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Abstract

In this paper, we study controllability of two-dimensional integrable twist maps with bounded area-preserving time-dependent
(control) perturbations. In contrast to the time-independent perturbation case of the Kolmogorov–Arnold–Moser theorem,
there are no invariant sets other than the whole phase space if the perturbation is made a function of time. We give necessary
and sufficient conditions for global controllability of these maps.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Control of Hamiltonian systems is a topic that has received a lot of attention lately[1]. Besides the intrinsic
beauty of the subject, this is due to a number of exciting applications such as satellite control[2], quantum control
[3,4], and control of mixing[5,6].

In this paper, we combine the control-theoretical and dynamical systems point of view to study a class of sys-
tems that are well understood from the dynamical systems perspective: perturbations of integrable planar twist
maps[7]. These two-dimensional maps defined on an annulus can arise from discretization of continuous-time
integrable Hamiltonian systems. Integrable twist maps on an annulus have very simple dynamics given by(x, y)→
(x + G(y), y), with G′(y) > 0, wherex andy are the usual Cartesian coordinates on the plane andx is con-
sidered mod 1. Thus, all the initial conditions stay at the samey for all time andy = constant is an invariant
manifold for the dynamics. The Kolmogorov–Arnold–Moser (KAM) theorem[8] (in Moser’s version[7]) con-
siders a time-independent perturbation of an integrable twist map. Under the condition that the perturbed map is
area-preserving (in fact that it possesses the so-called intersection property, that is implied by area-preservation),
KAM theorem states that the majority of initial conditions stay on one-dimensional invariant curves close to the
unperturbed invariant curves on whichG(y) satisfies the Diophantine condition (strong irrationality). It is commonly
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0167-2789/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2003.10.008



U. Vaidya, I. Mezi´c / Physica D 189 (2004) 234–246 235

stated that unperturbed invariant curves that have sufficiently irrational dynamics “persist” under perturbation. The
question that we ask here is, how does this change if we allow (bounded) time-dependence of the perturbation? We
prove under weak conditions that, for arbitrarily small time-dependent perturbations, every unperturbed invariant
curve disappears and global controllability is achieved. This is in marked contrast with the KAM result. To study
the controllability of the map we set up the problem in a control-theoretic context.

A question similar to controllability for symplectic maps was asked in[9] by Easton et al. In[10,11], the problem
of controlling a Hamiltonian system is considered using small control input. A targeting strategy is suggested which
takes advantage of the recurrence property of the system. A similar problem is also addressed in[12]. The problem
of targeting in restricted three body problem is studied in[13,14]. By exploiting the natural dynamics of the system
a low energy transfer trajectory from earth to moon is constructed. Use of the natural (drift, nominal) dynamics of
the system is an important part of the strategy for controllability used here. In fact, the current paper can be seen
as a part of the program of investigation of controllability of conservative systems using bounded control, by using
ergodic properties of the drift (or uncontrolled) dynamics, started in[15] and described for continuous-time systems
in [16]. A combination of Lie-algebraic methods with ergodic properties (such as recurrence) was used already in
e.g.[17]. Recently, recurrence properties of the drift were used in[18] while forced recurrence was used in[19].

This paper is organized as follows. InSection 2, we define the problem and provide necessary notation and
definitions. The main results follow inSection 3, some consequences and examples inSection 4and the conclusions
are inSection 5.

2. Set-up

In this section, we define two-dimensional mapF on the cylinderA := S1 × R, whereS1 := R/Z := [0,1)
denotes the circle. The quotientR/Z is an equivalence class withx ≡ y if x− y ∈ Z. A twist mapF : A→ A is
called integrable if it is of the form:

F(x, z) = (x+G(z), z), (2.1)

wherex ∈ S1, z ∈ R, andG′(z) > 0. For any given̄z, the circle of the formS1 × {z̄} is invariant under the action
of the map; i.e., for any(x, z̄) ∈ S1 × {z̄}, Fn(x, z̄) ∈ S1 × {z̄} ∀n ∈ Z.

Two different types of dynamics are possible on each of these invariant circles. For each rational value of
G(z̄) = p/q, wherep andq are integers, the invariant circleS1 × {z̄} consists of period-q orbits. For all irrational
values ofG(z̄) these invariant circles consist of dense orbits.

SinceG(z) is a monotone function, the mapF is simplified by defining a new coordinatey = G(z) to obtain the
mapS : A→ A as

S(x, y) = (x+ y, y).
We are interested in studying the dynamics of this map subjected to small time-dependent perturbations. Define a
family of discrete time systemsTut : A × U → A parameterized byut ∈ U = [−1,1] andt ∈ Z whereTut is of
the following form:

Tut


 xt
yt


 =


 xt+1

yt+1


 =


 xt + yt + εutf(xt, yt) (mod 1)

yt + εutg(xt, yt)


 , (2.2)

whereut ∈ U = [−1,1] andt ∈ Z. We will sometimes callut an input, or control input in accordance with control
theory literature. We will also sometime callTut a perturbed map.



236 U. Vaidya, I. Mezi´c / Physica D 189 (2004) 234–246

We assume thatf andg are at leastC1 (differentiable function with continuous derivative) and periodic inx with
period one, i.e.f(x + 1, y) = f(x, y), g(x + 1, y) = g(x, y). We require that the map(2.2)be area-preserving for
anyu, i.e.,DTu|(x,y) = 1 for any(x, y) and anyu. Sincef andg are assumed to beC1, the mapTu : A×U → A is
C1. We know thatDTu|(x,y) = 1 for any(x, y) and anyu and thusTu is a localC1 diffeomorphism. The composition
of mapsTu obtained by applying a sequence of control inputsu0, . . . , uk is denoted by

Tuk,... ,u0 := Tuk ◦ · · · ◦ Tu0.

We study the controllability of(2.2)as in the following definition.

Definition 2.1. The system(2.2)is said to be globally controllable if for any given initial state(x0, y0) ∈ A and any
final state(xf , yf ) ∈ A there exists a sequence of control inputsu0, . . . , uk such thatTuk , . . . , u0(x0, y0) = (xf , yf ).

For the case of time-independent perturbations, sayut = 1 for everyt, if the perturbed map satisfies the intersection
property—which is guaranteed by area-preservation—andf andg are analytic[7] (orCr differentiable,r ≥ 4 [20])
and periodic inx, many invariant curves of the formy = φ(x) = φ(x+ 1) survive. We show that if the perturbation
is made a function of time, not only do no invariant curve survive, but global controllability can be obtained. In other
words, a sequence of control inputs{ut} exists which can steer the system from any given initial state to any final state.

We need the following definitions.

Definition 2.2. Let S+
k (x) be the set of points reachable fromx in k forward steps andS+(x) the set of points

reachable fromx in any positive number of forward steps. LetS−
k (x) be the set of points controllable tox in k

forward steps andS−(x) be the set of points controllable tox in any positive number of steps.

Definition 2.3. The system is backward accessible fromx if the set of points controllable tox (i.e.,S−(x)) has a
nonempty interior. The system is said to be backward accessible if it is backward accessible from all points.

Definition 2.4. A setM ⊂ A is said to be invariant forT if Tuk,... ,u0M ⊂ M for any sequence of control inputs
{u0, . . . , uk} ∈ U.

Note. A set satisfying the above invariance condition is usually called “forward invariant”. This is the only notion
of invariance we need here—since controllability is a forward-in-time notion. For simpler presentation we keep the
current definition.

3. Controllability

Theorem 3.1. Letf andg in the area-preserving twist map(2.2)beC1. Letg also satisfy the following regularity
condition: there exists aδ > 0 andϑ > 0 such that

µ{x ∈ S1 : |g(x, y)| > ϑ} > δ for any fixedy ∈ R, (3.1)

whereµ is the Lebesgue measure on a line. Then(2.2) is globally controllable if and only if every periodic orbit
of the unperturbed map(ε = 0) is not invariant for the perturbed map(ε �= 0). The parameterε can be arbitrarily
small.

Proof. The necessary part of the proof is obvious: assume that the condition in the theorem is not satisfied, i.e.,
there exists a periodic orbitP of the unperturbed map which is also invariant for the perturbed map. Consider any
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point (x, y) ∈ P . ThenTut (x, y) ∈ P for any ut by definition of an invariant set. Hence, from any initial state
(x0, y0) ∈ P only states onP can be reached in any number of steps.

To prove the sufficient condition, we will use the following proposition. �

Proposition 3.2. The area-preserving twist map(2.2)satisfying the regularity condition(3.1) is globally control-
lable for arbitrary smallε if and only if the following conditions are satisfied:

(1) For all y ∈ Q \Z. If g(x̄, y) = 0, then there exists an integerk1 ∈ Z+ such thatg(xk1, y) �= 0, andg(xk, y) = 0
for positivek < k1, wherexk = xk−1 + y + εuk−1f(xk−1, y), with x0 = x̄.

(2) For all y ∈ Z:
(a) The functionsf andg do not vanish simultaneously; i.e., |f(x, y)| + |g(x, y)| �= 0 for all x ∈ S1.
(b) If g(x̄, y) = 0, then there exists an integerk2 ∈ Z+ such thatg(xk2, y) �= 0, andg(xk, y) = 0 for positive

k < k2, wherexk = xk−1 + εuk−1f(xk−1, y), with x0 = x̄.

We prove the sufficient part first. To prove this, we will make use ofLemmas 3.3 and 3.4.

Lemma 3.3. The area-preserving twist map(2.2)satisfying the regularity condition(3.1) is backward accessible.

Proof. Consider any point(xf , yf ) ∈ A. We have to show that the set of points controllable to(xf , yf ) contains an
open set. To prove this, we show that there exists a sequence of control inputs{uk} such that the inverse image of
the map under this sequence of control inputs contains an open set. First we consider the case whereyf is irrational.
We know the following:

S−k(x′, y′) = (x′ − ky′, y′)

and

T−1
u (x′, y′) = {(x, y) : x+ y + εuf(x, y)− x′ = 0; y + εug(x, y)− y′ = 0}.

Now sinceyf is irrational we know that the inverse images of(xf , yf )with control inputs zero are dense in{yf }×S1

and because of the regularity assumption(3.1)we know that there exists an integerk0 such that|g(xf −k0yf , yf )| > ϑ.
Now consider the inverse image of(xf , yf ) under the following sequence of control inputs:

T−1
u0

◦ S−1 ◦ · · · ◦ S−1︸ ︷︷ ︸
k0−1

(xf , yf ) = {(x, y) : x+ y + εu0f(x, y)− x∗ = 0; y + εu0g(x, y)− y∗ = 0},

wherex∗ = xf − (k0 − 1)yf andy∗ = yf . Sox andy satisfy

x = x∗ − y∗ − εu0f(x, y)+ εu0g(x, y), y = y∗ − εu0g(x, y). (3.2)

Sincey∗ = yf is irrational, we know that there exist an integerk1 such that|g(x∗ − k1y
∗, y∗)| > ϑ. Now consider

the inverse image of(x, y) under the following sequence of control inputs:

T−1
u1

◦ S−(k1−1)(x, y)= T−1
u1


 x∗ − y∗ − εu0f(x, y)+ εu0g(x, y)− (k1 − 1)(y∗ − εu0g(x, y))

y∗ − εu0g(x, y)




≡ T−1
u1


 x1

y1



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and

T−1
u1
(x1, y1) = {(x̄, ȳ) : x̄+ ȳ + εu1f(x̄, ȳ)− x1 = 0; ȳ + εu1g(x̄, ȳ)− y1 = 0}.

Substituting the value ofx1 andy1 from the above expression, we get the following equation to be satisfied byx̄

andȳ:

x̄+ ȳ + εu1f(x̄, ȳ)− x∗ + y∗ − εu0g(x, y)+ εu0f(x, y)+ (k1 − 1)(y∗ − εu0g(x, y)) = 0,

ȳ + εu1g(x̄, ȳ)− y∗ + εu0g(x, y) = 0. (3.3)

So(x̄, ȳ) satisfyingEq. (3.3)with (x, y) satisfyingEq. (3.2)are the set of all points which are mapped to(xf , yf )

under the following sequence of maps:

T−1
u1

◦ S−1 ◦ · · · ◦ S−1︸ ︷︷ ︸
k1−1

◦ T−1
u0

◦ S−1 ◦ · · · ◦ S−1︸ ︷︷ ︸
k0−1

(xf , yf ) = (x̄, ȳ).

Now leth = (h1, h2) : A× U × U → A, where

h1(x̄, ȳ, u0, u1) = x̄+ ȳ + εu1f(x̄, ȳ)− x∗ + y∗ − εu0g(x, y)+ εu0f(x, y)+ (k1 − 1)(y∗ − εu0g(x, y)),

h2(x̄, ȳ, u0, u1) = ȳ + εu1g(x̄, ȳ)− y∗ + εu0g(x, y).

Then

h(xf − (k0 + k1)yf , yf ,0,0) = 0

and

det

[
∂h

∂(x̄, ȳ)

]
(xf −(k0+k1)yf ,yf ,0,0)

= det



∂h1

∂x̄

∂h1

∂ȳ

∂h2

∂x̄

∂h2

∂ȳ



(xf −(k0+k1)yf ,yf ,0,0)

= 1.

Hence, by the implicit function theorem, there exists an open neighborhoodO of (u0, u1) = (0,0) and unique
functionsΨ1 andΨ2 defined onO and taking values inR such that,Ψ1(0,0) = xf − (k0 + k1)yf , Ψ2(0,0) = yf and

h1(Ψ1(u0, u1), Ψ2(u0, u1), u0, u1) = 0, (3.4)

h2(Ψ1(u0, u1), Ψ2(u0, u1), u0, u1) = 0 (3.5)

for all (u0, u1) ∈ O. Now we have to show that the image ofΨ contains an open set. This is true if det[dΨ/du](0,0) �=
0. We know that in the neighborhood of(u0, u1) = (0,0), we have[

dh

du

]
=

[
∂h

∂u

]
+

[
∂h

∂Ψ

] [
dΨ

du

]
= 0,

det

[
dΨ

du

]
(0,0)

= −det

[
∂h

∂Ψ

]−1

(xf −(k0+k1)yf ,yf ,0,0)
det

[
∂h

∂u

]
(xf −(k0+k1)yf ,yf ,0,0)

.

We know that det[∂h/∂Ψ ](xf −(k0+k1)yf ,yf ) = 1. So we need to show that det[∂h/∂u](xf −(k0+k1)yf ,yf ,0,0) �= 0:

det

[
∂h

∂u

]
(xf −(k0+k1)yf ,yf ,0,0)

= ε2(f(x̃1, ỹ1)g(x̃2, ỹ2)− g(x̃1, ỹ1)f(x̃2, ỹ2)− k1g(x̃2, ỹ2)g(x̃1, ỹ1)),

where x̃1 = xf − k0yf , x̃2 = xf − (k0 + k1)yf , and ỹ1 = ỹ2 = yf . We know that bothg(xf − k0yf , yf ) and
g(xf − (k0 + k1)yf , yf ) are not equal to zero. Now we can make a choice ofk1 which is sufficiently large such that
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det[∂h/∂u](xf −(k0+k1)yf ,yf ,0,0) �= 0. The large choice ofk1 is always possible because we know that points iterated
underS−1 land in the set for which|g| > ϑ infinitely many times. This proves that the inverse image of(xf , yf )

contains an open set, whenyf is irrational.
Now we consider the case whenyf is rational. In this case, we only need to show that there exists a sequence

of control inputs{uk} such that inverse image of(xf , yf ) under this sequence contains a point(xi, yi) such thatyi
is irrational. Once we have proved this, we can show that inverse image contains an open set by using the above
argument for irrationalyf .

We know that arbitrary close toyf there exists an irrationalyi. We write

yf = yi + δy. (3.6)

Sinceyi is irrational we know that inverse images of(xf , yi) with zero control inputs are dense in{yi} × S1 and
hence there exists an integersk0 andk1 such that|g(xf − k0yi, yi)| > ϑ and |g(xf − (k0 + k1)yi, yi)| > ϑ. Let
N = k0 + k1 andxi = xf − Nyi. We claim that there exists control inputsu∗

0 ∈ U andu∗
1 ∈ U such that

Sk0−1 ◦ Tu∗
0
◦ Sk1−1 ◦ Tu∗

1
(xi, yi) = (xf , yf ). (3.7)

This implies that inverse image of(xf , yf )contains a point(xi, yi), whereyi is irrational. Define a mapΓ(xi,yi)(u1, u0) :
U × U → A as follows:

Γ(xi,yi)(u1, u0) = Sk0−1 ◦ Tu0 ◦ Sk1−1 ◦ Tu1(xi, yi).

We show that image of the map contains the point(xf , yf ) and hence there existsu∗
0 andu∗

1 such that(3.7) is true:

Γ(xi,yi)(u1, u0) =

 xf + εu1f(xi, yi)+ εu0f(x, y)+ (N − 1)εu1g(xi, yi)+ (k − 1)εu0g(x, y)

yi + εu1g(xi, yi)+ εu0g(x, y)


 ,

wherex = xi + k1yi + εu1f(xi, yi)+ (k1 − 1)εu1g(xi, yi) andy = yi + εu1g(xi, yi). We know that

Γ(xi,yi)(0,0) = (xf , yi),

det

[
∂Γ

∂(u1, u0)

]
(0,0)

= ε2(f(xi, yi)g(x̃, ỹ)− g(xi, yi)f(x̃, ỹ)+ k1g(x̃, ỹ)g(xi, yi)),

wherex̃ = xf −k0yi andỹ = yi. Since both|g(x̃, ỹ)| > ϑ and|g(xi, yi)| > ϑ, the determinant can be made nonzero
by choosing large value ofk1. The large choice ofk1 is always possible to make because point iterated underS−1

lands in the set for which|g| > ϑ infinitely many times. This proves thatΓ is a local diffeomorphism at(0,0) and
maps neighborhood of(0,0) to the neighborhood of(xf , yi). The area of the image set mapped underΓ is directly
proportional to the determinant of(∂Γ/∂(u1, u0)) and can be made bigger by choosing large value ofk1. So by
choosingδy sufficiently small andk1 sufficiently large we can ensure that the point(xf , yf ) belongs to the image of
Γ and hence there exists control inputsu∗

0 ∈ U andu∗
1 ∈ U such thatΓ(xi,yi)(u

∗
1, u

∗
0) = (xf , yf ). �

The open set of points from which(xf , yf ) is reachable can without loss of generality be assumed to be an open
rectangleV.

Lemma 3.4. Consider the area-preserving twist map(2.2)satisfying the regularity condition(3.1)and conditions
1 and 2 of Proposition 3.2. Given any initial state(x0, y0) ∈ A, there exists a finite sequence of control inputs
{u0, . . . , u'−1} such thaty' is irrational and arbitrarily close toy0, where(x', y') = Tu'−1,... ,u0(x0, y0).
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Proof. If y0 is irrational, then' = 0. If y0 is rational, then we can consider two different cases:g(x0, y0) = 0 and
g(x0, y0) �= 0:

• Wheng(x0, y0) �= 0, theny1 = y0+εu0g(x0, y0) can be chosen to be irrational by properly selecting the value of
u0. Since irrational numbers are dense in [0,1), y1 can be made arbitrarily close toy0 by makingu0 sufficiently
small. So for this case' = 1.

• Wheny0 is rational andg(x0, y0) = 0, we can again consider two different cases: noninteger rationaly0 ∈ Q \ Z

and integery0 ∈ Z.
◦ Wheny0 ∈ Q \ Z andg(x0, y0) = 0, then there exists an integerk1 ∈ Z+ such thatg(xk1, y0) �= 0 for
(xk1, y0) = Tuk1−1,... ,u0(x0, y0). With g(x

k1
, yk1 = y0) �= 0, yk1+1 can be made irrational with proper choice

of uk1, since

yk1+1 = yk1 + εuk1g(xk1, y0),

whereyk1+1 can be made arbitrarily close toy0 by makinguk1 sufficiently small and hence' = k1 + 1 for this
case.

◦ Wheny0 ∈ Z andg(x0, y0) = 0, thenf andg do not vanish simultaneously and there exists an integerk2 ∈ Z+

such thatg(xk2, y0) �= 0 for (xk2, y0) = Tuk2−1,... ,u0(x0, y0). With g(xk2, yk2 = y0) �= 0, yk2+1 can be made
irrational with proper choice ofuk2:

yk2+1 = yk2 + εuk2g(xk2, y0),

whereyk2+1 can be made arbitrarily close toy0 = yk2 by makinguk2 sufficiently small. �

The control strategy consists of the following (seeFig. 1): from (x0, y0) get to(x', y') usingLemma 3.4then turn
on the input (either positive or negative depending upon whethery' < yf ory' > yf andg(x, y) > 0 org(x, y) < 0)
whenever|g(x, y)| > ϑ until yk ∈ Vy, whereVy denotes projection of the open rectangleV to they axis. Once
yk ∈ Vy, input is made zero untilxk ∈ Vx. With xk ∈ Vx andyk ∈ Vy, (xk, yk) ∈ V ⊂ U; hence, the system can
make the transition to(xf , yf ) by Lemma 3.3. The detailed proof of this mechanism follows.

Proof of Proposition 3.2. Let (x0, y0) and(xf , yf ) be the initial and final state, respectively. Since the system is
backward accessible byLemma 3.4, the set of pointsU controllable to(xf , yf ) contains an open set; hence there
exists an open rectangleV ⊂ U. Letπ1(V) = Vx andπ2(V) = Vy whereπ is a projection map andπi(x1, x2) = xi

for i = 1,2. We will show that there exists a sequence of inputs{ut} such thatπ1(Tuk,... ,u0(x0, y0)) ∈ Vx and
π2(Tuk,... ,u0(x0, y0)) ∈ Vy.

x0 ,y0( )

xl
,yl( )

xf ,yf( )
By Lemma 3.3

By Lemma 3.4

Fig. 1. Use of Lemmas 3.3 and 3.4 in the proof of controllability.
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Starting with the initial state (x0, y0), we know by Lemma 3.4 that by using a sequence of inputs u0, u1, . . . , u'−1

the system can get to (x', y') such that y' is irrational. Let ȳ ∈ Vy be such that ȳ − y' =: p is a rational number
and let m ∈ Z+ be such that p/m = α ∈ (−εϑ, εϑ). With y' irrational the orbit of the rotation map given by

xt+1 = xt + yt (mod 1) (3.8)

is dense in [0, 1) for yt = y'; hence, there exists an integer k1−1 such that |g(x'+k1−1, y'+k1−1 = y')| > ϑ since the
set of points {x ∈ S1 : |g(x, y')| > ϑ} is of positive measure by the regularity assumption. With |g(x'+k1−1, y')| > ϑ
input u'+k1−1 can be chosen so that

y'+k1 = y'+k1−1 + α = y' + α.
Now y'+k1 is still irrational because y'+k1−1 is irrational and α is rational. So again the orbit of the rotation map
given by

xt+1 = xt + yt (mod 1)

is dense in [0, 1); hence, there exists an integer k2 such that |g(x'+k1+k2−1, y'+k1+k2−1 = y'+k1)| > ϑ and, with
proper choice of u'+k1+k2−1, we have

y'+k1+k2 = y'+k1+k2−1 + α = y'+k1 + α = y' + 2α,

with y'+k1+k2 irrational; the above procedure can be repeated m− 2 more times to get

yK = ȳ,
whereK = '+∑m

i=1 ki. Now yK = ȳ ∈ Vy is also irrational. With yK irrational, the orbit of the rotation map given
by

xt+1 = xt + yt (mod 1)

is dense in [0, 1) and hence there exists an integer n such that xK+n ∈ Vx. With xK+n ∈ Vx and yK+n = yK ∈
Vy, (xK+n, yK+n) ∈ V ⊂ U, the system is controllable, since all the points of U are controllable to (xf , yf).

Now we show that the conditions in the proposition are also necessary for the controllability. Assume that
the condition 1 is not satisfied; i.e., there is a point (x̄, ȳ) such that ȳ ∈ Q \ Z, g(xk, ȳ) = 0 for every xk =
xk−1 + ȳ + εuk−1f(xk−1, ȳ), with x0 = x̄. Then the set of points reachable from (x̄, ȳ) is a subset of y = ȳ.

Assume that condition 2a is not true; i.e., there exists x̃ ∈ S1 and ỹ ∈ Z such that f(x̃, ỹ) = g(x̃, ỹ) = 0; then

x1 = x̃+ ỹ + εu0f(x̃, ỹ)(mod 1) = x̃, y1 = ỹ + εu0g(x̃, ỹ) = ỹ. (3.9)

So (x̃, ỹ) is a fixed point of the map and the system is uncontrollable from (x̃, ỹ).
Assume that condition 2a is true but condition 2b is not true; there is a point (x̄, ȳ) such that ȳ ∈ Z, g(xk, ȳ) = 0

for every xk = xk−1 + εuk−1f(xk−1, ȳ). Then the set of points reachable from (x̄, ȳ) is a subset of y = ȳ. �

Proof of Theorem 3.1. Necessity is already proven. For sufficiency, we need to show that if every periodic orbit
of the unperturbed map (ε = 0) is not invariant for the perturbed map (ε �= 0) then conditions 1 and 2a–b of
Proposition 3.2 are satisfied. These conditions in turn imply controllability.

We start with the easiest, condition 2a. Assume that every periodic orbit of the unperturbed map (ε = 0) is not
invariant for the perturbed map (ε �= 0). This implies condition 2a, since if for some y ∈ Z, x ∈ S1 the functions f
and g vanish simultaneously, then that fixed point (or equivalently 0-period orbit) is invariant under the perturbed
map and we get a contradiction.
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We prove condition 2b by contradiction, i.e., assume that there exists ȳ ∈ Z, x̄ ∈ S1 such that g(x̄, ȳ) = 0, and
there is no integer k ∈ Z+ such that g(xk, ȳ) �= 0, where xk = xk−1 + εuk−1f(xk−1, ȳ), with x0 = x̄. There are two
cases:

(1) Consider first the possibility that there is k (and the associated set of inputsu0, u1, . . . , uk−1) such that |xk−x̄| >
1, where the difference xk − x is not taken mod 1. We know that g(x̂, ȳ) > 0 for some x̂ ∈ S1 by the
regularity condition. But since the orbit xk = xk−1 + εuk−1f(xk−1, ȳ) makes the full circle, there must exist
xb and xa such that xa is reached from x̄ and xb − xa = εulf(xa, ȳ) and x̂ lies on the arc between xb and xa
traversed in the direction of the orbit. But then ul1 ∈ U can be chosen so that x̂ = xa + εul1f(xa, ȳ) giving a
contradiction.

(2) The second possibility is that, for any sequence of inputs xk = xk−1 + εuk−1f(xk−1, y) lies in some bounded
arc on S1. In this case, consider the sequence x̃k = x̃k−1 + εf(x̃k−1, ȳ) obtained with constant input uk = 1.
It is sufficient to consider the case when f does not change sign on this orbit since if it did change sign on
two consecutive points xa and xb on the orbit then there would be a point x̂ lying on the arc between xa and
xb traversed in the direction of the orbit such that f(x̂, ȳ) = 0. x̂ could be reached from xa by some input ul,
by x̂ = xa + εulf(xa, ȳ), giving a contradiction. Thus, take f positive without loss of generality. Then x̃k is a
monotonically increasing bounded sequence and it converges to some x̃∗. But it is clear that by convergence
and continuity of f, f(x̃∗, ȳ) = 0, and since by assumption g(x̃k, ȳ) = 0, it follows that g(x̃∗, ȳ) = 0 and thus
(x̃∗, ȳ) is a fixed point for the perturbed map—a contradiction.

Thus, we have proven that conditions 2a–b hold. Now we show that condition 1 is also implied by nonpersistence
of unperturbed periodic orbits.

Assume there are ȳ = p/q ∈ Q \ Z, x̄ ∈ S1 such that there is no integer k ∈ Z+ such that g(xk, ȳ) �=
0, where xk = xk−1 + ȳ + εuk−1f(xk−1, ȳ), with x0 = x̄. Consider the arc A between x̄ and x̄ + ȳ(mod 1)
traversed in the direction of the orbit. There are again two possibilities: first, there exists a sequence of inputs
u0, u1, . . . , uk−1 such that the whole arc is traversed by the sequence xk = xk−1 + ȳ + εuk−1f(xk−1, ȳ) (note
that some of these inputs could be zero). There is a periodic orbit of the unperturbed map such that for some point
on that orbit g �= 0. There is also a point of this orbit x̂ that is within the arc A. We can find two points of the
sequence x̃k1, x̃k2, x̃k2 = x̃k1 + εulf(x̃k1, ȳ) such that x̂ is on the arc between x̃k1, x̃k2 traversed in the direction
of the orbit x̃k. Then it is possible to change the input ul to obtain x̂ = x̃k1 + εulf(x̃k1, ȳ). Accordingly, it is
possible by a sequence of inputs to reach the periodic orbit on which there is a point for which g �= 0, yielding a
contradiction.

The second case is when the arc A cannot be traversed. In this case, we can emulate the argument given in
the second case for the proof of condition 2b and show that there must be a periodic orbit of the unperturbed
map on which both f and g vanish. Since f and g vanish on this periodic orbit of the unperturbed map this
periodic orbit is also invariant for the perturbed map and hence we obtain a contradiction. To show this, we consider
the sequence of inputs uk = sgn(f(xk, ȳ)), where xk = xk−1 + ȳ + εuk−1f(xk−1, ȳ). Consider the sequence
x̃k = x̃k−1 + ȳ + εuk−1f(x̃k−1, ȳ) on A obtained using uk = sgn(f(xk, ȳ)). By monotonicity and boundedness, it
converges to some x̃∗, and thus f(xk−1, ȳ) converges to zero. By continuity of f and the assumption on g, both of
them must be zero on the periodic orbit corresponding to x̃∗, yielding a contradiction. �

4. Some consequences and examples

The regularity condition on the perturbation g in the main theorem is not required if the phase space is compact.
On an annulus we have the following corollary.
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Corollary 4.1. Let the variabley in the area-preserving twist map(2.2) belong to the closed interval[a, b], f andg
beC1 and for everyy ∈ [a, b] there exists̃x(y) ∈ S1 such that|g(x̃(y), y)| �= 0. Then, (2.2) is globally controllable
if and only if every periodic orbit of the unperturbed map is not invariant for the perturbed map.

Proof. We only need to show that on the compact domain D = S1 × [a, b] perturbation g satisfies the regularity
condition, then rest of the proof follows from the proof of the main theorem. Let x∗(y) be the angle at which
maxx|g(x, y)| is reached. This maximum is nonzero. It can be shown that the function g(x∗(y), y) is a continuous
function of y (for the proof see [21]). Let

gmin = min
y∈[a,b]

|g(x∗(y), y)|.

This minimum exists and is nonzero due to the fact that |g(x∗(y), y)| is a positive continuous function on a compact
domain. Let

gxmax = max
D

∣∣∣∣∂g∂x
∣∣∣∣ .

We know that for any fixed y ∈ [a, b] and x ∈ S1 such that |x∗ − x| < δ (this is a interval of length 2δ), we have

|g(x, y)| ≥ |g(x∗, y)| − δgxmax ≥ gmin − δgxmax.

Now choose δ such that gmin − δgxmax > ϑ > 0. So we have following regularity condition:

µ{x : |g(x, y)| > ϑ} > δ for any fixed y ∈ [a, b],

where µ is the Lebesgue measure. �

The condition of the main theorem is easily satisfied if f does not change sign.

Corollary 4.2. Letf in the area-preserving twist map(2.2) satisfy

|f | > ϑ1 > 0.

Letg also satisfy the regularity condition(2.2). Then(2.2) is globally controllable for arbitrarily smallε.

Proof. Obvious, since |f | > ϑ1 > 0 no periodic orbit of the unperturbed twist map can be invariant for the
perturbed map. �

A result with less assumptions on the perturbation can be obtained if we relax the condition that the system be
globally controllable to that of approximate global controllability.

Definition 4.3. The system (2.2) is said to be controllable almost everywhere (a.e.) if for almost every (with respect
to Lebesgue measure) given initial state (x0, y0) and almost every final state (xf , yf) there exists a sequence of
control inputs u0, . . . , uk such that Tuk,... ,u0(x0, y0) = (xf , yf).

Corollary 4.4. Letf andg in the area-preserving twist map(2.2) beC1. Letg also satisfy the regularity condition
(3.1). Then(2.2) is controllable a.e. for arbitrary smallε.

Proof. The proof of this corollary can be easily deduced from the proof of Lemma 3.3 and Proposition 3.2. In
particular, we know that (xf , yf) with yf irrational is backward accessible under the regularity condition (3.1) (see
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proof of Lemma 3.3) and so there is an open set V from which (xf , yf) can be reached by a sequence of inputs.
We also know by the proof of Proposition 3.2 that V can be reached by a sequence of inputs from any (xl, yl) with
irrational yl. Thus there is a sequence of inputs that takes any initial point with irrational y coordinate to a chosen
final state. We complete the proof by realizing that the set (S1 × I)× (S1 × I) (where I is the set of irrationals in
R) is of full measure in (S1 × R)× (S1 × R). �

Example 4.5. One of the most studied examples [12] of area-preserving maps is the so-called standard map that in
its general form (and our notation allowing for time-dependent inputs) reads

Tut


 xt
yt


 =


 xt+1

yt+1


 =


 xt + yt + εutf(xt) (mod 1)

yt + εutf(xt)


 . (4.1)

It is easy to check that (4.1) is area-preserving for any ut . It does not satisfy conditions of Theorem 3.1 since f = g
in this example, and gmust vanish for at least one point x̄ for say y = 0. Thus (x̄, 0) is a fixed point for the perturbed
map. However, if the function f is in C1 and satisfies the regularity condition:

µ{x : |f(x, y)| > ϑ} > δ for any fixed y ∈ R,

then it satisfies conditions of Corollary 4.4 and thus the standard map (4.1) is controllable almost everywhere.

We can also show that the map (2.2) has strong controllability properties using only one sequence of control
inputs. By this we mean that the system can be steered from arbitrary close to any given initial state to arbitrary
close to any final state using only one sequence of control inputs.

Theorem 4.6. Let f and g in the area-preserving map(2.2) beC1 and letg also satisfy regularity condition
(3.1). Then there is a sequence of control inputs{uk} such that(2.2) has a dense forward orbit. Moreover, for any
(xi, yi), (xf , yf) there is a subsequence of inputs{uk∗ , uk∗+1, . . . , uk∗+N} such that there is a trajectory from an
arbitrarily small open neighborhood of(xi, yi) to an arbitrarily small open neighborhood of(xf , yf).

Proof. Fill R with nested intervals of the form (ai, bi), i ∈ Z+ such that ai > ai+1, bi < bi+1 and ∪i (ai, bi) = R.
We will construct a sequence of control inputs {uik} = {ui0, . . . , uiNi} which will steer the system from the initial
state (x0, y0) which is γi close to (0, ai) to the final state which is γi close to (0, ai+1). The system will be steered
using the sequence of control inputs {uik} in such a way that the orbit starting from initial state (x0, y0) gets γi close
to every point in the interval (ai+1, bi). Once this is done, the statement of the theorem easily follows by choosing
a sequence {γi} such that γi → 0 as i→ ∞.

Once such a input sequence is constructed it is easy to show that the system is globally approximately controllable
with proper initialization of the control input.

We can assume that y0 is irrational and |(0, y0)−(0, ai)| ≤ γi, where |(x1, y1)−(x2, y2)| = max(|x1 −x2|, |y1 −
y2|) (we say that y0 is γi close to ai). Starting from (x0, y0), set uik = 0 for k sufficiently large such that the orbit
starting from x0, xk = x0 + ky0, is γi close to every point in {ai} × S1. Since y0 is irrational this is always true. We
also know, because of the regularity condition, that there exists a positive measure set for each {y} × S1 such that
|g(x, y)| > ϑ. So select uiki such that ȳ = yk+1 = y0 + εukg(xk, y0) is γi close to y0 with ȳ irrational and ȳ > y0.

Now continue repeating the above procedure till the orbit gets γi close to every point on {bi}×S1. Once the orbit
gets γi close to every point on {bi} × S1, again repeat the same procedure but this time select input u such that the
levels yk+1 < yk. Now repeat this new procedure till the orbit gets γi close to every point on {ai+1} × S1 and hence
(0, ai+1).
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For the next sequence of inputs the new measure of closeness, γi+1 will be applied. As γi → 0 as i → ∞,
repeating this procedure will bring the orbit starting from (x0, y0) arbitrarily close to any point of S1 × R.

To prove the last statement of the theorem, select arbitrary (xi, yi), (xf , yf) and prescribed closeness γ . We
know that there exists j ∈ Z+ such that γj < γ and yi ∈ (aj, bj) and yf ∈ (aj, bj). We also know that there

exists ujn1 ∈ {ujk} and ujn2 ∈ {ujk} such that T
u
j
n1 ,... ,u

j

0,{u
j−1
k

},... ,{u0
k
}(x0, y0) = (xn1 , yn1) is γj close to (xi, yi) and

T
u
j
n2 ,... ,u

j

0,{u
j−1
k

},... ,{u0
k
}(x0, y0) = (xn2 , yn2) is γj close to (xf , yf). Now if we consider the input sequence starting at

u
j

n1+1 and start from the initial state (xn1 , yn1) (which is within the prescribed open neighborhood of (xi, yi)), then
T
u
j
n2 ,... ,u

j

n1+1
(xn1 , yn1) will be within the prescribed open neighborhood (xf , yf). �

A simple corollary of the above theorem is that under the designed control input sequence {uk} there can be no
invariant sets of positive measure for the family of maps {Tuk }.

5. Conclusions

We have proved global controllability of a class of discrete-time nonlinear, area-preserving maps using arbitrarily
small control inputs. The KAM result holds true for time-independent perturbation of integrable twist maps that we
take as our starting point. We proved that when the perturbation is made a function of time, under weak conditions
complete controllability is obtained. Of course, the KAM theorem breaks down when dissipation is introduced. But
in our setting the perturbation is nondissipative. The only essential difference with the setting of the KAM theorem
is that the perturbation to integrable twist maps is made time-dependent.

In the work of [9], inspired by issues in the topic of Arnold diffusion, existence of drifting in action of trajectories
in twist maps coupled to a standard map in the “anti-integrable” limit was shown. In our setting, their results
would correspond to the situation where U is a discrete set (e.g. U = {−1, 1}) since the input is obtained from
nondegenerate critical points of a function. With such a set of control inputs, they are able to design trajectories
that start below any given y0 and reach any prescribed level y1. It is an interesting question whether controllability
almost everywhere (defined in Section 4) could be achieved using such a discrete set of inputs. It is known that
proving global controllability is equivalent to proving ergodicity of the associated random dynamical systems [22].
In this sense, we show that small perturbations of the twist maps are uniquely ergodic.

The control strategy that we pursue stems from [15], where natural dynamics of the system is used to achieve con-
trollability on groups. Given that phase spaces of integrable Hamiltonian systems are foliated by lower-dimensional
tori, these methods prove to be quite useful. Generalization to n-degrees of freedom Hamiltonian systems is currently
being pursued.
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[16] I. Mezić, Controllability, integrability and ergodicity, Multidisciplinary Research in Control: Lecture Notes in Control and Information

Sciences, 2003, pp. 213–229.
[17] V. Jurdjevic, Geometric Control Theory, Cambridge University Press, Cambridge, 1997.
[18] V. Manikonda, P.S. Krishnaprasad, Controllability of a class of underactuated mechanical systems with symmetry, Automatica 38 (2002)

1837–1850.
[19] K.M. Lynch, C.K. Black, Recurrence, controllability, and stabilization of juggling, IEEE Trans. Rob. Autom. 17 (2001) 113–124.
[20] R. Mane, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, New York, 1987.
[21] I. Mezić, Controllability of Hamiltonian system with drift: action-angle variables and ergodic partition, in: Proceedings of the CDC, 2003.
[22] L. Arnold, W. Kliemann, On unique ergodicity for degenerate diffusions, Stochastics 21 (1987) 41–61.


	Controllability for a class of area-preserving twist maps
	Introduction
	Set-up
	Controllability
	Some consequences and examples
	Conclusions
	Acknowledgements
	References


