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Abstract— In this paper, we introduce Lyapunov measure to
verify weak (a.e.) notions of stability for an invariant set of
a nonlinear dynamical system. Using certain linear operators
from Ergodic theory, we derive Lyapunov results to deduce a.e.
stability. In order to highlight the linearity of our approach, we
also provide explicit formulas for obtaining Lyapunov function
and Lyapunov measure in terms of the resolvent of the two
linear operators.

I. INTRODUCTION

For nonlinear dynamical systems, Lyapunov function

based methods play a central role in both stability anal-

ysis and control synthesis [Vid02]. Given the complexity

of dynamical behavior possible even in low dimensions

[ER85], these methods are powerful because they provide

an analysis and design approach for global stability of an

equilibrium solution. However, unlike linear systems, there

is no constructive procedure to obtain a Lyapunov function

for general nonlinear systems. This lack of constructive

procedure for Lyapunov function is an important barrier in

nonlinear control theory. For nonlinear ODEs, two ideas have

appeared in recent literature towards overcoming this barrier.

In [Ran01], Rantzer introduced a dual to the Lyapunov

function, referred to by the author as a density function, to

define and study weaker notion of stability of an equilibrium

solution of nonlinear ODEs. The author shows that the exis-

tence of a density function guarantees asymptotic stability in

an almost everywhere sense, i.e., with respect to any set of

initial conditions in the phase space with a positive Lebesgue

measure. The second idea involves computation of Lyapunov

functions using SOS polynomials. This idea appears in the

work of Parrilo [Par00], where the construction of Lyapunov

function is cast as a linear problem with suitable choice

of polynomials (monomials) serving as a basis. In a recent

paper by [PPR04], these two ideas have been combined to

show that density formulation together with its discretization

using SOS methods leads to a convex and linear problem for

the joint design of the density function and state feedback

controller.

We show that the duality expressed in the paper of [Ran01]

and linearity expressed in the paper of [PPR04] is well-

understood using the methods of Ergodic theory. Given a

dynamical system, one can associate two different linear

operators known as Koopman and Frobenius-Perron (P-F)

operator [LM94], [Man87]. These two operators are adjoint
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to each other. While the dynamical system describes the evo-

lution of an initial condition, the P-F operator describes the

evolution of uncertainty in initial conditions. Under suitable

technical conditions, spectrum of these operator on the unit

circle provides information about the asymptotic behavior of

the system [DJ99], [MB04]. In this paper, spectral analysis

of the stochastic operators is used to study the stability

properties of the invariant sets of deterministic dynamical

systems. In particular, we introduce Lyapunov measure as

a dual to Lyapunov function. Lyapunov measure is closely

related to Rantzer’s density function, and like its counterpart

it is shown to capture the weaker a.e. notion of stability.

Just as invariant measure is a stochastic counterpart of the

invariant set, existence of Lyapunov measure is shown to

give a stochastic conclusion on the stability of the invariant

measure. The key advantage of relating Lyapunov measure

to the P-F operator is that the relationship serves to provide

explicit formulas of the Lyapunov measure.

For stable linear dynamical systems, the Lyapunov func-

tion can be obtained as a positive solution of the so-called

Lyapunov equation. The equation is linear and the Lyapunov

function is efficiently computed and can even be expressed

analytically as an infinite-matrix-series expansion. For the

series to converge, there exists a spectral condition on the

linear dynamical system (ρ(A) < 1). The P-F formulation

allows one to generalize these results to the study of sta-

bility of invariant and possibly chaotic attractor sets of

nonlinear dynamical systems. More importantly, it provides

a framework that allows one to carry over the intuition

of the linear dynamical systems. For instance, the spectral

condition is now expressed in terms of the P-F operator.

The Lyapunov measure is shown to be a solution of a linear

resolvent operator and admits an infinite-series expansion.

The stability result, however, is typically weaker and one

can only conclude stability in measure-theoretic (such as a.e.)

sense.

The outline of this paper is as follows. In Section II,

preliminaries and notation are summarized. In Section III,

Lyapunov measure is introduced and related to the stochastic

operators and appropriately defined notions of stability of

an attractor set. Finally, we summarize some conclusions in

Section IV.

II. PRELIMINARIES AND NOTATION

In this paper, discrete dynamical systems or mappings of

the form

xn+1 = T (xn) (1)
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are considered. T : X → X is in general assumed to be only

continuous and non-singular with X ⊂ R
n, a compact set.

A mapping T is said to be non-singular with respect to

a measure µ if µ(T−1B) = 0 for all B ∈ B(X) such that

µ(B) = 0. B(X) denotes the Borel σ -algebra on X , M (X)
the vector space of real valued measures on B(X). Even

though, deterministic dynamics are considered, stochastic

approach is employed for their analysis. The stochastic

Perron-Frobenius (P-F) operator for a mapping T : X → X

is given by

P[µ](A) = µ(T−1(A)), (2)

where µ ∈ M (X) and A ∈ B(X); cf., [LM94], [DJ00]. The

invariant measure are the fixed points of the P-F operator

P that are additionally probability measures. From Ergodic

theory, an invariant measure is always known to exist under

the assumption that the mapping T is at least continuous and

X is compact; cf., [KH95].

For Eq. (1), the operator

U f (x) = f (T x) (3)

is called the Koopman operator for f ∈C0(X). The Koopman

operator is a dual to the P-F operator, where the duality is

expressed by the following

< U f ,µ >=
∫

X
U f (x)dµ(x) =

∫

X
f (x)dPµ(x) =< f ,Pµ > .

(4)

A. Physical measure and almost everywhere stability

A set A ⊂ X is called T-invariant if

T (A) = A. (5)

In this paper, global stability properties of T -invariant sets

that are additionally “minimal” in some sense will be investi-

gated. Using Eq. (2), a measure µ is said to be a T -invariant

measure if

µ(B) = µ(T−1(B)) (6)

for all B ∈ B(A). A T -invariant measure in Eq. (6) is

a stochastic counterpart of the T -invariant set in Eq. (5)

[ER85], [KH95]. For typical dynamical systems, the set A

equals the support of its invariant measure µ . To make the

correspondence precise, an attractor is defined as any set

that satisfies the following two properties:

1) Set A is a closed and invariant, i.e., T (A) = A,

2) There is a unique physical invariant measure, defined

below, supported on A.

Definition 1 (Physical measure) Let A be a T -invariant

set. An ergodic measure µ with support on A is called a

physical measure if there is an open neighborhood U ⊂ X

with A ⊂U such that for Lebesgue almost every x ∈U and

for all continuous functions φ : U → R the equation

lim
N→∞

1

N

N−1

∑
k=0

φ(T k(x)) =
∫

A
φ(x) dµ(x) (7)

holds.

This definition stresses the statistical behavior of the

attractor set. Although rigorous results have been shown

only for special cases, it is generally believed that physical

measures exists in physical dynamical systems [You02]. This

is also supported by numerical evidence with set-oriented

methods for approximation of physical measures; cf., [DJ00].

A locally stable equilibrium is the simplest example of an

attractor set and the physical measure corresponding to it is

the Dirac-delta measure supported on the equilibrium point.

The existence of physical measure is related to the notion

of a.e. stability. In the following definitions and subsequent

sections, we use U(ε) to denote an ε-neighborhood of an

invariant set A, and Ac := X \A to denote the complement

set.

Definition 2 (ω-limit set) A point y∈ X is called a ω- limit

point for a point x ∈ X if there exists a sequence of integers

{nk} such that T nk(x) → y as k → ∞. The set of all ω-limit

point for x is denoted by ω(x) and is called its ω- limit set.

Definition 3 (Almost everywhere stable) An invariant set

A for the dynamical system T : X → X is said to be stable

almost everywhere (a.e.) with respect to a finite measure m∈
M (Ac) if

m{x ∈ Ac : ω(x) 6⊆ A} = 0 (8)

For the special case of a.e. stability of an equilibrium point x0

with respect to the Lebesgue measure, the definition reduces

to

m{x ∈ X : lim
n→∞

T n(x) 6= x0} = 0, (9)

where m in this case is the Lebesgue measure.

Motivated by the familiar notion of point-wise exponential

stability in phase space, we introduce a stronger notion

of stability in the measure space. This stronger notion of

stability captures a geometric decay rate of convergence.

Definition 4 (Stable a.e. with geometric decay) The

invariant set A ⊂ X for the dynamical system T : X → X is

said to be stable almost everywhere with geometric decay

w.r.t. to a finite measure m ∈ M (Ac) if given ε > 0, there

exists K(ε) < ∞ and β < 1 such that

m{x ∈ Ac : T n(x) ∈ B} < Kβ n ∀ n ≥ 0 (10)

for all sets B ∈ B(X \U(ε)).

III. MAIN RESULT

In this section, Lyapunov type global stability conditions

are presented using the infinite-dimensional P-F operator P

for the mapping T : X → X in Eq. (1). Recall that an attractor

set A is defined to be globally stable w.r.t. to a measure m if

ω(x) ⊆ A, a.e. x ∈ Ac, (11)

where a.e. is with respect to the measure m. Now, consider

the restriction of the mapping T : Ac → X on the comple-

ment set. This restriction can be associated with a suitable
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stochastic operator related to P that is useful for the stability

analysis with respect to the complement set. The following

section makes the association precise.

A. Decomposition of Frobenius-Perron operator

Corresponding to the mapping T : Ac → X , the operator

P1[µ](A)
.
=

∫

Ac
δT (x)(B)dµ(x) (12)

is well-defined for µ ∈ M (Ac) and B ⊂ B(Ac). This is

because the set A is T -invariant. Denote P0 as the P-F

operator for the restriction T : A→A. It is possible to express

the P-F operator P for T : X → X in terms of P0 and P1.

Indeed, consider a splitting of the measure space

M (X) = M0 ⊕M1, (13)

where M0 = M (A) and M1 = M (Ac). Note that P0 : M0 →
M0 because T : A → A and P1 : M1 → M1 by construction.

It then follows that with respect to the splitting in Eq. (13),

the P-F operator has a lower-diagonal matrix representation

given by

P =

[

P0 0

× P1

]

. (14)

B. Stability & Lyapunov measure

Using the lower triangular representation of P in Eq. (14),

P
n =

[

P
n
0 0

× P
n
1

]

. (15)

Explicitly, for B ⊂ B(Ac),

P1µ(B) =
∫

Ac
χB(T x)dµ(x) = µ(T−1(B)∩Ac) (16)

P
n
1µ(B) =

∫

Ac
χB(T nx)dµ(x) = µ(T−n(B)∩Ac).(17)

These formulas are useful because one can now express the

conditions for stability in Definitions 3 and 4 in terms of the

asymptotic behavior of the operator P
n
1.

Lemma 5 Consider T : X → X in Eq. (1) with an invariant

set A ⊂ X, U(ε) is an ε-neighborhood of A, and Ac = X \A.

The following express conditions for a.e. stability w.r.t a finite

measure m ∈ M (Ac):

1) The invariant set A is a.e. stable (definition 3) with

respect to a measure m if and only if

lim
n→∞

P
n
1m(B) = 0 (18)

for all sets B ∈ B(X \U(ε)) and every ε > 0.

2) The invariant set A is a.e. stable with geometric decay

(definition 4) with respect to a measure m if and only

if for every ε > 0, there exists K(ε) < ∞ and β < 1

such that

P
n
1m(B) < Kβ n ∀ n ≥ 0 (19)

and for all sets B ∈ B(X \U(ε)).

Proof: For B ∈ B(X \U(ε)), denote

Bn = {x ∈ Ac and T n(x) ∈ B}. (20)

It is then easy to see that

m(Bn) = m(T−n(B)∩Ac) = P
n
1m(B), (21)

where the last equality follows from Eq. (17). The equiva-

lence for part 2 (Eq. (19)) then follows by applying defini-

tion 4. To see part 1, note that

lim
n→∞

χBn(x) = 0 (22)

for all x whose ω-limit points lie in A. If A is assumed a.e.

stable, the limit in Eq. (22) is a.e. zero and

0 =
∫

Ac
lim
n→∞

χBn(x)dm(x) = lim
n→∞

∫

Ac
χBn(x)dm(x)

= lim
n→∞

P
n
1m(B) (23)

by dominated convergence theorem; cf., [Rud87]. Con-

versely, for ε > 0, consider the set

Sn = {x ∈ Ac : T k(x) ∈ X \U(ε) for some k > n} (24)

and let

S = ∩∞
n=1Sn (25)

i.e., S is the set of points, some of whose limit points lie

in X \U(ε). Clearly, x ∈ Sn if and only if T (x) ∈ Sn−1. By

construction, x ∈ S if and only if T (x) ∈ S, i.e., S = T−1(S).
Furthermore, S ⊂ Ac and we have,

m(S) = m(T−1(S)∩Ac) = P1m(S). (26)

Now, if limn→∞ P
n
1m(B) = 0 for all B ∈ B(X \U(ε)) and in

particular for B = S then Eq. (26) implies that m(S) = 0.

Since ε here is arbitrary, we have

m{x ∈ Ac : ω(x) 6⊆ A} = 0, (27)

and thus A is a.e. stable in the sense of definition 3.

The two conditions in Eq. (18)-(19) represent a certain

property, transience, of the stochastic operator P1 w.r.t

Lebesgue measure m. In by itself, the two conditions are not

very useful to verify stability any more than the definitions

themselves. The definition involves iterating the mapping for

all initial conditions in Ac while the two conditions involve

iterating the stochastic operator for all Borel set B in Ac.

Both are equally complex. However, just as stability can be

verified by constructing Lyapunov function for the mapping

T , transience can be verified by constructing a Lyapunov

measure for the operator P.

Definition 6 (Lyapunov measure) is any non-negative

measure µ̄ ∈ M (Ac), which is finite on B(X \U(ε)) and

satisfies

P1µ̄(B) < αµ̄(B), (28)

for every set B ⊂ B(Ac) with

µ̄(B) > 0. (29)

α ≤ 1 is some positive constant.

This construction and the Lyapunov measure’s relationship

with the two notions of transience will be a subject of
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the following three theorems. The first theorem shows that

the existence of a Lyapunov measure µ̄ is sufficient for

almost everywhere stability with respect to any absolutely

continuous measure m.

Theorem 7 Consider T : X → X in Eq. (1) with an invariant

set A ⊂ X, U(ε) is an ε-neighborhood of A, and Ac = X \A.

Suppose there exists a non-negative measure µ̄ ∈ M (Ac),
which is finite on B(X \U(ε)) and satisfies

P1µ̄(B) < µ̄(B) (30)

for all B ⊂B(Ac) with µ̄(B) > 0. Then the invariant set A is

almost everywhere stable w.r.t. to any absolutely continuous

measure m ≺ µ̄ .

Proof: Consider any set B ∈B(X \U(ε)) with m(B) >
0. Using Lemma 5, a.e. stability is equivalent to

lim
n→∞

P
n
1m(B) = 0. (31)

To show Eq. (31), it is first claimed that limn→∞ P
n
1µ̄(B) = 0.

We note that because m ≺ µ̄ , the claim implies Eq. (31)

and thus a.e. stability. In order to prove the claim, we note

that µ̄(B) > 0 and consider the sequence of real numbers

{Pn
1µ̄(B)}. Using Eq. (30), this is a decreasing sequence of

non-negative numbers. As in Lemma 5, let

S := {x ∈ Ac : lim
nk→∞

T nk(x) ∈ B} (32)

be the set of points, some of whose ω-limit points lie in B.

For Bn = {x ∈ Ac : T nx ∈ B}, χBn(x)→ 0 whenever x /∈ S. By

dominated convergence theorem,

lim
n→∞

P
n
1µ̄(B) = lim

n→∞

∫

Ac
χBn(x)dµ̄(x) ≤ µ̄(S). (33)

As in Lemma 5, T−1(S) = S and

P1µ̄(S) = µ̄(S) (34)

and Eq. (30) implies that µ̄(S) = 0. Using Eq. (33),

lim
n→∞

P
n
1µ̄(B) = 0, (35)

and this verifies the claim and thus proves the theorem.

The following theorem provides a sufficient condition for

almost everywhere stability with geometric decay in terms

of Lyapunov measure.

Theorem 8 Consider T : X → X in Eq. (1) with an invariant

set A ⊂ X, U(ε) is an ε-neighborhood of A, and Ac = X \A.

Suppose there exists a non-negative measure µ̄ ∈ M (Ac),
which is finite on B(X \U(ε)) and satisfies

P1µ̄(B) < αµ̄(B), (36)

for all B ⊂ B(Ac) with µ̄(B) > 0, and α < 1. Then

1) A is a.e. stable with respect to any finite measure m ≺
µ̄ .

2) A is a.e. stable with geometric decay with respect to

any measure m satisfying m ≤ γ µ̄ for some constant

γ > 0.

Proof:

1) Since

P1µ̄(B) < αµ̄(B) < µ̄(B) (37)

the result follows from the proof of Theorem 7.

2) Consider any set B ∈ B(X \U(ε)). A simple calcula-

tion shows that

P
n
1m(B) ≤ γP

n
1µ̄(B) ≤ αnγ µ̄(B) < Kαn, (38)

where K(ε) = γ µ̄(X \U(ε)) is finite. Using Lemma 5,

A is stable almost everywhere with geometric decay

with respect to the measure m.

The following can be used to construct Lyapunov measure

µ̄ as an infinite series involving sub-Markov operator P1.

Theorem 9 Consider T : X → X in Eq. (1) with an invariant

set A ⊂ X, U(ε) is an ε-neighborhood of A, and Ac = X \A.

Suppose A is stable a.e. with geometric decay w.r.t some

finite measure m ∈ M (Ac). Then there exists a non-negative

measure µ̄ ∈ M (Ac) which is finite on B(X \U(ε)), is

equivalent to measure m, and satisfies

P1µ̄(B) < µ̄(B) (39)

for all B ⊂ B(Ac) with µ̄(B) > 0. Furthermore, µ̄ may be

constructed to dominate measure m i.e., m(B) ≤ µ̄(B).

Proof: For any given ε > 0, construct a measure µ̄ as:

µ̄(B) = (I +P1 +P
2
1 + . . .)m(B) =

∞

∑
j=0

P
j
1m(B), (40)

where B ∈ B(X \U(ε)). For all such sets, the stability

definition 4 implies that there exists a K(ε) < ∞ and β < 1

such that

P
n
1m(B) < Kβ n. (41)

As a result, the infinite-series in Eq. (40) converges, and µ̄(B)
is well-defined, non-negative, and finite. Since, T is assumed

non-singular, the individual measures P
n
1m are absolutely

continuous w.r.t. m and thus µ̄ ≺ m. By construction,

m(B) ≤ µ̄(B), (42)

and thus the two measures are equivalent. Applying (P1− I)
to both sides of Eq. (40), we get

P1µ̄(B)− µ̄(B) = −m(B) < 0 =⇒ P1µ̄(B) < µ̄(B) (43)

whenever m(B) > 0, and equivalently, µ̄(B) > 0.

Remark 10 In the three theorems presented above, A is a.e.

stable w.r.t m ∈ M (Ac). In general, m can be be any finite

measure. Our primary interest is in Lebesgue a.e. stability,

and we often take m to be the Lebesgue measure. Another

finite measure of interest is

mS(B) = m(B∩S) (44)

where S ⊂ Ac , B ∈ B(X \U(ε)), and m is the Lebesgue

measure. Using stability definitions, A is a.e. stable w.r.t mS

WID.150

188



iff a.e. initial condition x∈ S converges to A. Using the results

of this section, mS can thus be used to characterize and study

the domain of attraction of an invariant set A.

Before closing this section, we summarize the salient

features of the Lyapunov measure:

1) its existence allows one to verify a.e. asymptotic sta-

bility (Theorem 8),

2) for an asymptotically stable system with geometric

decay, the infinite-series (see Eq. (40))

(I −P1)
−1m = (I +P1 + . . .+P

N
1 + . . .)m (45)

can be used to construct it.

The series-formulation in fact is very much related to the

well-known Lyapunov equation in linear settings.

C. Lyapunov function and Koopman operator

Consider a linear dynamical system

x(n+1) = Ax(n), (46)

where ρ(A) < 1. With a Lyapunov function candidate V (x) =
x′Px, the Lyapunov equation is A′PA−P = −Q, where Q is

positive definite. A positive-definite solution for P is given

by

P = Q+A′QA+ . . .+A′nQAn + . . . , (47)

where the series converges iff ρ(A) < 1. Setting g(x) = x′Qx,

the infinite-series solution for any x ∈ R
n is given by

V (x) =
∞

∑
n=0

g(Anx) =
∞

∑
n=0

Ung(x) = (I −U)−1g(x), (48)

where U is the Koopman operator, the dual to P. The

choice of g(0) = 0 on the complement set to the attractor

{0} ensures that the series representation converges. Even

though, we have arrived at the series representation in

Eq. (48) starting from the linear settings, the series is valid

for nonlinear dynamical system or continuous mapping of

Eq. (1); U is the Koopman operator for mapping T . If the

series converges, one can express the solution in terms of the

resolvent operator as in Eq. (48). For a convergent series, it

is also easy to check than

V (T x)−V (x) = UV (x)−V (x) = −g(x), (49)

i.e., V is a Lyapunov function for g(x) > 0. Note, g need not

be quadratic or even a polynomial – any positive C0 function

with g(0) = 0 will suffice. Moreover, the description is linear.

The following theorem shows that the Lyapunov function

can be constructed by using the resolvent of the Koopman

operator for a stable system. In particular, we assume that the

equilibrium point is globally exponentially stable and prove

in essence a converse Lyapunov theorem for stable systems;

cf., [Vid02].

Theorem 11 Consider T : X → X as in Eq. (1). Suppose x =
0 is a fixed-point (T (0) = 0), which is globally exponentially

stable, i.e.,

‖ T n(x) ‖≤ Kαn ‖ x ‖ ∀x ∈ X (50)

where α < 1, K > 1, and ‖ · ‖ is the Euclidean norm in

X. Then there exists a non-negative function V : X → R
+

satisfying

a ‖ x ‖p ≤ V (x) ≤ b ‖ x ‖p,

V (T x) ≤ c ·V (x), (51)

where a,b,c, p are positive constants; c < 1. Also, V can be

expressed as

V (x) = (I −U)−1 f (x), (52)

where f (x) =‖ x ‖p and U is the koopman operator corre-

sponding to the dynamical system T .

Proof: Let f (x) =‖ x ‖p with p ≥ 1 and set

VN(x) =
N

∑
n=0

f (T nx) =
N

∑
n=0

Un f (x). (53)

Now,

‖VN(x)‖ ≤
∞

∑
n=0

‖ T nx ‖p≤ K p
∞

∑
n=0

αnp ‖ x ‖p≤
K p

1−α p
‖x‖p

(54)

satisfies a uniform bound because of globally exponentially

stability (Eq. (50)) and because X is compact. As a result,

V (x) = limN→∞ VN(x) is well-defined and can be expressed

as an infinite-series,

V (x) = lim
N→∞

N

∑
n=0

Un f (x) = (I −U)−1 f (x). (55)

By Eqs. (53) and (54),

‖ x ‖p≤V (x) ≤
K p

1−α p
‖ x ‖p= b ‖ x ‖p, (56)

where b > 1. Finally, because T : X → X , V (T x) = UV (x),
Eq. (55) gives

(U − I)V (x) = − f (x) = − ‖ x ‖p≤
−1

b
·V (x) (57)

Set c = (1− 1
b
). Clearly, c < 1 and using Eq. (57),

V (T x) ≤ c ·V (x). (58)

The series formulation in Eq. (45) using the P-F operator

on the complement set Ac is a dual to the series expansion

using the Koopman operator in Eq. (55). The Lyapunov

measure description thus is a dual to the Lyapunov function

description. The measure-theoretic description provides a set-

wise counterpart to the point-wise description with Lyapunov

function. One of the advantage is that weaker notions of

stability, such as a.e stability are possible with measure-

theoretic description.
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IV. CONCLUSIONS

In nonlinear control, Lyapunov functions have primarily

been used for verifying stability and stabilization, using

control, of an equilibrium solution. An equilibrium is only

one of the many recurrent behavior that are possible in

nonlinear dynamical systems. A stable periodic orbit is a

simple example of non-equilibrium behavior but stranger

attractors (for e.g., Lorentz attractor) arise even in low-

dimensions. In higher dimensions such as distributed fluid

systems, non-equilibrium behavior is the norm. This paper

is based on the premise that measure-theoretic stochastic

approaches are important to the study of non-equilibrium

behavior in dynamical systems. Indeed, stochastic dynamic

methods have come to be viewed as increasingly relevant for

the study of global recurrent behavior such as attractor sets

in dynamical systems. Lyapunov measures, introduced in this

paper, are a stochastic counterpart to the notion of transience

and thus useful for verifying (weak forms of) stability of the

recurrent attractor sets.
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