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Abstract—In this paper, we study the problem of state observation of
nonlinear systems over an erasure channel. The notion of mean square
exponential stability is used to analyze the stability property of observer
error dynamics. The main results of this paper prove, fundamental
limitation arises for mean square exponential stabilization of the observer
error dynamics, expressed in terms of probability of erasure, and positive
Lyapunov exponents of the system. Positive Lyapunov exponents are a
measure of average expansion of nearby trajectories on an attractor
set for nonlinear systems. Hence, the dependence of limitation results
on the Lyapunov exponents highlights the important role played by
non-equilibrium dynamics in observation over an erasure channel. The
limitation on observation is also related to measure-theoretic entropy
of the system, which is another measure of dynamical complexity. The
limitation result for the observation of linear systems is obtained as a
special case, where Lyapunov exponents are shown to emerge as the
natural generalization of eigenvalues from linear systems to nonlinear
systems.

I. INTRODUCTION

The problem of state estimation of systems over erasure channels
has attracted a lot of attention lately, given the importance of this
problem in the control of systems over a network [1]. The problem
of state estimation with intermittent observation was first studied in
[2], [3]. In [4], [5], state estimation over an erasure channel with
different performance metrics on the error covariance is studied. In
[4], under some assumptions on system dynamics, it is proved that
there exists a critical non-erasure probability below which the error
covariance is unbounded. A Markov jump linear system framework
is used to model the state estimation problem with intermittent
measurement and to provide conditions for the convergence of error
covariance in [6]. In [7], state estimation over erasure channel with
Markovian packet loss is studied. However, all the above results
are developed for linear time invariant (LTI) systems. There is no
systematic result that addresses the state estimation problem for
nonlinear systems over erasure channels. Thus there is a need for
extension and development of such results for nonlinear systems,
with regard to their applications in network systems consisting of
nonlinear components, such as power system networks, biological
networks, and Internet communication networks.

In this paper, we study the problem of state observation of non-
linear systems over an erasure channel, with the objective to develop
limitation results for state observation. We expect the limitation
results for the state observation problem, to provide useful insight
into the more challenging problem of state estimation over an erasure
channel. The erasure channel is modeled as an on/off Bernoulli
switch. We use mean square exponential (MSE) stability to study
the state observation problem over an erasure channel. The main
result of this paper shows, that a fundamental limitation arises in
MSE stabilization of the observer error dynamics. This limitation is
expressed in terms of erasure probability and global instability of the
nonlinear system. In particular, under a certain ergodictiy assumption,
we show the instability of a nonlinear system can be expressed in
terms of the sum of positive Lyapunov exponents of the system. Using
Ruelle’s inequality from ergodic theory of a dynamical system [8],
the sum of the positive Lyapunov exponents can be related to the
entropy of a nonlinear system. Hence, the limitation result can be
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interpreted in terms of the entropy of a nonlinear system. Our result
involving Lyapunov exponents of a non-trivial (other than equilibrium
point) invariant measure is also the first to highlight the important
role played by the non-equilibrium dynamics in the limitations on
nonlinear observation.

There are two main contributions of this paper. First, it adopts and
extends the formalism from erogodic theory of random dynamical
systems to study the problem of nonlinear observation over an erasure
channel. Second, the result provides an analytical relationship be-
tween the maximum tolerable channel uncertainty (i.e., the maximum
erasure probability) and the inability of the system to maintain mean
square exponential stability of the observer error dynamics.

The organization of this paper is as follows. In section II, we
discuss the problem and provide necessary assumptions and stability
definition. In section III, we prove the main results of this paper.
A simulation example is presented in section IV, followed by
conclusions in section V.

II. PRELIMINARIES

The set-up for nonlinear observations with a unique erasure channel
at the output is described by the following equations:

xt+1 = f(xt), yt = ξth(xt), (1)

where xt ∈ X ⊆ RN is the state, yt ∈ Y ⊆ RM is the output,
and ξt ∈ {0, 1} is a Bernoulli random variable with probability
distribution Prob(ξt = 1) = p for all t ≥ 0, with 0 < p < 1,
and independent of ξτ for τ 6= t. The IID (independent identically
distributed) random variable, ξt, models the erasure channel between
the plant and the observer through which all the outputs are sent to
the observer simultaneously.

Remark 1: To make the problem interesting, we assume that M <
N and 0 < p < 1. The 0 < p assumption implies that the system
dynamics, xt+1 = f(xt), is unstable and hence requires some non-
zero probability of erasure for the observer to work.
We now provide the following definition of an observability rank
condition for nonlinear systems [9].

Definition 2 (Observability Rank Condition): Consider the map
θN−1(x) : X → Y × . . .× Y︸ ︷︷ ︸

N

θN−1(x) :=
(
h(x), h(f(x)), . . . , h(fN−1(x)

)′
. (2)

The system (1) is said to satisfy the observability rank condition at
x, if

rank

(
∂θN−1(x)

∂x

)
= N.

We make following assumption on the system dynamics.
Assumption 3: The system mapping, f , and output function, h, are

Cr functions of x, for r ≥ 1, with f(0) = 0, h(0) = 0, and the
Jacobian ∂f

∂x
(x) is uniformly bounded above and below for all x ∈

X . Furthermore, the system satisfies the observability rank condition
(Definition 2) and there exist αθ > 0 and βθ > 0, such that

αθIN <
∂θN−1

∂x

′

(x)
∂θN−1

∂x
(x) < βθIN (3)

for all x ∈ X and, IN is the N ×N Identity matrix.
Remark 4: Assumption 3 and in particular the observability rank

condition are essential for the observer design for the system with
no erasure at the output.
The stochastic notion of stability we use to analyze the observer error
dynamics is defined in the context of a general random dynamical
system (RDS) of the form xt+1 = S(xt, ζt), where xt ∈ X ⊆
RN , ζt ∈ W = {0, 1} for t ≥ 0, are IID random variables with



probability distribution Prob(ζt = 1) = p. The system mapping S :
X ×W → X is assumed to be at least C1 with respect to xt ∈ X
and measurable w.r.t ζt. We assume x = 0 is an equilibrium point,
i.e., S(0, ζt) = 0. The following notion of stability can be defined
for RDS [10], [11].

Definition 5 ( Mean Square Exponential (MSE) Stable): The so-
lution, x = 0, is said to be MSE stable for xt+1 = S(xt, ζt), if
there exist positive constants L <∞ and β < 1, such that

Eζt0

[
‖ xt+1 ‖2

]
≤ Lβt‖x0‖2, ∀t ≥ 0

for Lebesgue almost all initial condition, x0 ∈ X , where Eζt0 [·] is
the expectation taken over the sequence {ζ0, . . . , ζt}.

III. MAIN RESULTS

The main results of this paper are derived under the following
assumption on the observer dynamics.

Assumption 6: The observer gain, K, is assumed deterministic and
not an explicit function of the channel erasure state ξt nor its history
(i.e., ξt−1

0 ). The observer dynamics is assumed to be of the form:

x̂t+1 = f(x̂t) +K(yt)−K(ŷt), ŷt = ξth(x̂t), (4)

where x̂ ∈ X is the observer state, ŷ ∈ Y is the observer output, and
K : Y → X is the observer gain and assumed to be a Cr function
of y, for r ≥ 1, and satisfies K(0) = 0. Thus the property K(0) = 0
and ξt ∈ {0, 1}, allows us to rewrite the observer dynamics (4) as
follows:

x̂t+1 = f(x̂t) + ξtK(h(xt))− ξtK(h(x̂t)). (5)

We assume that the observer output ŷt is an explicit function of
channel state, ξt. This assumption is justified by assuming a TCP-like
protocol, where the observer receives an immediate acknowledgement
of the channel erasure state [4].

Remark 7: In [4], the problem of state estimation for an LTI
system over an erasure channel is studied. The optimal estimator gain
that minimizes the error covariance is shown to be a function of the
channel erasure state history. With the estimator gain, a function of
the channel erasure state history, the results in [4] only prove the error
covariance will remain bounded and not converge to a steady state
value, unlike the regular Kalman filtering problem for an LTI system
with no loss of measurement. Hence, we conjecture (Assumption 6)
on the observer gain, not being a function of the channel erasure state
or its history, is necessary for the error dynamics to be MSE stable.
We first prove Lemma 8 that provides a necessary condition for MSE
stability of the error dynamics xt − x̂t in terms of MSE stability of
the linearized error dynamics.

Lemma 8: Consider the observer dynamics in Eq. (5) and let the
error dynamics (i.e., et = xt − x̂t) be MSE stable (Definition 5).
Then, the following linearized error dynamics, ηt ∈ RN ,

ηt+1 =

(
∂f

∂x
(xt)− ξt

∂K ◦ h
∂x

(xt)

)
ηt, xt+1 = f(xt) (6)

is also MSE stable, i.e., there exist positive constants L < ∞ and
β < 1, such that Eξt0

[
‖ηt+1‖2

]
≤ Lβt ‖η0‖2 ∀t ≥ 0. The

functions K and h in (6) are the observer gain and output function,
respectively, from Eq. (4).

Proof: Define g(xt, ξt) := f(xt) − ξtK(h(xt)) and
A(xt, ξt) := ∂g

∂x
(xt, ξt). Then using Mean Value Theorem for the

vector valued function, the error dynamics, can be written as

et+1 = g(xt, ξt)− g(xt − et, ξt) =

(∫ 1

0

∂g

∂x
(xt − set, ξt)ds

)
et

=

t∏
k=0

(∫ 1

0

A(xk − sek, ξk)ds

)
e0,

Here et is an implicit function of the initial error e0, initial state x0,
and the sequence of uncertainties ξt−1

0 . We define Bk(x0, ξ
k
0 , e0) :=∫ 1

0
A(xk − sek, ξk)ds and Bt0(x0, ξ

t
0, e0) :=

∏t
k=0 Bk(x0, ξ

k
0 , e0).

This gives

Eξt0

[
‖ et+1 ‖2

]
= E

[
e′t+1et+1

]
= e′0Eξt0

[
Bt0(x0, ξ

t
0, e0)′Bt0(x0, ξ

t
0, e0)

]
e0.

Using Assumption 3, we know there exists a positive constant
L̄ < ∞, such that ‖ Bk(x0, ξ

k
0 , αe0) ‖< L̄ for Lebesgue almost

all x0 ∈ X and for some scalar, α > 0. Let Bk(x0, ξ
k
0 , αe0)ij

denote the ith row jth column entry in Bk(x0, ξ
k
0 , αe0). Now

consider a sequence, {αl}∞l=1, such that liml→∞ αl = 0. Then,
we have by Dominated Convergence Theorem [12] and continuity
of A(xk − sek, ξk), liml→∞ Bk(x0, ξ

k
0 , αle0)ij = Bk(x0, ξ

k
0 , 0)ij

which implies liml→∞ Bk(x0, ξ
k
0 , αle0) = Bk(x0, ξ

k
0 , 0). Hence, we

have

lim
l→∞

Bk0 (x0, ξ
k
0 , αle0) = Bk0 (x0, ξ

k
0 , 0). (7)

From MSE stability of the error, we obtain
e′0Eξt0

[
Bt0(x0, ξ

t
0, e0)′Bt0(x0, ξ

t
0, e0)

]
e0 ≤ Lβte′0e0, for some

positive constants L < ∞ and β < 1. Since the above inequality is
true for any initial error, this will be true if the initial error vector
used to compute the product of matrices is scaled by αl, where
liml→∞ αl = 0. Substituting αle0 for e0, we can write

e′0Eξt0

[
Bt0(x0, ξ

t
0, αle0)′Bt0(x0, ξ

t
0, αle0)

]
e0 ≤ Lβte′0e0.

Now, letting l→∞ and by Fatou’s Lemma, we have

e′0Eξt0

[
lim
l→∞

Bt0(x0, ξ
t
0, αle0)′Bt0(x0, ξ

t
0, αle0)

]
e0

≤ lim
l→∞

e′0Eξt0

[
Bt0(x0, ξ

t
0, αle0)′Bt0(x0, ξ

t
0, αle0)

]
e0

≤ Lβte′0e0. (8)

Thus, using (7) and (8), we obtain
e′0Eξt0

[
Bt0(x0, ξ

t
0, 0)′Bt0(x0, ξ

t
0, 0)

]
e0 ≤ Lβte′0e0, where

Bt0(x0, ξ
t
0, 0) is the product of the Jacobian matrices A(xt, ξt),

with zero initial error and computed along the nominal trajectory,
xt+1 = f(xt). Hence,

Eξt0

[
e′0

(
t∏

k=0

A(xk, ξk)

)′( t∏
k=0

A(xk, ξk)

)
e0

]
≤ Lβte′0e0.

Since the matrices in the above equation are independent of e0, we
can substitute η0 for e0. Now, using the evolution of ηt from Eq. (6),
we obtain the desired result.
Our next theorem provides the necessary condition for MSE stability
of the linearized error dynamics.

Theorem 9: Let the ηt dynamics for the system (6) be MSE stable
(Definition 5). Then, there exists a matrix function of xt, P (xt), such
that γ1I ≤ P (xt) ≤ γ2I and

Eξt
[
A′(xt, ξt)P (xt+1)A(xt, ξt)

]
< P (xt), (9)

for some positive constants γ1, γ2, where xt+1 = f(xt) and
A(xt, ξt) = ∂f

∂x
(xt)− ξt ∂K∂y (h(xt))

∂h
∂x

(xt) from (6).
Proof: To prove the necessary part, assume the system is MSE

stable and consider the following construction of P (xt).

P (xt) =

∞∑
k=t

Eξkt

( k∏
j=t

A(xj , ξj)

)′( k∏
j=t

A(xj , ξj)

) ,
where E

ξ
j
i
[·] is the expectation over the random sequence

{ξi, . . . , ξj}. The existence of positive constants γ1, γ2 follows from
the fact that ηt dynamics is MSE stable and the Jacobian ∂f

∂x
is



bounded from above and below. The inequality (9) follows from the
construction of P (xt).
We have Corollary 10 to the Theorem 9.

Corollary 10: Let the RDS (6) be MSE stable. Then, there exists
a matrix function of xt, Q(xt) and positive constants γ̃1 and γ̃2, such
that γ̃1I ≤ Q(xt) ≤ γ̃2I and

Eξt
[
A(xt, ξt)Q(xt)A′(xt, ξt)

]
< Q(xt+1). (10)

Proof: The proof follows from Theorem 9 and by constructing
Q(xt) = P (xt)

−1.
Remark 11: We will refer to matrix Q(xt), satisfying the condi-

tions (10) of Corollary 10 as the matrix Lyapunov function.
Our goal is to derive a necessary condition for the MSE stability
of the linearized error dynamics; thereby, providing a necessary
condition for MSE stability of the true error dynamics.

Lemma 12: The necessary condition for exponential mean square
stability of the linearized error dynamics (6) is given by

(1− p)M (det(A(xt)))
2 det(Q0(xt))

det(Q0(xt+1))
< 1, (11)

for Lebesgue almost all xt ∈ X . In (11) Q0(xt) is a solution of the
following Riccati equation,

Q0(xt+1) = R(xt)+A(xt)Q0(xt)A
′(xt)−

(
A(xt)Q0(xt)C

′(xt)

×
(
IM + C(xt)Q0(xt)C

′(xt)
)−1

C(xt)Q0(xt)A
′(xt)

)
, (12)

where R(xt) ≥ 0 is some symmetric positive semi-definite matrix.
Furthermore, Q0(xt) is uniformly bounded above and below with
A(xt) := ∂f

∂x
(xt), C(xt) := ∂h

∂x
(xt), xt+1 = f(xt), IM is M ×M

identity matrix, and (1− p) is the probability of erasure.
Proof: Using the result of Corollary 10, the necessary condition

for MSE stability of (6) can be expressed in terms of the existence
of γ̃1I ≤ Q(xt) ≤ γ̃2I , such that γ̃1, γ̃2 > 0 and,

Eξt
[
A(xt, ξt)Q(xt)A′(xt, ξt)

]
< Q(xt+1), (13)

where A(xt, ξt) = A(xt) − ξtK̃(xt)C(xt) and
K̃(xt) := ∂K

∂y
(h(xt)). Minimizing trace of the left-

hand side of (13) with respect to K̃(xt), we obtain
K̃∗(xt) = A(xt)Q(xt)C

′(xt) (C(xt)Q(xt)C
′(xt))

−1 and Q(xt)
to satisfy

Q(xt+1) > A(xt)Q(xt)A
′(xt)− p

(
A(xt)Q(xt)C

′(xt)

×
(
C(xt)Q(xt)C

′(xt)
)−1

C(xt)Q(xt)A
′(xt)

)
. (14)

It is important to notice that the inequality (14) is independent of
any positive scaling i.e., if Q(xt) satisfies the above inequality then
cQ(xt) also satisfies the above inequality for any positive constant c.
Since Q(xt) is a matrix Lyapunov function and hence lower bounded,
it follows from Remark 1, that there exists a positive constant ∆ >
0 such that C(xt)Q(xt)C

′(xt)
(1−p)
p
≥ ∆IM . Hence (14) implies

following inequality to be true

Q(xt+1) > A(xt)Q(xt)A
′(xt)−

(
A(xt)Q(xt)C

′(xt)

×
(
∆IM + C(xt)Q(xt)C

′(xt)
)−1

C(xt)Q(xt)A
′(xt)

)
. (15)

Now define Q0(xt) := 1
∆
Q(xt), then using the fact that (15) is

independent of positive scaling, we obtain following inequality for

Q0(xt)

Q0(xt+1) > A(xt)Q0(xt)A
′(xt)−

(
A(xt)Q0(xt)C

′(xt)(
IM + C(xt)Q0(xt)C

′(xt)
)−1

C(xt)Q0(xt)A
′(xt)

)
. (16)

Inequality (16) implies there exists R(xt) ≥ 0, such that the
following equality is true.

Q0(xt+1) = R(xt)+A(xt)Q0(xt)A
′(xt)−

(
A(xt)Q0(xt)C

′(xt)

×
(
IM + C(xt)Q0(xt)C

′(xt)
)−1

C(xt)Q0(xt)A
′(xt)

)
. (17)

For any fixed trajectory {xt} generated by the system, xt+1 = f(xt),
the above equality resembles the Riccati equation obtained for
the minimum covariance estimator design problem for the linear
time varying system, where the matrices Q0(xt) and R(xt) can
be identified with the error and input noise covariance matrices,
respectively [13] with output noise variance matrix equal to identity
matrix. The difference between the regular Riccati equation obtained
from the minimum variance estimator problem for the linear time
varying system and Eq. (17) is that, the various matrices appearing
in (17) are parameterized by xt instead of time. Furthermore Q0(xt)
as the solution of Riccati-like equation (17) is both bounded above
and below and is proved as follows. The system matrices A(xt) and
C(xt) satisfy Assumption 3 along any given trajectory. Hence, the
linearized system, ηt+1 = A(xt)ηt, ζt = C(xt)ηt, along any fixed
trajectory is uniformly completely reconstructible as defined in [13]
(Definition 6.6). It then follows from [14] (Lemmas 7.1 and 7.2)
that the covariance matrix Q0(xt) is uniformly bounded above and
below for all x ∈ X . The matrix Q0(xt) satisfies (14) follows from
the definition of Q0(xt) ( i.e., Q0(xt) := 1

∆
Q(xt)) and the fact that

(14) is independent of positive scaling. We obtain,

Q0(xt+1) > A(xt)Q0(xt)A
′(xt)− p

(
A(xt)Q0(xt)C

′(xt)

×
(
C(xt)Q0(xt)C

′(xt)
)−1

C(xt)Q0(xt)A
′(xt)

)
. (18)

This proves that Q0(xt) obtained as a solution of Riccati-like
equation is a valid matrix Lyapunov function. To derive the required
necessary condition (11), we take determinants on both sides of (18)
to obtain

det
(
IN − pC′(xt)

(
C(xt)Q0(xt)C

′(xt)
)−1

C(xt)Q0(xt)
)

× (det(A(xt)))
2 det(Q0(xt))

det(Q0(xt+1))
< 1. (19)

By Sylvester’s determinant Theorem (i.e., det(IN+GJ) = det(IM+
JG), G ∈ RN×M , J ∈ RM×N ), we obtain

det
(
IN − pC′(xt)

(
C(xt)Q0(xt)C

′(xt)
)−1

C(xt)Q(xt)
)

= (1− p)M . (20)

We obtain the required inequality (11) by combining Eqs. (19) and
(20).
The results of Lemma 12 will now be used to prove the main results
of the paper under various assumptions on the system dynamics.

Theorem 13 (Linear Systems): Let f(x) = Ax with x ∈ RN and
h(x) = Cx ∈ RM . Assume that all eigenvalues λk for k = 1, . . . , N
of A have absolute value greater than one. The necessary condition



for the observer error dynamics to be MSE stable is given by

(1− p)M
(

N∏
k=1

|λk|

)2

< 1. (21)

Proof: For the linear system, the solution of Riccati-like equation
(12) from Lemma 12 leads to a constant matrix Q0 independent of
xt. Hence the necessary condition (11) for the stability will reduce
to

(1− p)M det(A2) < 1.

The required necessary condition (21) then follows by substituting

det(A2) =
(∏N

k=1 |λk|
)2

.
Remark 14: A careful examination of the proofs for Lemma 8 and

12, and Theorem 9 for the special case of linear systems with single
output, reveals the necessary condition (21) is also sufficient for MSE
stability of the linear system.

Theorem 15 (Nonlinear systems on unbounded space): Consider
system (1) with system mapping f and output h satisfying
Assumption 3 and state space X possibly unbounded. The necessary
condition for MSE stability of the observer error dynamics (4) is
given by

(1− p)M (det(A(xt)))
2 det(Q0(xt))

det(Q0(xt+1))
< 1, (22)

for Lebesgue almost all x ∈ X , where A(x) = ∂f
∂x

(x) and Q0(x)
satisfy the Riccati-like Eq. (12).

Proof: The proof follows by combining results from Lemmas 8
and 12, and Theorem 9.
In Theorem 20, we show, for a nonlinear system evolving on a
compact state space, the term (det(A(xt)))

2 det(Q(xt))
det(Q(xt+1))

from (22)
relates to the sum of postive Lyapunov exponents of the system. For
Theorem 20 we provide the following definitions [15].

Definition 16 (Physical measure): Let M(X) be the space of
probability measures on X . A measure µ ∈ M(X) is said to
be invariant for xt+1 = f(xt) if µ(f−1(B)) = µ(B) for all
sets B ∈ B(X) (Borel σ-algebra generated by X). An invariant
probability measure, µ, is said to be ergodic if any continuous
bounded function ϕ that is invariant under f , i.e., ϕ(f(x)) = ϕ(x),
is µ almost everywhere constant. Ergodic invariant measure, µ, is
said to be physical if limn→∞

1
n

∑n
k=0 ϕ(fk(x)) =

∫
X
ϕ(x)dµ(x)

for positive Lebesgue measure of the initial condition x ∈ X and all
continuous function ϕ : X → R.

Definition 17 (Lyapunov exponents): For a deterministic system
xt+1 = f(xt), let

Λ(x0) = lim
t→∞

(
Dt
xf(x0)′Dt

xf(x0)
) 1

2t , (23)

where Dxf(x) = ∂f
∂x

(x) and Dt
xf(x0) := Dxf(xt) · · ·Dxf(x0).

Let λiexp for i = 1, . . . , N be the eigenvalues of Λ(x0), such that
λ1
exp ≥ λ2

exp ≥ · · · ≥ λNexp. Then, the Lyapunov exponents Λiexp
are defined as Λiexp = log λiexp for i = 1, . . . , N . Furthermore, if
det (Λ(x0) 6= 0), then

lim
t→∞

1

t
log
∣∣det

(
Dt
xf(x0)

)∣∣ = log

N∏
k=1

λkexp(x). (24)

Remark 18: The technical conditions for the existence of limits
in (23) and (24) are provided by the Multiplicative Ergodic The-
orem [16] (Theorem 1.6), [8] (Theorem 10.4), [17] (Section D).
The limits in (23) and (24) are known to be independent of the
initial condition and are unique under the assumption of unique
ergodic invariant measure for system dynamics. For a compact state
space, the existence of an invariant measure is always guaranteed

[8] (Corollary 6.9.1). Furthermore, every invariant measure admits
ergodic decomposition [8] (Remarks pp. 153), [15] (Theorem 6.4).
We now make Assumption 19 on the system dynamics.

Assumption 19: We assume the nonlinear system, xt+1 = f(xt),
has a unique physical measure with all Lyapunov exponents positive.
The assumption of a unique physical measure is not restrictive
and it allows us to prove the main result in Theorem 20, that is
independent of initial conditions. With ergodic invariant measures that
are guaranteed to exist (Remark 18), the main result in Theorem 20
will be a function of a particular ergodic measure under consideration.
The assumption of all Lyapunov exponent being positive is analogous
to the assumption made in the LTI case that all eigenvalues are
positive. We verify through simulation results in section IV that
the result of Theorem 20 also applies to the case where one of the
Lyapunov exponent is negative.

Theorem 20 (Nonlinear systems on compact space): Consider the
system (1) with system mapping f and output h satisfying Assump-
tions 3 and 19 and state space X compact. The necessary condition
for MSE stability of the observer error dynamics (4) is given by

(1− p)M
(

N∏
k=1

λkexp

)2

< 1, (25)

where λkexp = eΛkexp , and Λkexp is the kth positive Lyapunov
exponent of xt+1 = f(xt).

Proof: We follow the notations from Lemma 12. The necessary
condition for MSE stability (Eq. 11) is true for almost all points
x ∈ X , and, hence in particular for xt evaluated along the system
trajectory xt+1 = f(xt). Evaluating (11) along the system trajectory
and taking the product, we write the necessary condition as(

(1− p)M
)n

det(Q0(x0)Q−1
0 (xn+1))

n∏
t=1

det(A(xt))
2 < 1.

Taking time average for the log of the expression and in the limit
as n → ∞, we obtain the following necessary condition for MSE
stability,

lim
n→∞

1

n
log

((
(1− p)M

)n
det(Q0(x0)Q−1

0 (xn+1))

n∏
t=1

det(A(xt))
2

)
< 0. (26)

Using the fact that both Q0(xt) and Q−1
0 (xt) are almost always

uniformly bounded and using (24) from Definition 17, (26) gives the
required necessary condition (25) for MSE stability.

Remark 21: The necessary condition for MSE stability in The-
orems 13, 15, and 20 for single input case is tighter however for
1 < M < N , we expect the condition to be improved further. The
necessary condition for MSE stability from our main results provides
a critical dropout rate, i.e., the erasure probability, q∗ = 1−p∗, above
which the system is guaranteed MSE unstable. In particular, the criti-
cal dropout rate for a nonlinear system with single output, evolving on

compact space from Theorem 20 is given by q∗ =
(∏N

k=1 λ
k
exp

)−2

.

A. Entropy and limitation for observation

Measure-theoretic entropy, Hµ(f), for the dynamical system,
xn+1 = f(xn), is associated with a particular ergodic invariant mea-
sure, µ, and is another measure of dynamical complexity. While the
measure-theoretic entropy counts the number of typical trajectories
for their growth rate, the positive Lyapunov exponents measure the
rate of exponential divergence of nearby system trajectories. For more
details on entropy refer to [8]. These two measures of dynamical
complexity are related by Ruelle’s inequality.



Theorem 22 (Ruelle’s Inequality): ([17] Eq. 4.4); ([18] Theorem
2) Let xn+1 = f(xn) be the dynamical system, f : X → X be a
Cr map, with r ≥ 1, of a compact metric space X and µ an ergodic
invariant measure. Then,

Hµ(f) ≤
∑
k

(Λkexp)
+, (27)

where a+ = max{0, a}, Hµ(f) is the measure-theoretic entropy
corresponding to the ergodic invariant measure µ, and Λkexp are the
Lyapunov exponents of the system.
The Ruelle inequality (27) can be used to relate the limitation for
observation with system entropy.

Theorem 23: Consider the system (1) with system mapping f
and output h satisfying Assumptions 3 and 19 and state space X
compact. The necessary condition for MSE stability of the observer
error dynamics (4) is given by

M log(1− p) + 2Hµ(f) < 0 (28)

where µ is the physical invariant measure of f (Definition 16
and Assumption 19) and Hµ(f) is the measure-theoretic entropy
corresponding to measure µ.

Proof: The proof follows by applying the results of Theorems
20 and 22.

IV. SIMULATION RESULTS

Henon map is one of the widely studied examples of two-
dimensional chaotic maps. The small random perturbation of a two-
dimensional Henon map is described by following equations:

x1t+1 = 1− ax2
1t + x2t + r1t, x2t+1 = bx1t + r2t, yt = ξtx1t,

(29)

where a = 1.4, b = 0.3 are constant parameters, and rit ∈
[0, 1E-6], i ∈ {1, 2}, are uniform random variables. The small
amount of external noise, rit, is essential to see the effect of mean
square instability. The system has Lyapunov exponents given by
λ1 = 0.426 and λ2 = −1.63. Although the main results of this
paper are proved under the assumption that all Lyapunov exponents
are positive, the simulation results verify that the results hold true
even for this example with one Lyapunov exponent negative. The
critical probability p∗ is computed, based on the positive exponent
and is equal to p∗ = 1− 1

exp2λ1
= 0.5734. The observer is designed

such that error dynamics with no erasure is asymptotically stable. In
Figs. (1a) and (1b), we plot the error norm for the observer dynamics,
averaged over 50 realizations of the erasure sequence, at probabilities
below and above the critical probability p∗, respectively. We clearly
see the average error norm for non-erasure probability, p = 0.7 > p∗,
is negligible compared to fluctuations in the average error norm for
p = 0.55 < p∗, which are four orders of magnitude higher than
the uniform noise in the system. In Fig. (1c), we plot the peak error
variance for linearized error dynamics vs. non-erasure probability.
The dashed line indicates the critical probability, p∗ = 0.5734. We
observe the peak linearized error variance is unbounded below critical
probability.

V. CONCLUSIONS

In this work, the problem of state observation for a nonlinear
system over erasure channel is studied. The main results of this
paper prove that limitation arises for MSE stabilization of observer
error dynamics. We show that instability of the non-equilibrium
dynamics of the nonlinear system, as captured by positive Lyapunov
exponents, plays an important role in obtaining the limitation result
for nonlinear observation. The limitation result for LTI systems is
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Fig. 1: (a) Error norm as a function of time for p = 0.55; (b) Error norm
as a function of time for p = 0.7; (c) Maximum linearized covariance vs
non-erasure probability for Henon map

obtained as a special case, where Lyapunov exponents emerge as the
natural generalization of eigenvalues from linear systems to nonlinear
systems. The proof technique presented in this paper can be easily
extended to prove results for the estimation of linear time varying
systems over erasure channels.
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