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Abstract—
In our recent paper [1][2], Lyapunov measure is introduced
as a new tool for verifying almost everywhere stability of an
invariant set in dynamical systems and continuous mapping. In
this paper we show that the existence of Lyapunov measure is
both necessary and sufficient for almost everywhere stability.
The necessary and sufficient condition for almost everywhere
stability using Lyapunov measure is analogous to necessary and
sufficient condition for asymptotic stability in linear system.
In particular the finite dimensional matrix Lyapunov equation
for verifying stability in linear systems is replaced by infinite
dimensional linear equation for verifying almost everywhere
stability of an invariant set in nonlinear systems.

I. INTRODUCTION

The problem of stability is one of the central topic of interest

in control theory. The ultimate goal is to find verifiable

conditions to guarantee stability of a given system. For finite

dimensional linear systems such conditions exist, one of

them is in the form of Lyapunov equation [3]. Given the

complexity of behavior possible in nonlinear system [4],

the task of obtaining such verifiable condition for nonlinear

systems is not easy. The problem is more complex given

various possible notions of stability for nonlinear systems.

In the recent work by Rantzer [5], weaker notion of almost

everywhere stability and criteria for verifying this notion

is introduced in the form of density function. It is shown

that existence of density function is sufficient for the global

attractive property of an equilibrium solution from almost

every with respect to Lebesgue measure initial conditions in

the phase space. Density function is shown to be dual to

Lyapunov function. Converse theorem for density function

also exists [6][7]. Under the assumption that the equilibrium

point is locally stable (in Lyapunov sense), existence of

density function is also shown to be necessary for almost

everywhere stability of an equilibrium point.

In our paper [1][2], Lyapunov measure is introduced to

study almost everywhere stability of an invariant set in

dynamical system or continuous mapping. Existence of Lya-

punov measure is show to be sufficient for a.e. stability

of an attractor set. Lyapunov measure is also shown to be

dual to Lyapunov function. In this paper we introduce new

definition of stability of an invariant set which is referred to

as almost everywhere uniformly stable. The main result of

this paper shows that the existence of Lyapunov measure is

both necessary and sufficient for almost everywhere uniform

stability of an invariant set. More importantly the necessary

and sufficient condition on Lyapunov measure that we have
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are analogous to necessary and sufficient condition for sta-

bility in linear system. In particular the finite dimensional

Lyapunov matrix equation for verifying stability in linear

system is replaced by infinite dimensional linear equation

for verifying almost everywhere stability of an invariant set

in nonlinear systems.

The paper is organized as follows. In section II, we discuss

some preliminaries from stochastic theory of dynamical

system in particular the linear transfer operator (Perron-

Frobenius) approach to the study of dynamical systems.

We state the new definition of almost everywhere uniform

stability of an invariant set and point out it difference to

the almost everywhere notion of stability studied in our

previous work [1]. In section III, we state and prove the main

result of this paper giving necessary and sufficient condition

for almost everywhere uniform stability of an invariant set.

Conclusion follows in section IV.

II. PRELIMINARIES AND DEFINITIONS

In this paper, discrete dynamical systems or mappings of the

form

xn+1 = T (xn) (1)

are considered. T : X → X is in general assumed to be

only continuous and non-singular with X ⊂ R
n, a compact

set. A mapping T is said to be non-singular with respect

to a measure µ if µ(T−1B) = 0 for all B ∈ B(X) such

that µ(B) = 0. B(X) denotes the Borel σ -algebra on X ,

M (X) the vector space of real valued measures on B(X).
Dynamical system (1) can be used to study the evolution of

single trajectory, evolution of sets (measures supported on

the sets) can be studied using linear transfer operators called

as Perron-Frobenius operator and is defined as follows

Definition 1 (Perron-Frobenius operator): The Perron-

Frobenius operator (P-F) P : M (X)→M (X) corresponding

to the dynamical system T : X → X is defined by

Pµ(A) =
∫

X
δT (x)(A)dµ(x) =

∫

X
χAdµ(x) (2)

where χA(·) is the indicator function for the set A and T−1(A)
is the pre-image set:

T−1(A) := {x ∈ X : T (x) ∈ A}

We start with some measure theoretic preliminaries and

definition of ω− limit set.

Definition 2 (Absolutely continuous measure): A measure µ
is absolutely continuous with respect to another measure ϑ ,

denoted as µ ≺ϑ , if µ(B) = 0 for all B∈B(X) with ϑ(B) =
0.
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Definition 3 (Equivalent measure): A measure µ is said to

be equivalent to measure ϑ , denoted as µ ≈ ϑ , provided

µ(B) = 0 if and only if ϑ(B) = 0 for all B ∈ B(X).
Definition 4 (ω-limit set): A point y ∈ X is called a ω- limit

point for a point x ∈ X if there exists a sequence of integers

{nk} such that T nk(x) → y as k → ∞. The set of all ω-limit

point for x is denoted by ω(x) and is called its ω- limit set.

Definition 5 (Invariant set): A set A ⊂ X is called T-

invariant if

T (A) = A. (3)

i.e., if x ∈ A then T n(x) ∈ A for all n ∈ Z.

A measure µ 6= 0 is said to be a T -invariant measure if

µ(B) = µ(T−1(B)) (4)

for all B ∈ B(A). A T -invariant measure in Eq. (4) is a

stochastic counterpart of the T -invariant set in Eq. (3) [4],

[8]. For typical dynamical systems, the set A equals the

support of its invariant measure µ .

In [1], global almost everywhere stability of an attractor set

is studied, where the attractor set is defined as follows:

Definition 6 (Attractor set): A closed T invariant set A ⊂ X

is said to be an attractor set if it satisfies the following two

properties

1) there exists a neighborhood V ⊂ X of A such that ω(x)
for almost every with respect to Lebesgue measure x ∈
V . V is called the local neighborhood of A.

2) there is no strictly smaller closed set A
′
⊂ A which

satisfies property 1.

So an attractor set is an invariant set which in addition

has local attractive property. Following definition of almost

everywhere stability is a global counterpart of the local

attractive property on an invariant set.

Definition 7 (Almost everywhere stable): An invariant set A

for the dynamical system T : X → X is said to be stable

almost everywhere (a.e.) with respect to a finite measure m∈
M (Ac) if

m{x ∈ Ac : ω(x) 6⊆ A} = 0

For the special case of a.e. stability of an equilibrium point

x0, the definition reduces to

m{x ∈ X : lim
n→∞

T n(x) 6= x0} = 0 (5)

In our previous work [1], we proved a theorem giving

sufficient condition for the almost everywhere stability of an

attractor set. Lyapunov measure was introduced for verifying

this weaker notion of almost everywhere stability. Above

definition of almost everywhere stability does not impose

any condition on the local stability of the invariant set. In

fact the weak form of local stability of the invariant set is

assumed by requiring that the invariant set is an attractor set.

In this paper we introduce new definition of almost ev-

erywhere stability of an invariant set, we call it as almost

everywhere uniform stability. The main result of this paper

(section III) will give necessary and sufficient condition

for verifying this stability definition. Before stating the

definitions we introduce some notations. For any given δ > 0,

let Uδ be the δ neighborhood of an invariant set A and for

any set B ⊂ X \Uδ , we denote by

Bn = {x ∈ Ac : T n(x) ∈ B}

Definition 8: [Almost everywhere uniformly stable] An in-

variant set A for the dynamical system (1) is said to be almost

everywhere uniformly stable w.r.t. measure m if for every

ε > 0, there exists an N(δ ,ε) such that

∞

∑
n=N

m(Bn) < ε (6)

for every set B ⊂ X \Uδ . Since m(Bn) ≥ 0 for all n, the

necessary condition for (6) to be true is that limn→∞ m(Bn) =
0, for every set B ⊂ X \Uδ .

So for a almost everywhere uniformly stable invariant set,

the measure of the set of points that stays outside the δ
neighborhood of an invariant set can be made arbitrarily

small. In this paper we also prove necessary and sufficient

condition for the almost everywhere stability of an attractor

set with geometric decay. This definition of stability was

introduced in [1] and is as follows:

Definition 9 (Almost everywhere stable with geometric decay):

An invariant set A for dynamical system (1) is said to be

stable almost everywhere with geometric decay w.r.t.

measure m if there exists an K(δ ) < ∞ and β < 1 such that

m(Bn) < Kβ n (7)

for every set B ⊂ Ac \U(δ ).

A. Decomposition of P-F operator

Notice that the above definitions of stability of the invariant

set is defined in terms of asymptotic behavior of the points

in complement set Ac . This motivates us to define the

restriction of the mapping T : Ac → X . This restriction of

T can be used to define a sub-stochastic Markov operator

P1, which is defined as follows:

P1[µ](B) :=
∫

Ac
δT (x)(B)dµ(x) = µ(T−1B∩Ac) (8)

Sub Markov operator P1 is well-defined for µ ∈M (Ac) and

B ⊂B(Ac). Next, the restriction T : A → A can also be used

to define a P-F operator denoted by

P0[µ](B) =
∫

B
δT (x)(B)dµ(x), (9)

where µ ∈ M (A) and B ⊂ B(A).
The above considerations suggest a representation of the P-F

operator P in terms of P0 and P1. This is indeed the case if

one considers a splitting of the measure space

M (X) = M0 ⊕M1, (10)

where M0 := M (A) and M1 := M (Ac). Note that P0 :

M0 → M0 because T : A → A and P1 : M1 → M1 by

construction. It then follows that on the splitting defined

FrA18.6

4836



by Eq. (10), the P-F operator has a lower-triangular matrix

representation given by

P =

[

P0 0

× P1

]

. (11)

For more details on the P-F decomposition refer [1].

III. MAIN RESULT

In this section we present the main result of the paper giving

necessary and sufficient condition for almost everywhere

uniformly stability and almost everywhere stability with

geometric decay of an invariant set in nonlinear systems.

Theorem 10: Consider the dynamical system T : X → X ,

assumed to non-singular with respect to measure m with

an invariant set A ⊂ X and Uδ the δ neighborhood of

the invariant set. The invariant set A is almost everywhere

uniformly stable with respect to measure m if and only if

there exists a measure µ̄ which is equivalent to measure m

(µ̄ ≈ m) and is finite on Ac \Uδ and satisfies

P1µ̄(B)− µ̄(B) = −m(B) (12)

for all sets B ⊂ Ac \Uδ .

Proof: Let the invariant set A be uniformly stable

almost everywhere w.r.t. measure m. Construct the measure

µ̄ as follows

µ̄(B) =
∞

∑
n=0

m(Bn) =
∞

∑
n=0

P
n
1m(B) (13)

where we have used the fact that

P
n
1m(B) = m(T−n(B)∩Ac) = m{x ∈ Ac : T n(x)∈ B}= m(Bn)

Since the invariant set is almost everywhere uniformly stable

(Def.(8)) the series on the right hand side of (13) converges

for every set B by the Cauchy condition for series con-

vergence [9]. µ̄ is finite on Ac \Uδ because for any set

B ⊂ Ac \Uδ and every ε > 0, there exists an integer N such

that

µ̄(B) =
N−1

∑
k=0

m(Bn)+
∞

∑
k=N

m(Bn) <

N−1

∑
k=0

m(Bn)+ ε < K(δ )

Since T is assumed to be non-singular with respect to

measure m, the individual measure P
n
1m(B) are absolutely

continuous with respect to measure m and hence µ̄ ≺ m.

Measure m is absolutely continuous with respect to measure

µ̄ follows from the construction of measure µ̄ and hence

µ̄ is equivalent to measure m. Multiplying (13) on the both

sides by (P1 − I), we get

P1µ̄(B)− µ̄(B) =
∞

∑
n=1

P1m(B)−
∞

∑
n=0

P1m(B) = −m(B)

thus verifying the claim (12) of the theorem.

To prove the necessary part assume that there exists a

measure µ̄ , such that µ̄ ≈ m and is finite on Ac \U(δ ) and

satisfies (12), then we have

(I −P1)µ̄(B) = m(B) =⇒ µ̄(B) = m(B)+P1µ̄(B) (14)

for any set B ⊂ Ac \Uδ . Multiplying both the sides of the

above equality by P1, we get

P1µ̄(B) = P1m(B)+P
2
1µ̄(B) (15)

Substituting (15) in (14) for P1µ̄ , we get

µ̄(B) = m(B)+P1m(B)+P
2
1µ̄(B)

Hence by induction we have

µ̄(B) = P
n
1µ̄(B)+

n

∑
k=0

P
k
1m(B)

Since P
n
1µ̄(B)≥ 0 for all n and µ̄ is finite on Ac \Uδ we get

n

∑
k=0

P
k
1m(B) ≤

n

∑
k=0

P
k
1m(B)+P

n
1µ̄(B) = µ̄(B) < K(δ )

for all n. So for any given set B Pn := ∑
n
k=0 P

n
1m(B), is a

increasing sequence of real numbers which is bounded from

above and and hence from Cauchy condition of series con-

vergence converges which then implies almost everywhere

uniform stability of the invariant set A.

Theorem (13) is similar to the theorem on necessary and

sufficient condition for asymptotically stability of equilib-

rium point in linear systems [3]. The difference here is that

the algebraic Lyapunov equation for verifying asymptotically

stability in linear system is replaced by the infinite dimen-

sional linear equation (12) for verifying almost everywhere

stability in nonlinear system. Equation (12) will be referred

to as Lyapunov measure equation and the positive solution µ̄
if it exists as Lyapunov measure. In theorem (13), the non-

singular measure m, which is of particular interest is the

Lebesgue measure. Another measure which is of particular

interest can be constructed as follows:

mS(·) = m(S∩·)

where m in this case is the Lebesgue measure, so mS is the

Lebesgue measure supported on set S. Measure mS is not

necessarily a non-singular measure, in particular when the

set T (S) is disjoint from S, then mS ◦T−1 is not absolutely

continuous with respect to measure mS. This measure mS can

however be used to characterize the domain of attraction or

to study the local stability of an invariant set A. In particular

one might be interested in almost everywhere stability of an

invariant set A with respect to initial conditions starting from

the set S. This can be defined as follows:

Definition 11: Invariant set A for the dynamical system T :

X → X is said to be Lebesgue almost everywhere uniformly

stable with respect to initial conditions starting from the set

S ⊂ X \Uδ if for any given ε > 0, there exists an N(ε) < ∞

such that
∞

∑
n=N

m{x ∈ S : T n(x) ∈ B} < ε

FrA18.6

4837



for every set B⊂X \Uδ , where m in this case is the Lebesgue

measure.

We have following theorem for the necessary and sufficient

condition for the almost everywhere uniform stability of an

invariant set with respect to almost every initial condition

starting from the set S.

Theorem 12: The invariant set A for the dynamical system

T : X →X is almost everywhere uniformly stable with respect

to initial conditions starting from the set S if and only if

there exists a measure µ̄S which is finite on X \Uδ such that

mS ≺ µ̄S and satisfies

P1µ̄S(B)− µ̄S(B) = −mS(B) (16)

for every set B ⊂ X \Uδ , where mS is the lebesgue measure

supported on set S.

The proof of the above theorem will follow exactly along the

same line as the proof of the main theorem (13). The only

difference been the measure mS will be absolutely continuous

with respect to µ̄ .

Now we prove the theorem for necessary and sufficient

condition for almost everywhere stability with geometric

decay.

Theorem 13: Consider the dynamical system T : X → X ,

assumed to be non-singular with respect to measure m with

an invariant set A ⊂ X and Uδ the δ neighborhood of the

invariant set. The invariant set A is almost everywhere stable

with geometric decay with respect to measure m if and only

if there exists a measure µ̄ which is equivalent to measure

m (µ̄ ≈ m) and is finite on Ac \Uδ and satisfies

αP1µ̄(B)− µ̄(B) = −m(B) (17)

for some α > 1 and every set B ⊂ Ac \Uδ .

Proof: Assume that the invariant set A is stable almost

everywhere with geometric decay then we know that

m(Bn) = P
n
1m(B) < Kβ n (18)

Let β = β1β2, where βi < 1 for i = 1,2, so we have

αn
P

n
1m(B) < Kβ n

2 (19)

where α = β−1
1 > 1. Construct the measure µ̄ as follows

µ̄(B) =
∞

∑
k=0

αk
P

k
1m(B) < K

∞

∑
k=0

β k
2 =

K

1−β2
(20)

This shows that measure µ̄ is finite on Ac \U(δ ). Measure

µ̄ is equivalent to measure m follows by exactly using the

same argument as in theorem (13). Now applying αP1 − I

on both the sides of (20), we get

(αP1 − I)µ̄(B) = −m(B) (21)

Thus verifying the claim. To prove the necessary part, assume

that there exists a measure µ̄ which is finite on Ac \Uδ and

satisfies

(αP1 − I)µ̄(B) = −m(B) =⇒ µ̄(B) = m(B)+αP1µ̄(B) (22)

for some α > 1. Applying αn
P1 on both the sides of above

expression and after simplification, we get

µ̄(B) = αn
P1µ̄(B)+

n

∑
k=0

αn
P

n
1m(B)

Since µ̄ is finite on Ac \Uδ , we have

n

∑
k=0

αn
P

n
1m(B) < αn

P1µ̄(B)+
n

∑
k=0

αn
P

n
1m(B) = µ̄(B) < K(δ )

for all n and hence

P
n
1m(B) < α−nK(δ ) = β nK(δ )

for some β < 1 and hence stability with geometric decay.

In addition to verifying stability and characterizing the

domain of attraction, Lyapunov measure equation and Lya-

punov measure can also be used to characterize the region

of the phase space where system trajectories do not enter.

Characterization of such region using Lyapunov measure

will have important application for motion planning problem,

where one is interested in designing system trajectory to go

from one region of the phase space to another while avoiding

some obstacle set in the phase space. We begin with the

definition of this problem.

Definition 14 (A.e asymptotic steering avoiding obstacle):

The dynamical system T : X → X is said to steer almost

every with respect to Lebesgue measure initial states

starting from the initial set Si ⊂ X \Uδ to the invariant set

A uniformly while avoiding the obstacle set So ⊂ X \Uδ if

1) For every ε > 0 there exists N(ε) < ∞ such that

∞

∑
n=N

m(B
′

n) < ε, ; B
′

n = {x ∈ Si : T n(x) ∈ B}

for every set B ⊂ X \Uδ and Uδ is the δ neighborhood

of the invariant set A.

2) For

Sn
o := {x ∈ Si : T n(x) ∈ So}, m(Sn

o) = 0 ∀n > 0

where m in this case is assumed to be Lebesgue

measure and Si ∩So = /0

So the condition 1. of this definition guarantee that almost

every with respect to Lebesgue measure initial condition

starting from the initial set Si will enter the δ neighborhood

of an invariant set A and condition 2. ensures that the set of

points that enter inside the obstacle set So at any time n > 0 is

a measure zero set. Now we state and prove a theorem which

gives necessary and sufficient condition in terms of Lyapunov

measure for a.e. asymptotic steering avoiding obstacle set.

Theorem 15: The dynamical system T : X → X will steer

almost every initial condition starting from the initial set Si

to the invariant set A uniformly while avoiding the obstacle

set So (Def. 14) if and only if there exists a measure µ̄ , which

is finite on X \Uδ and satisfies following conditions

P1µ̄(B)− µ̄(B) = −mSi
(B) (23)
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for every set B ⊂ X \Uδ and

µ̄(So) = 0 (24)

where mSi
is the Lebesgue measure supported on the initial

set Si.

Proof: Assume that there exists a measure µ̄ finite on

X \Uδ , then by (23), we have

µ̄(B) = P1µ̄(B)+mSi
(B) (25)

Multiplying the above equation from both the sides by P1,

we get

P1µ̄(B) = P
2
1µ̄(B)+P1mSi

(B)

Substituting for P1µ̄(B) in (25), we get

µ̄(B) = P
2
1µ̄(B)+P1m(B)+mSi

(B)

by induction, we have

µ̄(B) = P
n
1µ̄(B)+

n

∑
k=0

P
k
1mSi

(B)

Since µ̄(B) is finite on X \Uδ and P
n
1µ̄(B) ≥ 0 for all n, we

have

n

∑
k=0

P
k
1mSi

(B) < P
n
1µ̄(B)+

n

∑
k=0

P
k
1mSi

(B) = µ̄(B) < K(δ ) < ∞

Since this is true for all n and the individual measure

P
n
1mSi

(B) ≥ 0, we have for any given ε > 0, there exists

an N(ε) such that

n

∑
k=N

P
k
1mSi

(B) < ε

The almost everywhere asymptotic steering from set Si to

the invariant set A follows by using the fact that

P
n
1mSi

(B) = mSi
{x ∈ Ac : T n(x) ∈ B} = m{x ∈ Si : T n(x) ∈ B}

since Si ⊂ X \Uδ ⊂ Ac. To prove that almost every trajectory

do not intersect the obstacle set So, consider that opposite is

true i.e.,

m{x ∈ Si : T n(x) ∈ So} > 0 =⇒ P
n
1mSi

(So) > 0 (26)

for some n > 0. In the first part of the proof we have

proved that the almost every w.r.t. measure m initial condition

starting from the set Si will converge to the invariant set A.

This allows us to write the solution µ̄ for equation (23) as

a infinite series involving iterates of P
n
1 as follows:

µ̄(B) =
∞

∑
n=0

P
n
1mSi

(B)

where µ̄ is finite for all B ⊂ X \Uδ and hence in particular

for B = So, we have from (26)

µ̄(So) =
∞

∑
n=1

P
n
1mSi

(So) > 0

where we have use the fact that mSi
(So) = 0 and (26). This

gives us contradiction to the equation (24) in the theorem.

To prove other way around construct measure µ̄ as follows

µ̄(B) =
∞

∑
n=0

P
n
1mSi

(B) (27)

The measure µ̄ constructed above is finite on X \Uδ because

the invariant set A is assumed to be a.e. uniformly stable with

respect to initial conditions starting from the set Si. Applying

P1 − I on both the sides of (27), we get

P1µ̄(B)− µ̄(B) = −mSi
(B)

thus verifying the claim (23) of the theorem. Now we show

that for the µ̄ constructed above µ̄(So) = 0. This follows

because of the fact that the set of trajectories starting from

the initial conditions from set Si and entering the obstacle

set So has Lebesgue measure zero. Hence we have

Sn
o := {x ∈ Si : T n(x) ∈ So} = 0 ∀n > 0

which implies

P
n
1mSi

(So) = 0 ∀n > 0

which together with the fact that Si ∩So = /0, gives us

µ̄(So) = 0

IV. CONCLUSION AND DISCUSSION

Result on necessary and sufficient condition for the al-

most everywhere uniform stability of an invariant set is

presented. Condition is presented in terms of positive so-

lution (Lyapunov measure) of Lyapunov measure equation.

Lyapunov measure equation thus form the counterpart of

finite dimensional matrix Lyapunov equation, and is used

for verifying weaker notion of almost everywhere stability.

Finite dimensional approximation of the Lyapunov measure

equation and its solution can be obtained using set oriented

numerical methods. Preliminary work in that direction is

already presented in [2]. Lyapunov function and Lyapunov

equation play a very important role in linear control theory,

we believe that the Lyapunov measure equation and Lya-

punov measure will also play a similar important role for

nonlinear systems.
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