
Markov Chains, Entropy, and Fundamental Limitations in Nonlinear
Stabilization

Prashant G. Mehta Umesh Vaidya Andrzej Banaszuk

Abstract— This paper is concerned with entropy based funda-
mental limitation results for the nonlinear stabilization problem
of a scalar dynamical system. Using methods based on stochastic
dynamics, we pose the problem as control of Markov chains.
It is shown that uncertainty, associated here with the unstable
eigenvalue of the linearization, leads to fundamental limitations.
These limitations arise as certain in-feasibility conditions for
nonlinear stabilization in the presence of quantization or equiv-
alently as positive conditional entropy of the output signal in
the feedback loop. The former leads to a nonlinear stabilization
result and latter to a fundamental limitation result.

I. INTRODUCTION

The fundamental limitations in the classical control set-
tings address closed-loop system trade-offs and best possible
performance with causal stabilizing feedback. One important
result is the Bode integral formula

1
2π

∫ π

−π

log |S(eiω)|dω =
∑

k

log(pk), (1)

where S(eiω) is the transfer function of the feedback loop
(in Fig. 1) from the disturbance d to output x, and pk are
unstable poles (|pk| > 1) of the open loop plant; cf. Sung and
Hara [1]. S is referred to as the sensitivity function and for
an open-loop plant P and a stabilizing feedback control C,
it is given by S = 1

1+PC ; see Fig. 1. Entropy of the signals
in the feedback loop help provide another interpretation of
the Bode integral formula:

Hc(x)−Hc(d) =
1
2π

∫ π

−π

log |S(eiω)|dω. (2)

Here, Hc(x) and Hc(d) denote the conditional entropy (see
[2], [3]) of the random processes associated with the output
x and disturbance d respectively. Combining Eq. (1) with
Eq. (2), the open-loop unstable poles are seen to lead to a
positive entropy rate. As already noted in [4], the entropy
rates are well-defined even in time-domain and provide for a
framework for studying fundamental limitations in nonlinear
systems. In recent years, several studies have considered the
entropy based extension of Bode formula to nonlinear [4],
[5] and linear systems with communication constraints [6],
[7]. In particular, [5] defines a Dynamical systems based
notion of topological feedback entropy (TFE) and obtains
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Fig. 1. (a) Feedback loop and (b) Sensitivity function.

explicit and tight lower bounds for this in terms of unstable
eigenvalues. A closely related research effort is to quantify
the impact of limited information (quantization) on the linear
[8]–[10] and nonlinear stabilization [11], [12].

In this paper, we present entropy based fundamental limi-
tation results for stabilization of a scalar nonlinear dynamical
system at an unstable equilibrium. The main result appears
in Section V and relates the conditional entropy (of the
output x in Fig. 1) to the log value of unstable eigenvalue
of the linearization taken at the equilibrium. Our original
contribution lies in the framework used for obtaining these
results and in bridging the statistical entropy notion of [4],
[6], [7] with the Dynamical systems notion of the entropy
[5]. In regards to latter, we do not consider the topological
entropy but instead its statistical counterpart, the so-called
measure-theoretic or metric entropy. Our framework uses
in an essential way the concept of Markov chains and the
entropy estimates of our paper are related to the recent work
in [13]. Although, we present only the scalar results here,
the journal version of this paper extends these to the multi-
dimensional state feedback case. We briefly summarize the
framework below.

We employ the methods of Ergodic theory to replace the
deterministic nonlinear dynamical system by its stochastic
counterpart, the so-called linear Perron-Frobenius operator
[14]. There are three advantages to doing so. One, it is
now easier to compute statistical quantities such as entropy
relevant to the study of fundamental limitations. Two, the P-F
operator is linear and analysis becomes much simpler and is
in fact, analogous to the linear control problem. Finally, the
stabilization problem with finite partition, or quantization, is
easily considered using the finite-dimensional discretization
of the P-F operator. This leads to controlled Markov chains.

In the stochastic context, we define the stabilization prob-
lem as shaping of the invariant measure of the controlled
Markov chains. With respect to a finite partition, or quan-
tization, the fundamental limitations arise as a limit on the



maximum probability of the invariant measure or equiva-
lently as a positive conditional entropy of the output x. The
former is related to the in-feasibility of the stabilization in the
presence of finite quantization and latter to the entropy based
fundamental limitations results. The results demonstrate the
important role of uncertainty, due to unstable open-loop
dynamics here, on the feedback control problem. Markov
chains provide for a useful framework to explicitly quantify
this uncertainty.

The outline of this paper is as follows. In Section II,
we present some preliminaries and notation pertaining to
Perron-Frobenius operators for nonlinear dynamical system.
In Section III, we formulate the nonlinear stabilization prob-
lem. In Sections IV and V, we present the fundamental
limitation results in terms of maximum probability and
entropy estimates respectively. Finally, in Section VI, we
provide some conclusions and indicate directions of future
research.

II. PRELIMINARIES & NOTATION

In this paper, discrete scalar mappings of the form

xn+1 = T (xn) (3)

are considered. T : X → Y ⊂ R1 is assumed to be
continuous and X ⊂ R1 is a compact set. B(X) denotes
the Borel σ-algebra on X and M(X) the vector space
of bounded real valued measures on B(X). The stochastic
Perron-Frobenius (P-F) operator for a mapping T : X → X
is given by

P[µ](A) = µ(T−1(A)), (4)

where µ ∈ M(X) and A ∈ B(X). We note that P acts
linearly on the measure space. The invariant measures are the
fixed points of P that are additionally probability measures.
The invariant measure is a stochastic analogue of an attractor
set, such as a stable equilibrium, of the mapping; cf. [14]. For
open-loop unstable systems, it is often important to consider
the a mapping T : X → Y where Y = X ∪ S. If X is
compact and S is T -invariant, then Eq, (4) is well-defined on
the measure space M(X). The resulting operator, however,
is only sub-stochastic in the general case; cf., [15].

In this paper, composition maps of the form T1 ◦ T2 :
X → X will frequently be considered; ◦ denotes the
composition of two nonlinear mappings. It is assumed that
T1 : X → X ∪ S where the set S is T1-invariant, and
T2 : X → X . Suppose P1 and P2 denote the stochastic
operators corresponding to the two mappings T1 and T2.
More precisely, P1 need only be sub-stochastic. If follows
from a simple calculation that the stochastic operator for
T1 ◦ T2 is given by P1 · P2. Just as a P-F operator is
a linear operator on the space of measures, a nonlinear
composition of two mappings lead to linear multiplication
of the corresponding operators.

The stochastic operators act on the space of measures and
are thus infinite-dimensional. By taking a partition of the
compact set X , denoted as XL

.= {D1, · · · , DL} where

∪jDj = X , one can approximate these operators by a finite-
dimensional matrix. On the “measure space” RL associated
with the partition XL, it is given by

Pij =
m(T−1(Dj) ∩Di)

m(Di)
, (5)

m being the Lebesgue measure. This matrix is Markov (row
stochastic) for stochastic P and sub-Markov (with row sum
less than equal to 1) for sub-stochastic P.

The above considerations also extend to a class of ran-
domly perturbed dynamical systems

xn+1 = T (xn, dn), (6)

where dn ∈ D models a stochastic disturbance assumed in
this paper to be i.i.d with probability measure Ω(D). Random
dynamical system arises because one now has a collection
of mappings {Td = T (·, d)}d∈D that are randomly chosen
according to the probability measure Ω. The analogue of the
P-F operator for such a random dynamical system is obtained
by taking an expectation

E[µ(T−1(B, d))] =
∫

D

µ(T−1(B, d))dΩ(d) (7)

with respect to the probability measure Ω [16]–[18]. The
invariant measures are the stochastic analogue of a “random
attractor” of Eq. (6).

III. CONTROL PROBLEM FORMULATION

The stabilization problem is defined by the closed-loop
equation

xn+1 = T ◦ (1 + K)(xn) .= TK(xn), (8)

where T is the plant and 1 + K is the control; 1 denotes
the identity mapping and (1 + K)(xn) = xn + K(xn). In
this paper, it is always assumed that there is a compact set
X ⊂ Rn such that TK : X → X . The composition as well
as the mappings T and K are assumed to be well-defined
for all x ∈ X . The control is said to be inactive if K = 0.

The disturbance rejection problem corresponds to the
random version of the stabilization problem

xn+1 = Td ◦ (1 + Kd)(xn), (9)

where Td and 1 + Kd are random maps. Often,

Td(u) = T (u) + d (10)

where d is a random variable taking values from a given
distribution. In particular, Eq. (10) leads to a disturbance
rejection problem

xn+1 = T ◦ [(1 + K)(xn) + dn)] + dn+1, (11)

where {dn} is disturbance, modeled as an i.i.d random
process.
Example III.1. Consider the feedback loop in Fig. 1 with
linear equations of:

state : zn+1 = a(zn + un),
output : xn = zn + dn,

control : un = k(xn). (12)



The closed-loop equation for the output is given by

xn+1 = a((1 + k)xn − dn) + dn+1. (13)

The disturbance rejection problem in Eq. (11) is thus the
nonlinear generalization of the linear disturbance rejection
problem with full-state feedback. With no disturbance, one
recovers the nonlinear stabilization problem in Eq. (8) as the
special case of Eq. (11).

Denote PT and PK to be the infinite-dimensional P-F op-
erators corresponding to mappings T and 1+K, respectively.
The propagation of measures (in M(X)) for the composition
in Eq. (8) is given by

µn+1 = µnPK · PT , (14)

where the ordering reflects the fact that controller (PK)
acts before the plant (PT ). If control is inactive (K = 0)
then PK = 1, the identity operator. A similar stochastic
description also exists for the composition in Eq. (11), where
the P-F operators now correspond to the random mappings.

This also leads in a natural way to a control problem
expressed in terms of finite-dimensional Markov chains as
follows. Consider XL

.= {D1, · · · , DL}, a finite partition of
X together with the associated measure space RL. Let PT

and PK denote the finite-dimensional sub-Markov or Markov
matrices on this measure space. The Eq. (14) is formally
replaced by its finite-dimensional analogue

µn+1 = µnPK · PT . (15)

A. Stabilization Problem

For the infinite-dimensional case, the stabilization problem
is given by the closed-loop Eq. (8) or its stochastic analogue
in Eq. (14). With a finite partition, the starting point of the
stabilization problem is in fact taken to be the disturbance
rejection problem

xn+1 = Td ◦ (1 + Kd)(xn). (16)

Given a partition XL = {D1, . . . , DL}, we associate a ran-
dom vector D = {∂(1), . . . , ∂(L)}, where ∂(i) is uniformly
distributed perturbation with support on cell Di. Given z ∈
Di ⊂ X , define a random variable

y = z + ∂(|z|), (17)

where |z| = i. Intuitively, ∂(|z|) randomizes the state z
with in the cell. y and z are both located in the same cell
Di and contain the same information modulo the partition.
We call such a random perturbation to be certain w.r.t the
finite partition. In a suitable limit of taking finer partitions,
one recovers the infinite-dimensional problem. We use D to
define Td and Kd for the stabilization problem w.r.t XL:

Td(u) .= T (u) + ∂(|T (u)|),
(1 + Kd)(u) .= (1 + K)(u) + ∂(|(1 + K)(u)|). (18)

As an example, consider a linear expanding map

zn+1 = azn, (19)

where a = 2 is the expansion rate. The control objective is
to stabilize the equilibrium 0. Using Eq. (16) and (18), the
closed-loop equation is given by

xn+1 = a((1+k)(xn)−dn)+dn+1
.= ad(1+kd)(xn), (20)

where (1+k) is a possibly nonlinear control mapping. For the
infinite-dimensional case, the disturbance {dn} is assumed to
be zero. For the finite partition XL, the disturbance is defined
using D. This is illustrated with the aid of a concrete choice
of partition.

Consider two cells D1 = [0, ε], D2 = [ε, 2ε], and denote
X = D1 ∪ D2 and S = (2ε,∞). For Eq. (19), the plant
T : X → X ∪ S, where S is T -invariant. As a result, the
sub-stochastic operator for the restriction T : X → X ∪ S
is well-defined. On X2 = {D1, D2}, the 2 × 2 sub-Markov
matrix is

PT =
[

1/2 1/2
0 0

]
. (21)

With respect to the partition X2, the control objective is to
“stabilize” the cell D1 containing 0. The notion of stability
is stochastic and will be made precise in the following sub-
section. On X2, denote by PK the Markov chain correspond-
ing to control (1+k). The Markov chain for the closed-loop
equation (20) is formally written as

µn+1 = µnPK · PT . (22)

Note that Eq. (22) provides a linear description of Eq. (20)
irrespective of whether 1 + k is linear, nonlinear, or even
stochastic map. As an example, consider

PK =
[

1 0
1 0

]
. (23)

The closed-loop P-F is given by

PK · PT =
[

1/2 1/2
1/2 1/2

]
. (24)

The interpretation here is that PT and PK correspond not
to the deterministic open-loop plant (a) and control (1 +
k) rather the closed-loop Eq. (20) with a suitable choice of
disturbance {∂(1), ∂(2)}. For X2, the random variable ∂(1)
may be constructed as follows. Let r be uniformly distributed
on [0, ε]. For z ∈ D1,

∂(1) = r if z + r < ε,

= r − ε otherwise. (25)

Any particular PK corresponds to numerous deterministic
and random control mappings (1 + k). As an example,
corresponding to PK in Eq. (23), the control may be a linear
gain k = −0.5, a random gain where k is a random variable
chosen from set [−0.5,−1) or a nonlinear quantization based
feedback controller such that

(1 + k)xn = xn for xn ∈ [0, ε]
= xn − ε for xn ∈ (ε, 2ε]. (26)

Finally note that ad(1 + kd) : X → X (in Eq. (20)) for all
these cases. The only invariant measure for PK · PT in this



example is given by [1/2, 1/2]. Formally, this implies that
asymptotically the trajectory goes to cell D1 with probability
1/2, i.e., the cell D1 is not stable in the conventional sense.

B. Objective of Fundamental Limitations

The objective of a fundamental limitations study is to ob-
tain controller-independent performance bounds on stabiliza-
tion and the disturbance rejection problem. For the infinite-
dimensional problem, it is assumed that K is stabilizing, i.e.,

1) T ◦ (1 + K) : X → X for some compact set X ⊂ X ,
2) TK(0) = 0 and 0 is asymptotically stable w.r.t. initial

conditions in X .

For the finite-dimensional problem with partition XL,
one assumes a stabilizing K and considers the disturbance
rejection problem in Eq. (11), where Td and Kd denote the
random perturbations (using D) of T and K respectively.
The following lemma, quoted without proof, clarifies the
relationship between the attractor set of Eq. (11) and the
invariant measure of the discrete formulation PK · PT .

Lemma III.2. Consider a partition XL with disturbance
D. Denote PT and PK as the Markov chains for T and
(1+K) respectively. Suppose, the closed-loop Td◦(1+Kd) :
X → X , and PK · PT has a unique invariant measure
µ = [µ1, . . . , µL]. Then, the output {xn} for the closed-loop
Eq. (11) has a stationary distribution given by

Prob(xn ∈ Di) = µi, (27)

and uniform in Di.

The proof relies on the fact that the discrete Markov chains
PT and PK ares in fact the random perturbations of the maps
T and K; cf., [18]. Here, the disturbance d is chosen so that
PK · PT is the stochastic analogue of Td ◦ (1 + Kd). In the
limit of taking finer partitions, one recovers the stabilization
problem T ◦ (1 + K) and its infinite-dimensional stochastic
analogue PK · PT .

In this paper, fundamental limitations are expressed within
the stochastic framework, i.e., by replacing Td and a given
stabilizing Kd by PT and PK . For this, it is useful to extend
the notion of stability in terms of invariant measures of PK ·
PT as follows.

Definition III.3. Consider a closed-loop system Td ◦ (1 +
Kd) : X → X together with an attractor set A ⊂ X and
a corresponding unique physical invariant measure µ. A set
S ⊂ B(X) is q-stable if

µ(S) = q. (28)

A set S ⊂ B(X) is stable if it is q-stable with q = 1.
Uniqueness of physical measure and µ(S) = 1 implies that
for typical initial conditions x0 ∈ X , asymptotically xn =
(Td◦(1+Kd))n(x0) → S as n →∞ with probability 1; cf.,
[14]. The q-stability provides a weaker notion of stability that
is useful to the study of fundamental limitations in nonlinear
stabilization

Fig. 2. Markov chain where the first row and column are given by Eqs. (29)
and (30) respectively.

IV. STABILIZATION WITH MARKOV CHAINS

In this section, the stabilization problem for a finite
partition is considered. Consider XL = {D1, D2, . . . , DL}
together with a matrix PT whose first row denoted as

[PT ]1 = [p1, p2, . . . , pj , . . . , pL] (29)

is assumed to be given. We assume that PT is either a
Markov or a sub-Markov matrix, so pi ≥ 0 and

∑
i pi ≤ 1.

Additionally, assume that the first column denoted as

[PT ]1 = [p1, 0, . . . , 0]′. (30)

has atmost one non-zero entry p1. The resulting Markov
chain is drawn in Fig. 2. It corresponds to certain dynamical
systems with unstable equilibrium in cell D1. For e.g., the
Markov chain in Eq. (21) has

[1/2, 1/2] ,
[1/2, 0]′ (31)

as its first row and column respectively. For the finite-
dimensional case, the control objective is to design PK to
q-stabilize D1 with maximum possible value of q. For this
problem:

1) Theorem IV.1 present a controller-independent upper
bound on the maximum possible value of q and

2) Theorem IV.2 presents the control (Markov chain PK)
that achieves this bound.

In the following section, we use these results to express fun-
damental limitations for the stabilization problem in Eq. (8).

Theorem IV.1. Consider PT defined on a partition XL with
the structure in Fig. 2 and the first row and column given in
Eqs. (29) and (30) respectively. Let PK denote any control
Markov matrix on XL without additional assumptions on its
structure. If µ = [µ1, . . .] is an invariant measure for the
closed-loop Markov matrix PK · PT then

µ1 ≤ p1, (32)

i.e., the maximum possible value for q-stabilization of D1 is
given by q = p1.



Proof. Let µ = µPK ·PT . Due to the assumption on the first
column of PT (see Eq. (30)),

µ1 =< µ, [PK ]1 > p1, (33)

where [PK ]1 denotes the first column of the Markov chain
PK and <,> denotes the standard inner product for the two
vectors. If µ is a probability measure then

∑
i µi = 1 and

µ1 ≤
∑

i

µi ·max
i

[PK ]i1 · p1 ≤ 1 · p1. (34)

This gives the desired inequality.

Theorem IV.2. Assume the notation of the Theorem IV.1 and
let p1 > 0. Suppose using some control PK , D1 is made p1-
stable. Then

1)
∑L

i=1 pi = 1,
2) For every i with pi 6= 0, the ith row of the control

[PK ]i = [1, 0, . . .].
3) µ = [p1, . . . , pL] denotes an invariant probability

measure of the closed-loop Markov chain PK · PT .

Proof. Using Eq. (33) together with the fact that
∑

i µi = 1,

µ1 = p1 implies [PK ]i1 = 1 whenever µi 6= 0. (35)

In particular, because µ1 = p1 > 0, [PK ]11 = 1 and because
PK is a Markov matrix, its first row

[PK ]1 = [1, 0, . . .]. (36)

This show (2) for the particular case of i = 1. By matrix
multiplication,

[PK · PT ]1 = [p1, p2, . . . , pL]. (37)

Now, if PK · PT is a Markov matrix, necessarily∑
i

pi = 1. (38)

This shows (1). Since µ is an invariant measure,

[µ1, µ2, . . . , µL]

 p1 p2 . . . pL

× × ×
...

...
...

 = [µ1, µ2, . . . , µL].

(39)
Hence,

µi = µ1pi + . . . ≥ p1pi (40)

and thus µi > 0 for all i such that pi > 0. Using the condition
in Eq. (35),

[PK ]i = [1, 0, . . .] whenever pi > 0. (41)

This shows (2). Once again, by matrix multiplication

[PK · PT ]i = [p1, p2, . . . , pL] whenever pi > 0 (42)

Finally, because of Eqs. (38) and (42), it is easy to verify that
µj = pj is an invariant probability measure for the Markov
chain PK · PT .

These theorems show limitations on a) maximum achiev-
able value of q for q-stability of D1 and b) the resulting
invariant measure. Either of these are a function of only

Fig. 3. The phase-space partition X2 and the Markov chain PT .

the properties of the open-loop Markov chain PT . The key
assumption needed for the conclusions is the structure of PT

w.r.t. D1; expressed by Eq. (30). Where this equation fails
to hold, these restrictions are no longer valid as shown by
the following example.
Example IV.3. Consider a 2-state Markov chain on X =
{D1, D2}

PT =
[

0 1
1 0

]
. (43)

Using the notation from Theorem IV.1, p1 = 0. However, a
control with

PK =
[

0 1
0 1

]
(44)

q-stabilizes D1 with q = 1. The resulting invariant measure
for the closed-loop PK · PT is given by [1, 0].

The following section uses these results to derive funda-
mental limitations for the scalar stabilization problem. These
can also be expressed in terms of entropy and the entropy
based formulas are the counterpart of the Bode integral
formula in Eq. (1).

V. FUNDAMENTAL LIMITATIONS

Consider first a scalar linear dynamical system,

state : zn+1 = b(zn + un), (45)

with the expansion rate a
.= |b| > 1. Denote

D1 = [−ε, ε],
D2 = a(D1)−D1 = [−aε,−ε] ∪ [ε, aε], (46)

where a(D1) = [−aε, aε]. Use these cells to set

X = a(D1) = D1 ∪D2,

X2 = {D1, D2}. (47)

Associated with the discrete partition, the first row and
column of the Markov chain PT (for the state evolution
Tz = bz) are given by

[PT ]1 = [
1
a
, 1− 1

a
],

[PT ]1 = [
1
a
, 0]′, (48)

respectively. Figure 3 depicts the partition X2 and the Markov
chain PT . The equations for the output and control are

output : xn = zn + dn (49)
control : un = k(xn), (50)



where k is assumed to a linear stabilizing gain and dn

denotes some random disturbance. The closed-loop equation
for the output is given by

xn+1 = b((1 + k)xn − dn) + dn+1. (51)

With respect to the finite partition X2, the disturbance {dn}
is constructed from the random vector {∂(1), 0}. At each n,
∂(1) is used to provide a random perturbation in cell D1.
We call this a stabilization problem because the disturbance
is certain w.r.t D1. The stochastic analogue of Eq. (51) is
the now familiar

µn+1 = µnPKPT , (52)

where PK is the Markov chain corresponding to the stabi-
lizing control (1 + k). With finite partition, the stabilization
problem is posed as the q-stabilization of cell D1. The
following Theorem shows the relationship between this and
the original problem.

Theorem V.1. Suppose un = k(xn) be any linear stabilizing
control of Eq. (45) and X2 be a partition in Eq. (47) with
arbitrary ε. Then for the closed-loop Eq. (51), the cell D1

is q-stable with maximal value of q = 1
a .

Proof. The condition for closed-loop stability is

|a(1 + k)| < 1 (53)

which necessarily implies that (1 + k) : a(D1) → D1. The
Markov chain for the control (1 + k) is then given by

PK =
[

1 0
1 0

]
. (54)

Using Eq. (48), the closed-loop Markov chain is

PK · PT =
[

1
a 1− 1

a
1
a 1− 1

a

]
(55)

and its closed-loop invariant measure is

µ = [
1
a
, 1− 1

a
], (56)

i.e., the cell D1 is 1
a -stable. Using Theorem IV.1, this is also

the maximum value possible.

The inability to q-stabilize the cell D1 for arbitrary value
of q (an in particular, for q = 1) constitutes a fundamental
limitation in stabilization. This depends only upon the open-
loop dynamics, expansion rate a here, and is independent
of the choice of the feedback control gain k. Conversely,
as the lemma shows, any stabilizing control achieves the
upper bound 1

a . Next, larger the value of a, the larger the
uncertainty in the state {xn} of closed-loop system – it
could be anywhere in cell D2 whose length scales as a. This
uncertainty is best expressed in terms of the entropy metric:

Definition V.2. The conditional entropy of a random se-
quence {xn} is given by

Hc(x) = lim
m→∞

H(xn|xn−1, . . . , xn−m). (57)

The following theorem provides an explicit estimate for
the control problem.

Theorem V.3. Consider the closed-loop Eq. (51) with the
expansion rate a > 1. For any stabilizing control gain k,
the output sequence {xn} has entropy given by

Hc(x) = ln(a). (58)

Proof. The invariant measure µ in Eq. (56) implies that the
stationary distribution for {xn} is given by,

Prob(xn ∈ D1) =
1
a

Prob(xn ∈ D2) = 1− 1
a
. (59)

This correspondence is setup by the explicit choice of the
disturbance {dn}; cf., Lemma III.2. Furthermore, xn is
uniformly distributed with in each cell and its pdf is given
by

f(x) =
1
aε

for x ∈ D1,

= (1− 1
a
) · 1

(a− 1)ε
for x ∈ D2, (60)

i.e., f(x) = 1
aε is the uniform distribution for x ∈ a(D1). A

simple calculation then shows that the entropy of xn is thus
given by

H(xn) = ln(a)− ln(ε), (61)

where ln(ε) is ignored by convention of defining entropy for
a continuous random variable.

Next, the closed-loop Markov chain relating x2 to x1 is
given by

PK · PT =
[

1
a 1− 1

a
1
a 1− 1

a

]
. (62)

Thus the conditional probability

Prob(x2 ∈ D1|x1 ∈ Di) =
1
a

Prob(x2 ∈ D2|x1 ∈ Di) = 1− 1
a
. (63)

Once again, because xn is uniformly distributed within a
cell, the conditional pdf for the stationary case is given by

f(x2|x1) =
1
aε

for x2 ∈ D1,

= (1− 1
a
) · 1

(a− 1)ε
for x2 ∈ D2,(64)

i.e., f(x2|x1) = 1
aε for x2, x1 ∈ a(D1). Now, applying the

formula for relative entropy [2], [3], we have

H(x2|x1) = −
∫

aD1

f(x1)
∫

aD1

f(x2|x1) ln(f(x2|x1))dx2dx1

= ln(a)− ln(ε), (65)

where ln(ε) is once again ignored as a result of the conven-
tion. The proof is completed by noting that xn depends only
upon xn−1 and not its entire history, i.e., {xn} is a Markov



process. For a stationary Markov process, the conditional
entropy

H(xn|xn−1, . . . , xn−m) = H(xn|xn−1) = H(x2|x1),
(66)

where the first equality is due to the Markov assumption
and the second equality is due to the stationarity [3]. This is
a crucial step that makes the estimate feasible for the state
feedback problem.

Since ε is arbitrary, one interprets the limit as the stabiliza-
tion problem. Note that the disturbance dn goes to zero as the
partition size ε → 0. However, the role of disturbance can
not be over-stressed. At each point, one is indeed solving
a disturbance rejection problem where the disturbance is
assumed to be certain w.r.t the partition. Using Eq. (2), one
also obtains the connection with Bode integral formula.

Finally, we relax the assumption that b(·) in Eq. (45)
is a linear dynamical system. Consider now a closed-loop
equation

xn+1 = b ◦ (1 + k)(xn), (67)

where b(0) = 0 and a
.= |b′(0)| > 1. Let k be a stabilizing

control such that the linearized closed-loop equation

yn+1 = b′(0) · (1 + k′(0))(yn) (68)

is asymptotically stable, i.e., |a·(1+k′(0))| < 1. We note that
the proof of Theorem V.3 did not use linearity of either b and
(1 + k). In fact, we did not even use these mappings, rather
only the Markov chains PK and PT . Below, we discuss their
construction for the nonlinear problem.

We assume here that both the plant and control are smooth
dynamical systems. We denote U ε .= [−ε, ε], an interval
neighborhood of the equilibrium. Due to scalar nature of the
dynamical system and the assumption of asymptotic stability,
we have in a sufficiently small neighborhood U ε:

b(U ε) ⊃ U ε,

b(1 + k)(U ε) ⊂ U ε. (69)

In particular, the Grobman-Hartman theorem [19] shows that
there exists a near-identity invertible co-ordinate change h :
y → x with h(0) = 0, h′(0) = 1 between the closed-loop
Eqs. (67)-(68). Thus, for a suitable neighborhood of 0, a
change of co-ordinate,

xn = h(yn) (70)

allows one to obtain solutions of the nonlinear Eq. (67) in
terms of solution of the linear Eq. (68). Since b(·) is assumed
to be smooth and invertible, denote h = b ◦ h1. We have
h1(0) = 0, h′1(0) = 1

b′(0) 6= 0, and limε→0 h1(U ε) = 0, i.e.,
h1 provides another invertible change of co-ordinate near 0.
By the Grobman-Hartman theorem,

b(1 + k) : b ◦ h1(U ε) → b ◦ h1(U ε), (71)

for all ε ≤ ε0 chosen to be sufficiently small such that
h1(U ε) ⊂ b ◦ h1(U ε); see Eq. (69). Denote,

D1
.= h1(U ε),

D2
.= b ◦ h1(U ε)− h1(U ε), (72)

and Xε = D1 ∪ D2 = h1(U ε). Now, due to Eq. (71), we
necessarily have

(1 + k) : b ◦ h1(U ε) → D1. (73)

As a result, with respect to the partition X ε
2 = {D1, D2},

the Markov chain for the stabilizing control (1+ k) is given
by Eq. (54). So, all we have to do is derive the first row
of the Markov chain PT corresponding to the plant b(·) in
order to estimate on the entropy. For the stabilization limit
as ε → 0, this derivation and the resulting estimate appears
in the following Corollary.

Corollary V.4. Consider the closed-loop Eq. (51) where
b and (1 + k) are nonlinear dynamical systems and the
expansion rate a

.= |b′(0)| > 1. In the limit of vanishing
disturbance (ε → 0), the output sequence {xn} has entropy
given by

Hc(x) = ln(a) (74)

for any stabilizing control k.

Proof. Since PK is given by Eq. (54), we need estimate only
the first row of the Markov matrix PT , where Tz

.= b(z)
denotes the state evolution. In fact, for the two cell partition,
we need estimate only the [PT ]11 entry, denoted here by
qε. The superscript is used to make the dependence upon ε
explicit. The closed-loop Markov matrix for X ε

2 is then given
by

PK · PT =
[

qε 1− qε

qε 1− qε

]
. (75)

Using the proof of the Theorem V.3, one obtains an entropy
estimate for the disturbance rejection problem corresponding
to X ε

2 as
Hc(x) = − ln(qε). (76)

To prove this corollary, we show that

lim
ε→0

qε =
1
a
. (77)

Indeed, the ε = 0 limit is

q0 = lim
ε→0

m(T−1D1 ∩D1)
m(D1)

= lim
ε→0

m(T−1D1)
m(D1)

= |dT−1

dx
(0)| = 1

a
, (78)

where a = |b′(0)| is the expansion rate. Eq. (77) and the
result follows.

VI. CONCLUSIONS

In this paper, we presented a dynamical systems based
framework and fundamental limitation results for the non-
linear stabilization problem. The stochastic framework and
associated discrete Markov chains allow one to both interpret
and compute the entropy estimates in a rather straightfor-
ward manner. The entropy estimates correspond to the so-
called measure-theoretic entropy in the Dynamical systems



literature. There are two extensions of this work. One is
the problem of multi-state stabilization, results for which
will appear in the journal version of this paper. The other
is the nonlinear disturbance rejection with state feedback
which is a subject of continuing research. The Markov chain
based framework presented here is expected to be particularly
applicable for this problem.
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