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Abstract

Inthis paper, we study controllability of two-dimensional integrable twist maps with bounded area-preserving time-dependent
(control) perturbations. In contrast to the time-independent perturbation case of the Kolmogorov—-Arnold—Moser theorem,
there are no invariant sets other than the whole phase space if the perturbation is made a function of time. We give necessar
and sufficient conditions for global controllability of these maps.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Control of Hamiltonian systems is a topic that has received a lot of attention [dfelBesides the intrinsic
beauty of the subject, this is due to a number of exciting applications such as satellite jngoantum control
[3,4], and control of mixind5,6].

In this paper, we combine the control-theoretical and dynamical systems point of view to study a class of sys-
tems that are well understood from the dynamical systems perspective: perturbations of integrable planar twist
maps[7]. These two-dimensional maps defined on an annulus can arise from discretization of continuous-time
integrable Hamiltonian systems. Integrable twist maps on an annulus have very simple dynamics given by
(x + G(»), y), with G’(y) > 0, wherex andy are the usual Cartesian coordinates on the planexaedcon-
sidered mod 1. Thus, all the initial conditions stay at the sanf@r all time andy = constant is an invariant
manifold for the dynamics. The Kolmogorov—-Arnold—Moser (KAM) theorfgh (in Moser’s version(7]) con-
siders a time-independent perturbation of an integrable twist map. Under the condition that the perturbed map is
area-preserving (in fact that it possesses the so-called intersection property, that is implied by area-preservation)
KAM theorem states that the majority of initial conditions stay on one-dimensional invariant curves close to the
unperturbed invariant curves on whi€tiy) satisfies the Diophantine condition (strong irrationality). Itis commonly
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stated that unperturbed invariant curves that have sufficiently irrational dynamics “persist” under perturbation. The
guestion that we ask here is, how does this change if we allow (bounded) time-dependence of the perturbation? We
prove under weak conditions that, for arbitrarily small time-dependent perturbations, every unperturbed invariant
curve disappears and global controllability is achieved. This is in marked contrast with the KAM result. To study
the controllability of the map we set up the problem in a control-theoretic context.

A question similar to controllability for symplectic maps was aske@]iby Easton et al. 1fil0,11], the problem
of controlling a Hamiltonian system is considered using small control input. A targeting strategy is suggested which
takes advantage of the recurrence property of the system. A similar problem is also addr2ed ire problem
of targeting in restricted three body problem is studied B114] By exploiting the natural dynamics of the system
a low energy transfer trajectory from earth to moon is constructed. Use of the natural (drift, nominal) dynamics of
the system is an important part of the strategy for controllability used here. In fact, the current paper can be seen
as a part of the program of investigation of controllability of conservative systems using bounded control, by using
ergodic properties of the drift (or uncontrolled) dynamics, start¢tiShand described for continuous-time systems
in [16]. A combination of Lie-algebraic methods with ergodic properties (such as recurrence) was used already in
e.g.[17]. Recently, recurrence properties of the drift were usdd&hwhile forced recurrence was usedir®].

This paper is organized as follows. 8ection 2 we define the problem and provide necessary notation and
definitions. The main results follow iBection 3some consequences and examplé&eiation 4and the conclusions
are inSection 5

2. Set-up

In this section, we define two-dimensional mAmn the cylinder4 := S x R, wheres! := R/Z := [0, 1)
denotes the circle. The quotieRyZ is an equivalence class with= y if x — y € Z. AtwistmapF : A — Ais
called integrable if it is of the form:

F(x,2) = (x+ G(2), 2), (2.1)

wherex € $1,z € R, andG/'(z) > 0. For any givert, the circle of the forms* x {z} is invariant under the action
of the map; i.e., for anyx, z) € St x {2}, F"(x,2) € St x {z} Vn € Z.
Two different types of dynamics are possible on each of these invariant circles. For each rational value of
G(2) = p/q, wherep andq are integers, the invariant circl x {z} consists of periodrorbits. For all irrational
values ofG(z) these invariant circles consist of dense orbits.
SinceG (z) is a monotone function, the mdpis simplified by defining a new coordinage= G(z) to obtain the
mapS : A — Aas

S, y) =x+y, ).

We are interested in studying the dynamics of this map subjected to small time-dependent perturbations. Define a
family of discrete time systenig,, : A x U — A parameterized by, € U = [—1, 1] andr € Z whereT,, is of
the following form:

T, Xt _ Xr+1 _ X; + yi + eus f(xg, y) (mod ) ’ 2.2)

t
Vt Vit vr + €usg(xs, yr)

whereu; € U = [—1, 1] and: € Z. We will sometimes calk, an input, or control input in accordance with control
theory literature. We will also sometime cdl), a perturbed map.
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We assume thaf andg are at least’? (differentiable function with continuous derivative) and periodig imith
period one, i.ef(x + 1, y) = f(x, y), gx + 1, y) = g(x, y). We require that the maf2.2) be area-preserving for
anyu, i.e.,DT,|.y) = 1 for any(x, y) and any. Sincef andg are assumed to &', the magT}, : Ax U — Ais
Ct. We know thaDT, l(x,y) = 1forany(x, y) and any and thusT,, is a localC? diffeomorphism. The composition
of mapsT, obtained by applying a sequence of control inpus. . . , uy is denoted by

Tup,...ou0 =Ty 00Ty,

We study the controllability of2.2) as in the following definition.

Definition 2.1. The systen{2.2)is said to be globally controllable if for any given initial st&ig, yo) € .A and any
final state(x¢, yr) € Athere exists a sequence of controlinptgs. . . , ux suchthatly,, ... , uo(xo, yo) = (xf, yf).

For the case of time-independent perturbationsysay 1 for everyr, if the perturbed map satisfies the intersection
property—which is guaranteed by area-preservation—faaddg are analyti¢7] (or C" differentiable; > 4[20])
and periodic inc, many invariant curves of the form= ¢(x) = ¢(x + 1) survive. We show that if the perturbation
is made a function of time, not only do no invariant curve survive, but global controllability can be obtained. In other
words, a sequence of control inpgits} exists which can steer the system from any given initial state to any final state.
We need the following definitions.

Definition 2.2. Let S,j(x) be the set of points reachable frowin k forward steps and ™ (x) the set of points
reachable fromx in any positive number of forward steps. LEJ (x) be the set of points controllable foin &
forward steps and™ (x) be the set of points controllable tan any positive number of steps.

Definition 2.3. The system is backward accessible freif the set of points controllable to (i.e., S~ (x)) has a
nonempty interior. The system is said to be backward accessible if it is backward accessible from all points.

Definition 2.4. A setM C As said to be invariant fof if T, . .,M C M for any sequence of control inputs
{ug, ... ,ur} e U.

Note A set satisfying the above invariance condition is usually called “forward invariant”. This is the only notion
of invariance we need here—since controllability is a forward-in-time notion. For simpler presentation we keep the
current definition.

3. Controllability

Theorem 3.1. Let f andg in the area-preserving twist mg@.2) be C*. Let g also satisfy the following regularity
condition: there exists & > 0 and? > 0 such that

plx e St g, y)| > 9} > 68 foranyfixedy € R, (3.1)

wherep is the Lebesgue measure on a line. TK212) is globally controllable if and only if every periodic orbit
of the unperturbed mafa = 0) is not invariant for the perturbed maj # 0). The parametee can be arbitrarily
small

Proof. The necessary part of the proof is obvious: assume that the condition in the theorem is not satisfied, i.e.,
there exists a periodic orbR of the unperturbed map which is also invariant for the perturbed map. Consider any
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point (x, y) € P. ThenT,, (x,y) € P for anyu, by definition of an invariant set. Hence, from any initial state
(x0, yo) € P only states orP can be reached in any number of steps.
To prove the sufficient condition, we will use the following proposition. O

Proposition 3.2. The area-preserving twist mgg@.2) satisfying the regularity conditio(8.1) is globally control-
lable for arbitrary smalle if and only if the following conditions are satisfied

(1) Forall y € Q\ Z. If g(x, y) = 0,then there exists an integkr € Z* such thatg(xx,, y) # 0, andg(xx, y) = 0
for positivek < k1, wherex, = xg—1 + y + eup—1 f(xk—1, y), With xg = x.
(2) Forall y € Z:
(a) The functionsf andg do not vanish simultaneouslye., | f(x, y)| + |g(x, y)| # Ofor all x € St.
(b) If g(x, y) = 0, then there exists an integés € Z* such thatg(xx,, y) # 0,andg(xx, y) = 0 for positive
k < ko, wherexy = x;_1 + €ug—1 f(xg—1, y), With xo = x.

We prove the sufficient part first. To prove this, we will make useefmas 3.3 and 3.4
Lemma 3.3. The area-preserving twist mdg.2) satisfying the regularity conditio(8.1) is backward accessihle

Proof. Consider any pointx;, y;) € A. We have to show that the set of points controllabléxto ys) contains an
open set. To prove this, we show that there exists a sequence of control{imgussich that the inverse image of
the map under this sequence of control inputs contains an open set. First we consider the cagesviln@tional.
We know the following:

S, YY) = — kY, y)
and
T, 0, y) = {(x,y)  x + y+euf(x, y) — x' = 0; y + eug(x, y) — y = 0}.

Now sinceyy is irrational we know that the inverse images.of, yr) with control inputs zero are densefin} x St
and because of the regularity assump{®i)we know that there exists an integgisuch thatg (xi —koys, yf)| > .
Now consider the inverse image ©f, y;) under the following sequence of control inputs:

ToloS o oS ) = {(r.y) 1 x + y+ euo flx, y) — x* = 0; y + euog(x, y) — y* = 0},
ko—1
wherex* = x; — (ko — 1)yt andy* = ys. Sox andy satisfy
x=x"—y* —eugf(x,y) +euog(x,y),  y=y"—euog(x,y). (3.2)

Sincey* = y; is irrational, we know that there exist an integersuch thafg(x* — k1y*, y*)| > . Now consider
the inverse image afx, y) under the following sequence of control inputs:

x* — y* —euo flx, y) + euog(x, y) — (k1 — D(y* — euog(x, y))

Tu_ll o §— ki1 (x,y) = Tu_ll
y* — €euog(x, y)
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and
T, (1 y1) = {(X,5) 1 ¥+ 5 + eur f(%, 5) — x1 = 0; § + eurg(x, ) — y1 = 0}.
Substituting the value of; andy; from the above expression, we get the following equation to be satisfied by
andy:
X4y +eur f(x, y) — x* + y* — euog(x, y) + euo f(x, y) + (k. — ) (y* — euog(x, y)) =0,
y +eu1g(x, y) — y* + euog(x,y) = 0. (3.3)

So(x, y) satisfyingEqg. (3.3)with (x, y) satisfyingEq. (3.2)are the set of all points which are mappedte, yr)
under the following sequence of maps:

T, loS o oS toT, oS o085, ) = (&, ).
k1—1 ko—1
Now leth = (hq, hp) : Ax U x U — A, where
hi(x,y,uo, u1) =X+ y 4+ eur f(x, y) — x* + y* — euog(x, y) + euo f(x, y) + (kr — D(y* — euog(x, y)),
ha(X,y, uo, u1) =y + eu1g(x, y) — y* + euog(x, y).
Then

and
dh1  dh1
h X 0y
et[ — ] = det Y =1
X, ¥) J(x¢—(ko+kn)y1.31,0,0) oha  0ha

0X 9y (5~ (ko+ka)yt.31.0.0)

Hence, by the implicit function theorem, there exists an open neighbor@oo(uo, 1) = (0, 0) and unique
functions¥; and¥, defined on® and taking values iR such that¥; (0, 0) = x; — (ko + k1) yf, ¥2(0, 0) = yf and

h1(¥1(uo, u1), W2(uo, u1), uo, u1) =0, (3.4)
ho(W1(uo, u1), ¥2(uo, u1), uo, u1) =0 (3.5)

forall (ug, u1) € O. Now we have to show that the imagedwtontains an open set. This is true if detfdlu] o,0) #
0. We know that in the neighborhood 6fp, 1) = (0, 0), we have

2] [311%)-

[ dy an 1t oh
det —} =—det[—} det[—} .
L du J(0.0) MW (e —thotkn)yryr0.0) L0 (e —kotka)yrpr.0.0)

We know that detr/0%] (x —(kg+k1) v, y) = 1. SO we need to show that 0@t du] ; — (kg+k1)yr,.0,0) 7 O:
[ ah]
L 01 (xy—(kotk)1.1.0.0)

wherex1 = x; — koys, X2 = xf — (ko + k1)yf, andy1 = yo = y;. We know that bothg(xs — koys, yf) and
g(xf — (ko + k1) ys, yf) are not equal to zero. Now we can make a choick afhich is sufficiently large such that

det

= 2(f(R1, Y1) (2, 2) — g(F1, 1) f(&2, ¥2) — k1g(F2, F2)g(*1, 71)),
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det[oh /0u] o — ko+k1)y1.35,0,00 # 0. The large choice dfy is always possible because we know that points iterated
unders—! land in the set for whichg| > » infinitely many times. This proves that the inverse imageéxef yr)
contains an open set, whenis irrational.

Now we consider the case whenis rational. In this case, we only need to show that there exists a sequence
of control inputs{u;} such that inverse image @f;, y;) under this sequence contains a pdint y;) such thaty;
is irrational. Once we have proved this, we can show that inverse image contains an open set by using the above
argument for irrationajs .

We know that arbitrary close tg there exists an irrationa}. We write

Yi = yi + dy. (3.6)

Sincey; is irrational we know that inverse images @f, y;) with zero control inputs are dense fip} x S and
hence there exists an integégsandk; such thatig(x; — koyi, yi)| > @ and|g(x; — (ko + k1)y;, yi)| > 0. Let
N = ko + k1 andx; = xt — Ny;. We claim that there exists control input§ € U anduj € U such that

skt Ty 0 skt Tz (xiy yi) = (xt, ¥p). (3.7

Thisimpliesthatinverse image 0ft, yr) contains a pointx;, y;), wherey; isirrational. Define a mapyy;  y,) (41, uo) :
U x U — Aas follows:

Ty (1, ug) = S0 T, 0 S o T, (xi, ).

We show that image of the map contains the peinf yr) and hence there exist§ andu] such tha(3.7)is true:

xi + euy f(xi, yi) + euo fx, y) + (N — Deuig(x;, yi) + (k — Deuog(x, y)
F(x,',y,')(ula 140) = s
yi +eu1g(x;, yi) + euog(x, y)

wherex = x; + k1y; + eu1 f(x;, yi) + (k1 — Deurg(x;, y;) andy = y; + eurg(x;, y;). We know that

T y)(0,0) = (x£, yi),

det[aa—F} = E(f(xi, y)g(X, §) — glxi y) fX, §) + kag(®, $)g(xi, y),
(u1, uo) (0,0)

wherex = x; —koy; andy = y;. Since bothig(x, y)| > 9 and|g(x;, y;)| > ¢, the determinant can be made nonzero
by choosing large value df,. The large choice of; is always possible to make because point iterated usider
lands in the set for whiclg| > ¢ infinitely many times. This proves that is a local diffeomorphism &0, 0) and
maps neighborhood @b, 0) to the neighborhood dfy¢, y;). The area of the image set mapped unbes directly
proportional to the determinant ¢877/3(u1, ug)) and can be made bigger by choosing large valug, 050 by
choosings, sufficiently small and; sufficiently large we can ensure that the pdit yr) belongs to the image of
I" and hence there exists control inpufse U andu} € U such thatly, y,) (u3, ug) = (xf, yf). O

The open set of points from whidl, y;) is reachable can without loss of generality be assumed to be an open
rectangle.

Lemma 3.4. Consider the area-preserving twist méh?2) satisfying the regularity conditio(8.1) and conditions
1 and 2 of Proposition 3.2Given any initial statexg, yo) € A, there exists a finite sequence of control inputs
{uo, ... ,u¢—1} such thaty, is irrational and arbitrarily close toyo, where(x¢, y¢) = Ty, ;... uo(*0, y0)-
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Proof. If ygis irrational, ther? = 0. If yg is rational, then we can consider two different cagésy, yo) = 0 and
g(x0, yo) # O:

e Wheng(xo, yo) # 0, theny1 = yo+€upg(xo, yo) can be chosen to be irrational by properly selecting the value of
uop. Since irrational numbers are dense in1f) y1 can be made arbitrarily close tg by makingug sufficiently
small. So for this casé = 1.

e Whenyy is rational and;(xo, yo) = 0, we can again consider two different cases: noninteger ratigralQ \ Z
and integety € Z.

o Whenyp € Q\ Z and g(xo, yo) = 0, then there exists an integer € Z* such thatg(xx,, yo) # O for

(Xky, Yo) = Mkl 1.....up (X0, ¥0). With g(xkl, Yk, = Yo) # 0, yr,+1 can be made irrational with proper choice
of uy,, since

Viq+1 = Ykg + €Ur, 8(Xky, ¥0),

whereyy, +1 can be made arbitrarily close $g by makinguy, sufficiently small and hence= k; + 1 for this
case.

o Whenyg € Z andg(xp, yo) = 0, thenf andg do not vanish simultaneously and there exists an integerZ*
such thatg(xx,, yo) # 0 for (xk,, y0) = Tuy, ... .uo(x0, y0). With g(xk,, yk, = y0) # 0, yk+1 can be made
irrational with proper choice afy,:

Vio+1 = Ykp + €Uk, 8(Xky, Y0,

wherey,+1 can be made arbitrarily close 1@ = yi, by makinguy, sufficiently small. O

The control strategy consists of the following ($&g. 1): from (xo, yo) getto(x,, y¢) usingLemma 3.4hen turn
on the input (either positive or negative depending upon whether ys or y; > yf andg(x, y) > 0org(x, y) < 0)
wheneverig(x, y)| > ¢ until y, € V,, where), denotes projection of the open rectanyléo the y axis. Once
Yk € V), input is made zero untity € V.. With x; € Vy andy, € V), (x¢, yi) € V C U, hence, the system can
make the transition tax;, yf) by Lemma 3.3 The detailed proof of this mechanism follows.

Proof of Proposition 3.2. Let (xg, yo) and(xs, y;) be the initial and final state, respectively. Since the system is
backward accessible hyemma 3.4 the set of pointé/ controllable to(xs, yf) contains an open set; hence there
exists an open rectangleC U. Letr1(V) = V, andma(V) =V, wherer is a projection map ang; (x1, x2) = x;

for i = 1,2. We will show that there exists a sequence of indut$ such thatry(Ty,, ... u,(x0, y0)) € V, and
ﬂZ(Tuk,... ,uo(xo’ Y0)) € Vy-

,,,,,

By Lemma3.3

J @ (Xf!Yf)

By Lemma3.4

(X0,%

Fig. 1. Use of Lemmas 3.3 and 3.4 in the proof of controllability.
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Starting with theinitial state (xg, yo), we know by Lemma 3.4 that by using asequence of inputsuo, u1, ... , ug—1
the system can get to (x,, y,) such that y, isirrational. Let y € V, besuchthat y — y, =: p isarational number
andletm € Z* besuchthat p/m = a € (—e¥, €). With y, irrationa the orbit of the rotation map given by

Xyl =x+y (mod 1) (3.8)

isdensein |0, 1) for y; = y,; hence, thereexistsaninteger k1 —1 suchthat |g(x¢4k,—1, Ye+k—1 = ye)| > ¥ sincethe
setof points{x € ST : |g(x, yo)| > ¥} isof positive measure by theregularity assumption. With |g(x¢4x,—1, ye)| > ¢
input ¢4k, —1 can be chosen so that

YVetky = Ytk -1+ o =y +a.

Now yeyk, isstill irrational because yo4,—1 isirrational and « is rational. So again the orbit of the rotation map
given by

Xv1=x+y (mod 1)

isdensein [0, 1); hence, there exists an integer k2 such that |g(xp4ky+ko—1, Yetki+ko—1 = Ye+ky)| > ¥ and, with
proper choice of w4k, +k,—1, We have

Vetkithky = YVetki+ko—1 T O = Yotk + 0 = Yo + 20,
With e, 4k, irrational; the above procedure can be repeated m — 2 more times to get
YK =Y,

where K = ¢+ """ ki. Now yx = y € V, isasoirrational. With y irrational, the orbit of the rotation map given
by

X1 =x+y (mod 1)

isdensein [0, 1) and hence there exists an integer n such that xxy, € V. With xgy, € Vy and yg4n, = yx €
Vy, (Xk4n, Yk+n) € V C U, the system is controllable, since all the points of I/ are controllable to (x¢, yf).

Now we show that the conditions in the proposition are also necessary for the controllability. Assume that
the condition 1 is not satisfied; i.e., thereis a point (x, y) suchthat y € Q \ Z, g(xx, y) = 0 for every x; =
Xp—1+ Y + €up—1 f(xk—1, y), with xo = x. Then the set of points reachable from (x, y) isasubset of y = y.

Assume that condition 2ais not true; i.e., thereexists ¥ € ST and y € Z such that f(%, ) = g(%, ) = 0; then

x1=X+y+euof(x, y)(mod 1) =%, y1=7y+euog(x,y) =y. (39

S0 (x, y) isafixed point of the map and the system is uncontrollable from (x, y).
Assume that condition 2ais true but condition 2b is not true; thereisapoint (x, y) suchthat y € Z, g(xx, y) =0
for every xp = xx—1 + €ur—1f(xx—1, y). Then the set of points reachable from (x, y) isasubset of y = ¥. O

Proof of Theorem 3.1. Necessity is already proven. For sufficiency, we need to show that if every periodic orbit
of the unperturbed map (¢ = 0) is not invariant for the perturbed map (¢ # 0) then conditions 1 and 2a-b of
Proposition 3.2 are satisfied. These conditions in turn imply controllability.

We start with the easiest, condition 2a. Assume that every periodic orbit of the unperturbed map (¢ = 0) is not
invariant for the perturbed map (e # 0). Thisimplies condition 2a, sinceif for some y € Z, x € St the functions f
and g vanish simultaneously, then that fixed point (or equivalently 0-period orbit) is invariant under the perturbed
map and we get a contradiction.
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We prove condition 2b by contradiction, i.e., assume that there exists y € Z, x € S such that g(x, y) = 0, and
thereisnointeger k € Z* suchthat g(xy, y) # O, where x; = xx_1 + eug_1 f(xx—1, ), with xg = x. Therearetwo
cases:

(1) Consider firstthe possibility that thereisk (and theassociated set of inputsug, u1, . .. , ug—1) suchthat |x; —x| >
1, where the difference x; — x is not taken mod 1. We know that g(%, y) > O for some ¥ € ST by the
regularity condition. But since the orbit x; = x;_1 + eur—1 f(xr—1, y) makesthe full circle, there must exist
xp and x, such that x, is reached from x and x;, — x, = eu; f(x,, ) and x lies on the arc between x;, and x,
traversed in the direction of the orbit. But then u;; € U can be chosen so that X = x, + €u;1 f(x4, ¥) giving a
contradiction.

(2) The second possihility is that, for any sequence of inputs x; = x;_1 + eug—1 f(xx—1, ¥) liesin some bounded
arc on S. In this case, consider the sequence Xy = ¥x_1 + €f(Xx—1, y) obtained with constant input u; = 1.
It is sufficient to consider the case when f does not change sign on this orbit since if it did change sign on
two consecutive points x, and x; on the orbit then there would be a point x lying on the arc between x, and
xp traversed in the direction of the orbit such that f(x, y) = 0. x could be reached from x, by some input u;,
by x = x, + €u; f(x4, ¥), giving a contradiction. Thus, take f positive without loss of generality. Then X; isa
monotonically increasing bounded sequence and it converges to some x*. But it is clear that by convergence
and continuity of £, f(Xx*, y) = 0, and since by assumption g(xx, y) = O, it follows that g(x*, y) = 0 and thus
(x*, y) isafixed point for the perturbed map—a contradiction.

Thus, we have proven that conditions 2a—b hold. Now we show that condition 1 isalso implied by nonpersistence
of unperturbed periodic orbits.

Assume there are y = p/q € Q \ Z,x € S such that there is no integer k € Z* such that g(x;, y) #
0, where x; = x3—1 + ¥ + eup—1 f(xx—1, y), with xg = x. Consider the arc A between x and x + y(mod 1)
traversed in the direction of the orbit. There are again two possibilities: first, there exists a sequence of inputs
uo, u1, ... , ug—1 such that the whole arc is traversed by the sequence xx = xx—1 + y + €ur—1f(xxk—1, y) (note
that some of these inputs could be zero). Thereis a periodic orbit of the unperturbed map such that for some point
on that orbit ¢ # 0. There is also a point of this orbit x that is within the arc A. We can find two points of the
sequence X1, Xx2, X2 = Xx1 + €up f(Xr1, y) such that x is on the arc between X1, X2 traversed in the direction
of the orbit x;. Then it is possible to change the input u; to obtain X = Xx1 + eu; f(Xx1, y). Accordingly, it is
possible by a sequence of inputs to reach the periodic orbit on which there is a point for which g # 0, yielding a
contradiction.

The second case is when the arc A cannot be traversed. In this case, we can emulate the argument given in
the second case for the proof of condition 2b and show that there must be a periodic orbit of the unperturbed
map on which both f and g vanish. Since f and g vanish on this periodic orbit of the unperturbed map this
periodic orbit isalso invariant for the perturbed map and hence we obtain a contradiction. To show this, we consider
the sequence of inputs uy = sgn(f(xx, y)), where x; = xp—1 + y + eup—1 f(xx—1, y). Consider the sequence
Xp = Xp—1+ y + eup—1f(xx—1, y) on A obtained using u; = sgn( f(xx, ¥)). By monotonicity and boundedness, it
converges to some x*, and thus f(xx—_1, y) converges to zero. By continuity of f and the assumption on g, both of
them must be zero on the periodic orbit corresponding to x*, yielding a contradiction. O

4. Some consequences and examples

The regularity condition on the perturbation g in the main theorem is not required if the phase space is compact.
On an annulus we have the following corollary.
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Corollary 4.1. Letthe variabley in the area-preserving twist mg@.2) belong to the closed intervid, b], f andg
beC! and for every € [a, b] there exists(y) € S* such thatg(3(y), y)| # 0. Then (2.2) is globally controllable
if and only if every periodic orbit of the unperturbed map is not invariant for the perturbed map

Proof. We only need to show that on the compact domain D = St x [a, b] perturbation g satisfies the regularity
condition, then rest of the proof follows from the proof of the main theorem. Let x*(y) be the angle at which
maX.|g(x, y)| is reached. This maximum is nonzero. It can be shown that the function g(x*(y), y) is a continuous
function of y (for the proof see [21]). Let

gmin = mMin_|g(x*(y), y)I.
vela,0]
This minimum exists and is nonzero due to the fact that |g(x*(y), )| isapositive continuous function on acompact
domain. Let
og

ox

= Mmax
&x max 5

We know that for any fixed y € [a, b] and x € S* suchthat [x* — x| < § (thisisainterval of length 25), we have
1gCx, M| = 18(x™, y)| — 8gxmax = gmin — 8gx max-

Now choose § such that gmin — dgxmax > ¥ > 0. So we have following regularity condition:
wix lgx, y)| > v} > 8 foranyfixedy € [a, b],

where 1 isthe Lebesgue measure. O
The condition of the main theorem is easily satisfied if f does not change sign.

Corollary 4.2. Let f in the area-preserving twist mgg.2) satisfy
|f| > 91> 0.

Let g also satisfy the regularity conditiof2.2). Then(2.2) is globally controllable for arbitrarily smalk.

Proof. Obvious, since | f| > #1 > 0 no periodic orbit of the unperturbed twist map can be invariant for the
perturbed map. O

A result with less assumptions on the perturbation can be obtained if we relax the condition that the system be
globally controllable to that of approximate global controllability.

Definition 4.3. Thesystem (2.2) issaid to be controllable almost everywhere (a.e.) if for amost every (with respect
to Lebesgue measure) given initial state (xg, yo) and amost every final state (x;, yr) there exists a sequence of
control inputsuo, ... , ux suchthat 7, . ., (xo, y0) = (xf, yf).

Corollary 4.4. Let f andg in the area-preserving twist mg@.2) be C1. Letg also satisfy the regularity condition
(3.1). Then(2.2) is controllable a.e. for arbitrary smak.

Proof. The proof of this corollary can be easily deduced from the proof of Lemma 3.3 and Proposition 3.2. In
particular, we know that (x¢, yf) with ys irrational is backward accessible under the regularity condition (3.1) (see
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proof of Lemma 3.3) and so there is an open set V from which (x;, yf) can be reached by a sequence of inputs.
We also know by the proof of Proposition 3.2 that ) can be reached by a sequence of inputs from any (x;, y;) with
irrational y;. Thus there is a sequence of inputs that takes any initial point with irrational y coordinate to a chosen
final state. We complete the proof by realizing that the set (ST x ) x (ST x I) (where I isthe set of irrationalsin
R) is of full measurein (S x R) x (St x R). O

Example4.5. One of the most studied examples[12] of area-preserving mapsisthe so-called standard map that in
its general form (and our notation allowing for time-dependent inputs) reads

T, Xt _ X141 _ X¢ + yr + euy f(xy) (mod 1) . 4.1)
Yt Vi1 Ve + €uy f(x;)

Itiseasy to check that (4.1) isarea-preserving for any u,. It does not satisfy conditions of Theorem3.1since f = g
inthisexample, and g must vanish for at least one point x for say y = 0. Thus (x, 0) isafixed point for the perturbed
map. However, if the function f isin C* and satisfies the regularity condition:

wix | fGx, y)| > v} >8 foranyfixedy e R,

then it satisfies conditions of Corollary 4.4 and thus the standard map (4.1) is controllable ailmost everywhere.

We can also show that the map (2.2) has strong controllability properties using only one sequence of control
inputs. By this we mean that the system can be steered from arbitrary close to any given initia state to arbitrary
closeto any final state using only one sequence of control inputs.

Theorem 4.6. Let f and g in the area-preserving maf®.2) be C* and letg also satisfy regularity condition
(3.1). Then there is a sequence of control inplits} such that(2.2) has a dense forward orbiMoreover for any
(xi, yi), (xf, yi) there is a subsequence of inpditg«, ui«11, ... , ug+1n} such that there is a trajectory from an
arbitrarily small open neighborhood @f;, y;) to an arbitrarily small open neighborhood ¢fs, yt).

Proof. Fill R with nested intervals of theform (a;, b;),i € Z* suchthat a; > a; 11, b; < biy1 andU; (a;, b;) = R.
We will construct a sequence of control inputs {u}} = {uf, ..., u}y.} which will steer the system from the initial
state (xg, yo) whichisy; closeto (0, g;) to the final state whichisy; closeto (0, a;1.1). The system will be steered
using the sequence of control inputs {u;;} in such away that the orbit starting from initial state (xo, yo) getsy; close
to every point in theinterval (a; 11, b;). Oncethisis done, the statement of the theorem easily follows by choosing
asequence {y;} suchthat y; — Oasi — oc.

Once such ainput sequenceisconstructed it iseasy to show that the system isglobally approximately controllable
with proper initialization of the control input.

We can assumethat yg isirrational and | (0, yo) — (0, a;)| < y;, where |[(x1, y1) — (x2, y2)| = max(|x1 —x2|, |y1 —
v2|) (we say that yg is y; close to ;). Starting from (xo, yo), Set u}( = Ofor k sufficiently large such that the orbit
starting from xo, x; = xo + Kyo, iSy; closeto every pointin {a;} x S1. Since yo isirrational thisis always true. We
also know, because of the regularity condition, that there exists a positive measure set for each {y} x S such that
lg(x, ¥)| > . So select uf{i suchthat y = yr11 = yo + eurg(xk, yo) isy; closeto yo with y irrational and y > yo.

Now continue repeating the above proceduretill the orbit gets y; closeto every point on {b;} x S1. Oncethe orbit
gets y; closeto every point on {b;} x S, again repeat the same procedure but this time select input « such that the
levels yi+1 < yk. Now repeat this new proceduretill the orbit gets y; closeto every point on {a; 11} x S and hence
0, ai+1).
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For the next sequence of inputs the new measure of closeness, y;+1 will be applied. Asy; — 0asi — oo,
repeating this procedure will bring the orbit starting from (xo, yo) arbitrarily close to any point of S* x R.

To prove the last statement of the theorem, select arbitrary (x;, y;), (x¢, yi) and prescribed closeness y. We
know that there exists j € Z* suchthat y; < y and y; € (aj, bj) and ys € (aj, bj). We aso know that there
exists 14,]1l € {ui} and u,jl2 € {u,j(} such that Tu£ ,...,ué,{ui’l},...,{ug}(xo’ ¥0) = (Xnq, ¥ny) isy; closeto (x;, y;) and
T, j {ui—l}w”{ug}(xo, Y0) = (Xny, Ynp) ISV 1closeto (xf, y).- Now if we consider the input sequence starting at

u.nzsm sUps
u,’1l+1 and start from the initial state (x,,, y»,) (which iswithin the prescribed open neighborhood of (x;, y;)), then
T i (Xny, Yu,) Will be within the prescribed open neighborhood (xf, ys). a
+1

Ung e 7’4,11

A simple corollary of the above theorem is that under the designed control input sequence {u;} there can be no
invariant sets of positive measure for the family of maps {7, }.

5. Conclusions

We have proved global controllability of aclass of discrete-time nonlinear, area-preserving mapsusing arbitrarily
small control inputs. The KAM result holds true for time-independent perturbation of integrable twist maps that we
take as our starting point. We proved that when the perturbation is made a function of time, under weak conditions
complete controllability is obtained. Of course, the KAM theorem breaks down when dissipation isintroduced. But
in our setting the perturbation is nondissipative. The only essential difference with the setting of the KAM theorem
isthat the perturbation to integrable twist maps is made time-dependent.

Inthework of [9], inspired by issuesin thetopic of Arnold diffusion, existence of drifting in action of trajectories
in twist maps coupled to a standard map in the “anti-integrable” limit was shown. In our setting, their results
would correspond to the situation where U is a discrete set (e.g. U = {—1, 1}) since the input is obtained from
nondegenerate critical points of a function. With such a set of control inputs, they are able to design trajectories
that start below any given yg and reach any prescribed level y;. It isan interesting question whether controllability
almost everywhere (defined in Section 4) could be achieved using such a discrete set of inputs. It is known that
proving global controllability is equivalent to proving ergodicity of the associated random dynamical systems|[22].
In this sense, we show that small perturbations of the twist maps are uniquely ergodic.

Thecontrol strategy that we pursue stemsfrom [15], where natural dynamics of the system is used to achieve con-
trollability on groups. Given that phase spaces of integrable Hamiltonian systemsarefoliated by lower-dimensional
tori, these methods proveto be quite useful . Generalization to n-degrees of freedom Hamiltonian systemsiscurrently
being pursued.
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