where we have used the fact that the pre-image sets are
disjoint and ∪T−1(D jm) = T−1(∪D jm). However, by con-
struction S = ∪l

m=1D jm and thus

m(T−1(S)∩Dik) = m(Dik) for k = 1, . . . , l. (25)

Taking a summation ∑l
k=1 on either side gives

m(T−1(S)∩S) = m(S), (26)

precisely as claimed in Eq. (19). This completes the proof
for the general case.

2. Suppose P1 is transient. In order to show that A
is coarse stable, we proceed by contradiction. Indeed,
using definition 7, if A were not coarse stable then there
exists an attractor set B ⊂ U ⊂ X1 with a sub-partition
S = {Ds1 , ...,Dsl}, S = ∪l

k=1Dsk such that B ⊂ S ⊂ U and
T (S) ⊆ S. Since, the set S is left invariant by mapping T ,

Psk j =
m(T−1(D j)∩Dsk)

m(Dsk)
= 0, (27)

whenever D j /∈ S . Moreover, because T : S → S,

l

∑
j=1

[P1]sis j = 1 i = 1, ..., l, (28)

i.e., P1 is a Markov matrix w.r.t the finite partition S . Form
the general theory of Markov matrix [16], there then exists
an invariant probability vector ν such that

ν ·Pn
1 = ν , (29)
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TABLE I

CONDITIONS FOR RECURRENCE AND TRANSIENCE

Linear (A) Nonlinear (P0, P1)
Invariant set 0 = A ·0 µ = µ ·P0
Spectral condition ρ(A) < 1 ρ(P1) < 1
Series-expansion AT ·P ·A−P = −Q µ̄ = m · (I −P1)−1

Linear Program −− µ̄ ·P1 < µ̄

for all n > 0, and P1 is not transient.
In summary, a.e. stability implies P1 is transient, while one
can only conclude a weaker coarse stability given transience
of P1.

C. Formulae for Lyapunov measure

There are a number of equivalent characterizations of the
transience, expressed in Definition 6, of the sub-Markov
matrix P1. These are summarized in the theorem below and
will be used to obtain computational algorithms for deducing
coarse stability.

Theorem 10: Suppose P1 denotes a sub-Markov matrix.
Then the following are equivalent

1) P1 is transient,
2) ρ(P1) ≤ α < 1,
3) the infinite-series I +P1 +P2

1 + . . . converges,
4) there exists a Lyapunov measure µ̄ > 0 such that µ̄P1 ≤

αµ̄ where α < 1.
Proof: Refer [15] for the proof

In summary, transience of the Markov chain P1 can be
expressed in three equivalent ways useful for distinct com-
putational approaches:

1) Verify a spectral condition ρ(P1) ≤ α < 1,
2) Compute a Lyapunov measure µ̄ using a series formu-

lation

µ̄ = m · (I −P1)−1 = m+m ·P1 +m ·P2
1 + . . . m > 0

3) Compute a Lyapunov measure using a Linear program

µ̄ · (αI −P1) < 0, µ̄ > 0.

The parallels with the linear dynamical system are summa-
rized in the Table 1. The spectral condition is a counterpart
of ρ(A) < 1 for the linear dynamical system. The series
expansion corresponds to the series solution of the Lyapunov
equation. It can also be obtained as a solution of a linear
equation. Finally, the linear program formulation arises due
to the non-negativity of the matrix P1. It does not share any
obvious counterpart in the linear setting.

V. EXAMPLES

Example 11: Consider dynamics on a finite set as shown
in Fig. 4. The dynamics are defined to be

T (xi) = x0, for i = {1,2} T (y1) = x1, for i = {1, . . . ,N}. (30)

The state {x0} is a globally stable attractor and Table II
gives a Lyapunov function and measure on the complement
set {x1,y1, . . . ,yN}. The large value of Lyapunov measure
µ̄ at the point x1 is a reflection of the size (N) of its pre-
image set. In regions (cells) such as these, where the flow

Fig. 4. A schematic for discrete dynamics example with finite number of
states.

TABLE II

LYAPUNOV FUNCTION V AND MEASURE µ̄ FOR THE DISCRETE EXAMPLE

PROBLEM

Complement set x1 yi

V 1
2 1

µ̄ N +1 1

is squeezed through a narrow region, the Lyapunov measure
will have a high value. Near the attractor, this property can
help one visualize convergence to the attractor set. This is
shown with the aid of examples below.

Example 12: Consider the 1-d logistic map

xn+1 = λxn − x3
n, (31)

where λ = 2.3 and X = [−1.5,1.5] are chosen. The value of
λ is specifically chosen to be at the edge of chaos in the
logistic map; cf., [12]. Figure 5 (a) shows the asymptotic
trajectories as a function of initial conditions in X . There
are two symmetric attractors, that a typical initial condition
asymptotes too. Figure 5 (b) verifies this fact with the aid of
the Lyapunov measure on the complement set to the support
of the two invariant measures. We remark that here one
does not have global stability for either of the attractors.
However, existence of Lyapunov measure on the complement
set ensures that in a coarse sense, any initial condition there
ends up in the support of one of the two invariant measures.

Example 13: Consider the Vanderpol oscillator given by
ODE

ẍ− (1− x2)ẋ+ x = 0. (32)

Here, we consider the dynamical system T obtained using
numerical integration of the ODE in MATLAB over time-

Fig. 5. Asymptotic behavior of the logistic map (a) asymptotic attractor
sets as a function of initial condition x0 and (b) the invariant measures for
these attractor sets (in red) and the Lyapunov measure (in blue) showing
their stability.
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Fig. 6. (a) Invariant measure and (b) Lyapunov measure for the Vanderpol
oscillator. The limit cycle is shown as a black curve and white curves in
part (b) denote some representative trajectories. For the Lyapunov measure,
the maximum value of 0.026 was seen at the two regions denotes as “max.”
The color axis in part (b) is chopped to [0,0.002] to better represent the
variations in the value of Lyapunov measure.

interval of 1. The time-interval is chosen to be suitably
large so that T : X → X where the domain X = [−3,3]×
[−3,3] is a finite box containing the unstable origin and the
globally stable Vanderpol limit cycle. Figure 6 (a) depicts
the approximation of the invariant measure corresponding to
this limit cycle and part (b) shows the Lyapunov measure. In
the region inside the limit cycle, the measure shows moderate
variations with larger values near the limit cycle. Outside the
limit cycle, there are two sharp peaks denoting the regions
where most trajectories in the phase space are sucked to
in before converging uniformly to the vicinity of the limit
cycle. The figure shows some of these trajectories (in white)
together with the peaks (denoted as “max”) in the value of
the Lyapunov measure.

Example 14: We next consider the dynamical system T
corresponding to the 2D ODE example first given in [3],

ẋ = −2x+ x2 − y2, ẏ = −6y+2xy. (33)

Unfortunately, this example does not have any finite T -
invariant set containing all of the equilibria even with a large
value of simulation time-interval. The reason for this is that
points on x-axis with x > 2 grow unbounded. To overcome
this, consider the domain to be X = [−4,4]× [−4,4] and
glue its boundaries. In particular, the left boundary (x =
−4,y) is glued to the right boundary at (x = 4,y), the upper
boundary (x,y = 4) with x > 0 is glued to (−x,y = 4), and
similarly on the lower boundary y = −4. Inside the glued
domain, the dynamics are described by the ODE in Eq. (33).
The dynamical system for the same was constructed using
numerical integration over time-interval of 0.2. The origin
can be verified to be a.e. globally stable for this ODE.

VI. DISCUSSION & CONCLUSIONS

Inspired from the Rantzer’s result on density function
for almost everywhere stability, we propose Lyapunov mea-
sure for verifying almost everywhere stability. Set-oriented
numerical approaches for the discretization of the stochas-
tic operators is used for the computation of the finite-
dimensional approximation of the Lyapunov measure. This
finite-dimensional approximation leads to coarser and multi-
scale notions of stability which generalizes in a natural way

Fig. 7. Lyapunov measure for the stable equilibrium at origin for ODE
in Eq. (33) on the glued domain X . The invariant measure is supported
on single cell shown in white at the origin. White curves denote some
representative trajectories.

the a.e. stability of [3]. Lyapunov measures can easily be
computed using linear algorithms. In particular, it is shown
that the Lyapunov measure is a solution to a linear program
as well as admits a series type expansion.
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