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Lyapunov measure for almost everywhere stability

Umesh Vaidya Member, IEEEand Prashant G. Mehtdember, IEEE,

Abstract—This paper is concerned with analysis and compu- semidefinite problem (or linear matrix inequalities, LMI) with
tational methods for verifying global stability of an attractor  suyijtable choice of polynomials (monomials) serving as a basis.
set of a nonlinear dynamical system. Based upon a stochastchN” based methods and algorithms for verifying polynomial

representation of deterministic dynamics, a Lyapunov measure . -
is proposed for these purposes. This measure is shown to be at0 be a SOS have appeared in [7], [8], [9], [10]; see also [4]

stochastic counterpart of stability (transience) just as invariant and references therein. In a recent paper by [11], these two
measure is a counterpart of attractor (recurrence). It is a dual ideas have been combined to show that density formulation

of the Lyapunov function and is useful for the study of more together with its computation using SOS methods leads to a
general (weaker and set-wise) notions of stability. In addition to convex and linear problem for the joint design of the density

the theoretical framework, constructive methods for computing functi d state feedback troller. In thi the th
approximations to the Lyapunov measures are presented. These unction ana state feedback controller. In this paper, the three

methods are based upon set-oriented numerical approaches.€lements oftransport, linearity, and computations are all
Several equivalent descriptions, including a series-formula and shown to be intimately related to certain stochastic operators

a system of linear inequalities, are provided for computational gnd their finite-dimensional discretizations.
purposes. These descriptions allow one to carry over the intuition

from the linear case with stable equilibrium to nonlinear systems The t ¢ ties for ODEs. d ical ¢
with globally stable attractor sets. Finally, in certain cases € transport properties for S, dynamical systems, or

exact relationship between Lyapunov functions and Lyapunov Nnonlinear continuous maps has a rich history of study using
measures is also given. stochastic methods; cf., [12], [13]. Given a dynamical system,

one can associate two differefihear operators known as
Koopman and Perron-Frobenius (P-F) operators. These two
I. INTRODUCTION operators are adjoint to each other. While the dynamical

For nonlinear dynamical systems, Lyapunov function bassystem describes the evolution of an initial condition, the P-
methods play a central role in both stability analysis arfd operator describes the evolution of uncertainty in initial
control synthesis [1]. Given the complexity of dynamic beconditions. Under suitable technical conditions, the spectral
havior possible even in low dimensions [2], these metho@®alysis of the linear operators provides a description of
are powerful because they provide an analysis and destjg asymptotic dynamics of nonlinear dynamical systems. In
approach foglobal stability of an equilibrium solution. How- particular, the eigenfunction with eigenvalue one characterizes
ever, as opposed to linear systems, there are relatively f8¥ invariant sets capturing the long term asymptotic behavior
computational methods to construct these functions in genehlthe system [14], [15]. Spectrum of these operator on the
nonlinear settings and herein lies the barrier to their motdit circle has the information about the cyclic behavior of the
widespread use. For nonlinear ODEs, two ideas have appeafgstem [16], [17], [18]. More recently, there has been a sig-

in recent literature towards overcoming these barriers. ~ nificant interest in applied dynamical systems literature to de-
velop finite-dimensional approximations of these operators for
In [3], Rantzer introduced a dual to the Lyapunov functionhe computational analysis of global dynamics. Set-oriented
referred to by the author asdensity function, to define and pnymerical methods have been proposed for these purposes;
study weaker notion of stability of an equilibrium solutioref, [19]. The stochastic operators together with their finite-
of nonlinear ODEs. The author shows that the existenggmensional approximations provide for the three elements of
of a density function guarantees asymptotic stability in apansport, linearity, and computations. In this paper, these and
almost everywhere sense, i.e., with respect to aayof other properties of stochastic operators are used to develop
initial conditions in the phase space with a positive Lebesg@@tension of the ideas of [3] on one hand and propose a new
measure. In the context of this paper, we note that Rantzg# of linear computational tools for verifying stability on the
interprets his density function as “density of a substance thgher. In particular, there are three contributions of this paper
is transported along the system trajectories.” The second idgfat are discussed in the following three paragraphs.
involves computation of Lyapunov functions using sum of
squares (SOS) polynomials; cf. [4] and [5] for an early worksirst, it is shown that the duality expressed in the paper
This idea has recently appeared in the work of Parrilo [6pf [3] and linearity expressed in the paper of [11] is well-
where the construction of Lyapunov function is cast #sear ynderstood using stochastic methods. Spectral analysis of the
. . stochastic operators is used to study the stability properties
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U. Vaidya is with the Department of Electrical & Computer Engineeringparticular, we introduce_yapunov measure as a dual to
lowa State University, Ames, IA 5001dgvaidya@iastate.edu | yapyunov function. Lyapunov measure is closely related to
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Just as invariant measure is a stochastic counterpart of thappingT is said to be non-singular with respect to a measure
invariant set, existence of Lyapunov measure is shown oif m(T ~1B) =0 for all B € %(X) such thaim(B) = 0. %(X)

give a stochastic conclusion on the stability of the invariakenotes the Boreb-algebra onX, .# (X) the vector space of
measure. The key advantage of relating Lyapunov measwveal valued measures o (X). Even though, deterministic

to the P-F operator is a) the relationship serves to providgnamics are considered, stochastic approach is employed for
explicit formulas of the Lyapunov measure, and b) set-orientdlteir analysis. To aid this, some notations from the field of
methods can be used to compute it numerically. Ergodic theory is next introduced; cf., [13], [20].

For stable linear dynamical systems, the Lyapunov function

can be obtained as a positive solution of the so-called LyA- Stochastic operators

punov equation. The equation is linear and the Lyapunovin stochastic settings, the basic object of interest is a
function is efficiently computed and can even be expressg@chastic transition function:

analytically as an infinite-matrix-series expansion. For the

series to converge, there exists a spectral condition on tbefinition 1 (Stochastic transition function) is a function
linear dynamical systemp(A) < 1). The P-F formulation p:X x 2(X) — [0,1] such that

allows one to generalize these results to the study of stabilityl) p(x,)
of invariant and possibly chaotic attractor sets of nonlinear 2) p
dynamical systems. More importantly, it provides a framework

that allows one to carry over the intuition of the lineatntuitively, p(x,A) gives the probability for a transition from
dynamical systems to nonlinear systems. For instance, #@ointx into a setA. For Eq. (1), this probability is given by
spectral condition is now expressed in terms of the P-F

operator. The Lyapunov measure is shown to be a solution PO A) = Sr(x (A),

of a linear resolvent operator and admits an infinite-serighere § is a Dirac measure. A stochastic transition function

expansion. The stability result, however, is typically weakeg ysed to define a linear operator on the space of measures
and one can only conclude stability in measure-theoretic (Sugh x) as follows.

as almost everywhere) sense. Finally, the non-negativity of the

stochastic operator is shown to lead to a Linear Programmifg@sinition 2 (Perron-Frobenius operator) Let p(x,A) be a
(LP) formulation for computing the Lyapunov measure.  siochastic transition function. Theerron-Frobenius (P-F)

The third contribution pertains to the formulation of thes@PeratorP :.#(X) — . (X) corresponding to p is defined
results in finite-dimensional settings. Using set-oriented nBYy

merical methods such as GAIO [19], the computation of ]P’[u](A):/ p(x, A)du(X). 2
approximate Lyapunov measure is cast as a solution to a X

finite system of linear inequalities. It is efficiently solved usingorrowing terminology from applied probability theory [27],
Linear Programming. The finite-dimensional approximation Will also be referred to as stochastic operatowith transition
motivated by the computational concerns but as a by prodketrnel fx,A). Since p(x,X) = 1, any stochastic operator
leads to even weaker notions of stability. This notion is termewcessarily satisfies

ascoarse stability in this paper.

| | | | Plu)(X) = [ 1du00 = p(X).
The outline of this paper is as follows. In Section IlI, pre- X
liminaries and notation from the dynamical systems literatufer the transition functiodr y (-) corresponding to a mapping
related to P-F operator is reviewed. In Section lll, LyapundV, the P-F operator is given by
measure is introduced and related to both the stochastic
operators and certain notions of stability of an attractor set. Fiu](A) = / Or(x) (A) du(x) = / AA(TX) du(x) = (T HA),
Sections IV and V, discrete approximation of the P-F operator X_ o X ) )
and the Lyapunov measure respectively is given. The apprdi?€ré xa(-) is the indicator function with support oA, and
imation is shown to be related to a certain weaker notion &f ~(A) is the pre-image set:
stability, termed coarse stability, of the original dynamical Tfl(A) — [xeX: TxeA}.
system. In Section VI, relationship between the Lyapunov
measure and function is provided. Finally, we conclude withkhe more general form of the P-F operator in Eq. (2) is
a discussion on the merits of the approach in Section VII. convenient for considering perturbations of the dynamical

system in Eq. (1), useful for approximation and discretization

1. PRELIMINARIES AND NOTATION purposes.

In this paper,discrete dynamical systent mappings of
the form

is a probability measure for everyeX,
(-,A) is Lebesgue-measurable for evere A3.

Definition 3 (Invariant measure) is a measureu € . (X)

that satisfies
X1 =T (Xn) )

are consideredT : X — X is in general assumed to be only

continuous and non-singular witk C R", a compact set. A for all A € Z(X).

u(A) = | PO A () ©
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So, the invariant measures are the fixed-points of the PaBractor sets. Using Eq. (3), a measure? 0 is said to be a
operatorP that are additionally probability measures. FronT-invariant measure if

Ergodic theory, an invariant measure is always known to exist

under the assumption that the mappihég at least continuous u(B)=pu(T4(B)) (5)

and X is compact; [12]. . . . .
P [12] for all B e #(A). A T-invariant measure in Eq. (5) is a

Definition 4 (Koopman Operator) For Eq. (1), the operator stochastic counterpart of tAeinvariant set in Eq. (4) [2], [12].

U : CO(X) — CO(X) defined by _For typif:al dynamical systems, the geequals the support of_
its invariant measurg. Now we state some measure-theoretic
Uf(x) = f(Tx), preliminaries and definition of almost everywhere stability of

: , _an attractor set.
is called the Koopman operator with respect to the mapping

T.
Definition 8 (Absolutely continuous measure)A measure

For f € CO(X) andu € .#(X), define the inner product as u is absolutely continuous with respect to another measure
. ¥, denoted asu < ¢, if u(B) =0 for all B € #(X) with
<fu >:=/Xf(><)du(><)- ¥(B) =0.

With respect to this inner product, the Koopman operator is

a dual to the P-F operator, where the duality is expressed Bgfinition 9 (Equivalent measure) Two measuregt and 9
the following are equivalent g ~ ) provided u(B) = 0 if and only if

¥(B) =0 for B € #A(X).
<Uf,u >:/Uf(x)dy(x):/ F(X)dPR(x) =< f, Py > .
X X
Definition 10 (Almost everywhere stable)An attractor set

B. Attractor set and almost everywhere stability A for the dynamical system TX — X is said to be stable

i . i almost everywhere (a.e.) with respect to a finite measure
In this paper, global stability properties of an attractor sel e (A fif

will be investigated. Before stating the definition of attractor
set, we state the following definition @—limit set m{xc A°: w(x) ZA} =0

Definition 5 (w-limit set) A point ye X is called aw- limit

point for a point xe X if there exists a sequence of integers

{ng} such that T«(x) — y as k— c. The set of allo-limit For the special case of a.e. stability of an equilibrium pant
point for x is denoted by (x) and is called itsw- limit set. with respect to the Lebesgue measure, the definition reduces

to

A set A C X is calledT-invariant if Leb{x € X : r!im TN(X) # %0} = O,

T(A)=A 4)
where Leb in this case is the Lebesgue measure. Motivated
Definition 6 (Attractor set) A close T-invariant set A X by the familiar noti_on of point-wise exponeptial stabilit.y_ in_
is said to be an attractor set if it satisfies the following tw@N@se space, we introduce a stronger notion of stability in
properties the measure space. This stronger notion of stability captures
1) there exists a neighborhood& X of A such thato(x) C a geometric decay rate of convergence.
A for almost everywhere (a.e. )/ with respect to finite
measure n& .7 (X). V is called the local neighborhood Definition 11 (Almost everywhere stable with geometric decay)

of A. The attractor set AC X for the dynamical system TX — X
2) there is no strictly smaller closed set & A which is said to be stable almost everywhere with geometric decay
satisfies property 1. with respect to a finite measure e (A®) if given € > 0,

The notation A-V C X is used to denote an attractor set Ahere exists Ke) <« and § < 1 such that
ith local neighborhood V in X.
W 9 ' m{xe A°: T"(x) € B} <KB" ¥n>0

Remark 7 Measuremcan typically be taken to be a Lebesgue,, 4| sets Be #(X\U(e)), where Ue) is the & neighbor-
measure. hood of the attractor set A.

There are various definitions of attractor set in the dynami-
cal systems literature; Ch. 1 of [22] or the introduction in [23Remark 12 In the definition of almost everywhere stability
The above definition of attractor set is due to Milnor andnd almost everywhere stability with geometric decay with
appears in [23]. The important point of the definition is that itespect to measurm, it is implied that condition 1. in the
does not require the local stability (in the sense of Lyapunoggfinition of attractor set (Def. 6) holds true with respect to
of the invariant setA and hence allows for a broad class othe measuren as well.
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C. Stochastic Analysis whereu € . (A) andB C #B(A).

Study of Markov chains on finite or countable sets is by now The above considerations suggest a representation of the P-
a well-established discipline in applied probability theory; cf: operato in terms ofPp andP1. This is indeed the case if
[24], [25], [26]. Results on the stability or Ergodic propertie§ne considers a splitting of the measure space
of these Markov chains in more general settings appear in _
recent monographs of [21], [27]. Many a results appearing M X) = Mo© A, 0
in this paper are motivated by this literature. The stochastithere.#y:=.# (A) and.#1 := .# (A®). Note thatPy : .4 —
transition functionp(x,A) is referred to as #&ansition kernel .#y becauseTl : A— A andP; : .#1 — .#1 by construction.
[28], [27] or a Markov transition function [21]. Borrowing Let N :.# — .#, denote the projection operatonto ./,

notation from [21], the two linear operators of interest are c
recognized as Nu(B)=uBNA) & (-MuB)=unBnA").

P[] (A) /x“(dx) P(XA), The following is then easily seen:
NP =Py, (I-MPI-M)=P;, & (I-M)PN=0.
UGy = [ pocay ()

It then follows that on the splitting defined by Eg. (7), the P-F

1. STABILITY IN INFINITE-DIMENSION operator has a lower-triangular matrix representation given by
In this section, Lyapunov type global stability conditions are P, O
presented using the infinite-dimensional P-F oper&tfar the P= < P | ®)
mappingT : X — X in Eq. (1). Recall that an attractor s&t !

is defined to be globally stable with respect to a measuie The invariant measure defined with respect to the opeffor

o(X) CA, aexecA, is a stochastic counterpart of_ Fhe attra.c.tor set supported on .the
set A. Analogously, the stability conditions are expressed in

wherea.e. is with respect to the measura. Now, consider terms of a certain sub-invariant measure that is defined with

the restriction of the mapping : A — X on the complement respect to the sub-stochastic operdfgr This is the subject

set. This restriction can be associated with a suitable stochasfiche following section.

operator related t® that is useful for the stability analysis with

respect to the complement set. The following section makgs

the association precise. Stability & Lyapunov measure

The lower triangular representation & in Eq. (8) is

A. Decomposition of Perron-Frobenius operator convenient because then
Definition 13 (Sub-stochastic transition function) is a n Pg O
function p: X x #(X) — [0,1] such that P= < B0 | ©)

1) p(x,-) is a real-valued measure with(xa X) <1 for x €
X, whereP] = (I —M)P"(1 — ). More explicitly, forB C Z(A°),

2) p(-,A) is Lebesgue-measurable for everneAZ.

o o Pi®) = [ 1e(TXdu()=p(T1@)NA) (10)
The associated linear operator, with transition kemped A), A
is called asub-stochastic operatd21]. In this section, it will Plu(B) = / 2(T™)du(x) = u(T"(B)NA®). (11)
be shown that AC
1) the dynamical system corresponding to the mapfing These formulas are useful because one can now express the
A® — X defines a sub-stochastic operaRr acting on conditions for stability in Definitions 10 and 11 in terms of
M (A°), and the asymptotic behavior of the operai®}.
2) P on.#(X) andP; are related.
ConsiderT : A°UA — X such thatA is left invariant byT, Lemma 14 Let T:X — X in Eqg. (1) be a non-singular

i.e.,, T:A— A ForBcC %(A°), mapping with respect to measure m with an attractor set
A CV c X with its local neighborhood V, (&) is an e-
Plu](B) = /)(&(x)(B)dN(X)Z /AC5T(x>(B)dN(X)7 neighborhood of A, and %= X\ A. The following express

conditions for a.e. stability with respect to a finite measure

becauseT (x) € B implies x ¢ A. Thus, corresponding to the ., - (A
mappingT : A® — X, the operator

1) The attractor set A is a.e. stable (definition 10) with

P1[u](B) ;:/ 5T(x)(B)dH(X) — #(T—lsmAC) (6) respect to a measure m if and only if
AC
is well-defined foru € .#(A°) and B ¢ #(A°). Next, the lim Pim(B) =0 (12)
(rjtzsr':gtc;ﬁrg; :A— A can also be used to define a P-F operator for all sets Be (X \U(e)) and everye > 0,

2) The attractor set A is a.e. stable with geometric decay
Po[u](B) = /B‘ST(X)(B)d”(X)’ (definition 11) with respect to a measure m if and only
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if for everye > 0, there exists Ke) < 0 and § < 1 such as stability can be verified by constructing Lyapunov function
that for the mappingr, transience can be verified by constructing
PIm(B) <KB" ¥vn>0 (13) aLyapunov measurefor the operatoi?.

and for all sets B B(X\U(e)). Definition 15 (Lyapunov measure)is any nhon-negative
Proof: For B € #(X\U(g)), denote measurep € . (A°) which is finite on%(X\U(e)) and
satisfies
Bn = {x€ A°andT"(x) € B}.
P1ji(B) < aji(B), (17)

for every set B- #(X\U(¢g)) and for everye > 0 where

where the last equality follows from Eq. (11). The equivalence nB)>0.

for part 2 (Eq. (13)) then follows by applying definition 114 < 1 is some positive constant.
To see part 1, note that

It is then easy to see that
m(Bn) = m(T~"(B) NA") = PIm(B),

) This construction and the Lyapunov measure’s relationship
r!m,XB”(X) =0 (14) with the two notions of transience will be a subject of the
following three theorems. The first theorem shows that the
existence of a Lyapunov measureis sufficient for almost

everywhere stability with respect to any absolutely continuous

0 [ lim e,(xydm(x) = lim | e, (dm(x) = im Pm(B) measurem.
AC —> 00 —> 00 AC —> 00

by dominated convergence theorem; cf., [29]. Conversely, lefheorem 16 Consider T: X — X in Eq. (1) with an attractor
consider the set (Definition (15)) witha = 1, then the attractor set A is almost
S = {xe A Tk(X) € X\U(e) for somek > n} everywhere s.table with respect to measure any finite measure
m that is equivalent to Lyapunov measure

for all x whose w-limit points lie in A. If A is assumed a.e.
stable, the limit in Eqg. (14) is a.e. zero and

and let
S=MrS Proof: Consider any seB € #(X\U(g)) with m(B) > 0.

] ) ) o ) .. Using Lemma 14, a.e. stability is equivalent to
i.e., Sis the set of points, some of whose limit points lie in

X\U(g). For a.e. stability, we need to prove tmatS) = 0. Let r!imoIP”l‘m(B) =0. (18)
S:=SN(X\V), then by the property of the local neighborhood o _ _ B

m(S) =m(S). So, we prove the result by showing that$) = T0 show Eq. (18), it is first claimed that lim.P7u(B) =0.
0. Clearly,x € &, if and only if T(x) € S,_1. By construction, Sincem < u, the claim implies Eq. (18) and thus a.e. stability.
x € Sif and only if T(x) € S, i.e., S=T~1(S). Furthermore, T0 prove the claim, we note that(B) > 0 and consider the

Sc A and we have, sequence of real numbef®]u(B)}. Using the definition of
. . Lyapunov measure (eqn. 17), this is a decreasing sequence
m(§) =m(T~*(§ NA") =Pim(S). (15)  of non-negative numbers. Its limit is shown to be zero by

Now, S Swith m(8) = m(S). SinceT is non-singular, this repeating the argument in Lemma 14. In particular, let
implies thatP;m(S) = P1m(S) and using Eq. (15),

S:i={xe A’ lim T™(x) € B}
m(S) =P1m(S), (16) M=o
be the set of points, some of whoaglimit points lie in B.
For B, = {x€ A°: T"x € B}, xg,(x) — O wheneveix ¢ S By

dominated convergence theorem,

whereSc X lies outside some local neighborhood Af If
limp—. PImM(B) = 0 for all B€ #(X\U(¢)) and in particular
for B= Sthen Eq. (16) implies thah(S) = 0 and thusn(S) =

0. Sincee here is arbitrary, we have ARPEMB) _ r!m,/CXBn(X)d“(X) < i(9). (19)
m{xe A®: w(x) Z A} =0, A

As in Lemma 14, it follows thal ~1(S) = S, P1u(S) = u(S),

which together with the property of the local neighborhabd

and Lyapunov measure givegS) = 0. Using Eq. (19),
The two conditions in Eqg. (12)-(13) represent a certain yap givesS 9 Eq. (19)

propertytransience of the stochastic operat® with respect lim Pu(B) =0,

to Lebesgue measuna. For stability verification, the two ) - n_’°_°

conditions in by themselves are not any more useful th&Rd this verifies the claim and thus proves the theorenm

the definitions themselves. The definition involves iterating The following theorem provides a sufficient condition for
the mapping forall initial conditions in A° while the two almost everywhere stability with geometric decay in terms of
conditions involve iterating the stochastic operator fdf Lyapunov measure.

Borel setB in A°. Both are equally complex. However, just

and thusA is a.e. stable in the sense of definition 10.
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Theorem 17 Consider T: X — X in Eqg. (1) with an attractor and thus the two measures are equivalent Applyifig— 1)
set AC V C X. Suppose there exists a Lyapunov measui@ both sides of Eq. (20), we get
(Deﬂnmgn 15) witha < 1 then N P1ji(B) — [i(B) = —m(B) < 0 implies P1ji(B) < [i(B)
1) A is a.e. stable with respect to any finite measure m _
which is absolutely continuous with respect to Lyapundyheneverm(B) > 0, and equivalently:(B) > 0. u
measureu.
2) Alis a.e. stable with geometric decay with respect to afjemark 19 In the three theorems presented above, A is a.e.

measure m satisfying /vt for some constany > 0. Stable with respect ton € A (A°). In general,m can be
any finite measure. Our primary interest is in Lebesgue a.e.

Proof: stability, and we often taken to be the Lebesgue measure.
1) Using definition (15) of the Lyapunov measure withc ~ Another finite measure of interest is
1, we get ms(B) =m(BNS) (21)

Plu(B) <a'u(B) which implies  limPIi(B)=0 whereAc Sc X , Be Z(X\U(e)), andm s the Lebesgue
measure. Note that measurg in this case is not necessarily

Sincem < u, we have . .
a non-singular measure with respectTp however measure

lim Pim(B) =0 ms can be used to 1) study local stability with respect to the
n—ee initial conditions inSc X and 2) characterize the domain of
the proof then follows from Lemma (14) attraction of any invariant sei.
2) Consider any sé € #(X\U (¢)). A simple calculation i i ) ) i
shows that Before closing this section, we summarize the salient features
of the Lyapunov measure:
PIm(B) < yPiu(B) < a"yu(B) < Ka", 1) its existence allows one to verify a.e. asymptotic stability

(Theorem 17),
2) for an asymptotically stable system with geometric de-
cay, the infinite-series (see Eq. (20))

n (I1=P) m=(1+Pi+...+PY+..)m (22
With the stronger stability condition of geometric decay,
one can construct Lyapunov measyreas an infinite series
involving sub-Markov operatdpP;.
theorem:

whereK (&) = yu(X\U(¢)) is finite. Using Lemma 14,
Alis stable almost everywhere with geometric decay with
respect to the measure.

can be used to construct it.

. .~ The series-formulation in fact is related to the well-known
This leads to the following N .
Lyapunov equation in linear settings.

Theorem 18 Let T: X — X in Eqg. (1) be a non-singular C. Lyapunov function and Koopman operator

mapping with respect to finite measure m, with an attractor setConsider a linear dynamical system
i 1 G
ACV CX, L_J(e) is an s-ne|ghborhood (_)f A, and Ap X\A. x(n+ 1) = AX(n),
Suppose A is stable a.e. with geometric decay with respect to
measure ne . (A°). Then there exists a Lyapunov measuréherep(A) < 1. With a Lyapunov function candidaté(x) =
i with a = 1 such that Lyapunov measure is equivalent t§Px, the Lyapunov equation i8/PA—P = —Q,
measure m i ~ m). Furthermore,u may be constructed to whereQ is positive definite. A positive-definite solution for
dominate measure m i.e.,(B) < u(B). P is given by

_ _ ! /)
Proof: For any givene > 0, construct a measuge as: P=Q+AQA+...+ATQA"+...,

_ 5 @ where the series converges ffA) < 1. Settingg(x) = X'Qx,
uB)=(+P+Pi+...)mB) = ijjlm(B% (20)  the infinite-series solution for anye R" is given by
=

where B € Z(X \U(g)). For such sets, the geometric decay V(x) = ZOQ(AHX) = ZO(U "g9)(x) (23)
stability condition (see definition 11) implies that there exists n= n=
aK(g) <o andp < 1 such that whereU is the Koopman operator, the dual Bo The choice

of g(0) = 0 on the complement set to the attracfo} ensures

Pim(B) < KB". that the series representation converges. Even though, we have

arrived at the series representation in Eq. (23) starting from
the linear settings, the series is valid for nonlinear dynamical
system or continuous mapping of Eqg. (L);is the Koopman

As a result, the infinite-series in Eg. (20) converges, at@)
is well-defined, non-negative, and finite. Sindejs assumed

non-singular with respect to measure the individual mea- operator for mappindl. If the series converges. one can
sureslP!m are absolutely continuous with respectrtoand P ppIngt . ges, .
xpress the solution in terms of the resolvent operator as in

thus u < m. From the construction of the Lyapunov measurE A
it folll;v:s that yap g. (23). For a convergent series, it is also easy to check that

m(B) < u(B), V(Tx) =V (x) = UV(x) =V (x) = —g(x), (24)
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i.e., V is a Lyapunov function forg(x) > 0. Note that the using the Koopman operator in Eq. (28). The Lyapunov
function g need not be quadratic or even a polynomial — anyeasuredescription thus is a dual to the Lyapunfunction
positive C° function with g(0) = 0 will suffice. Moreover, the description. The measure-theoretic description providssta
description is linear. The following theorem shows that theise counterpart to thgoint-wisedescription with Lyapunov
Lyapunov function can be constructed by using the resolvefoinction. One of the advantage is that weaker notions of sta-
of the Koopman operator for a stable system. In particuldiility, such as a.e stability are possible with measure-theoretic
we assume that the equilibrium point is globally exponentiallyescription. The other advantage is that Lyapunov measures
stable and prove in essence a converse Lyapunov theoremnfiasty be computed for stability verification and control design
stable systems; cf., [1]. using much the same set-oriented methods as are used for
computation of invariant measures. This will be a subject of
Theorem 20 Consider T: X — X as in Eq. (1). Suppose=x0 the following two sections. We note that an invariant measure,
is a fixed-point (T0) = 0), which is globally exponentially a stochastic object, is perhaps the simplest notion to capture
stable, i.e., recurrenceof an attractor set. The point-wise or the topological
n n description of the same is complex. Likewise, we conjecture
IT°00 l|< Ko x| vxe X (25) that Lyapunov measure is the natural stochastic counterpart

wherea < 1, K> 1, and | - || is the Euclidean norm in X. Then of transienceof the complement set (stability of an attractor

there exists a non-negative function X — R+ satisfying ~ Set). As the following sections show, the approximation of
the Lyapunov measure for nonlinear systems is possible using

allx[[P < V() <b|x]P, linear algorithms These can be viewed as generalizations to
V(T < c¢-V(x), constructing Lyapunov functions for the special case of linear

. dynamical systems.
where ab,c, p are positive constants; < 1. Also, V can be y y

expressed as
IV. DISCRETIZATION OF THE P-F OPERATOR
V(x) = (1 -U)"f(x), : - : .

The purpose of this section is to review the set-oriented
where f(x) =|| x ||P and U is the koopman operator corre-numerical methods for constructing finite-dimensional approx-
sponding to the dynamical system T. imations of the P-F operator. The approximation arises as a
Markov matrix defined with respect to a finite partition of the
phase space.

N
X)=Y f(T%) =S U"f(x). 26
) nZO (T) n; ) (26) A. Discretization — Markov matrix

Now, In order to obtain a finite-dimensional (discrete) approxi-
mation of the continuous P-F operator, one considers a finite
MO < zDI\T”Xll"< KIDZOOC""HXIIID

Proof: Let f(x) =|| x||P with p> 1 and set

(Ix||P partition of the phase spacg denoted as

- 1- ocp
(27) 2 ={Dy,---,D}, (30)

satisfies a uniform bound because of globally exponentially

stability (Eq. (25)) and becausé is compact. As a result, where UjDj = X. Such a partition may be constructed by

V(x) = limn_«Vn(X) converges point-wise and the limit istaking quantization of states if®". Instead of a Borelo-

well-defined and can be expressed as an infinite-series, ~algebra, consider nowa-algebra of the all possible subsets of

N X_. A real-valued measurg; is defined by ascribing to each

VX) = lim S U (x) = (1 —U) L (x). (28) elementD; a real pumb_er: Thl_Js, one identifies the associated
N—oo £ measure space with a finite-dimensional real vector space
By Egs. (26) and (27) The discrete P-F approximation arises as a matrix on this
’ “measure spaceR'.
X [|P< V(x) < X||P=b| x|, For a mappingT : X — X, the discrete approximation is

constructed from its stochastic transition functiéfy

where b > 1. Finally, becausél : X — X, V(Tx) = UV(x), particular, corresponding to a vectar= (ug,---,u) € R'—
Eq. (28) gives define a measure oX as

-1 L d X
V-V =—f =~ xIP< TV (29) 0= 3 im0 s
(11 i
Setc=(1—j). Clearly,c <1 and using Eq. (29), wheremis the Lebesgue measure amjddenotes the indicator

V(TX) <c-V(X). function with support orD;. The approximation, denoted by

P, is now obtained as
[ ]

d x) &
The series formulation in Eq. (22) using the P-F operator _ Z/D 5T m( Zl wh;,

on the complement sei° is a dual to the series expansion '
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Where ( 1 ) ) Im n; - T
m(T~~(D;) ND; L R
Rj=——1— 31
1) m(D|) 9 ( )
m being the Lebesgue measure. The resulting matrix is non-
negative and becaude: D; — X,

e X
z Rj=1 @ Re ®
j=1
. . . . Fig. 1. (a) Eigenvalues and (b) the invariant measure of the discretized P-F
i.e., P is a Markov or a row-stochastic matrix. matrix for the logistic map

Computationally, several short term trajectories are used to
compute the individual entrieB;. The mappingT is used
to transport M “initial conditions” chosen to be uniformly
distributed within a seb;. The entryR; is then approximated XO —)
by the fraction of initial conditions that are in the bdX;
after one iterate of the mapping. In the remainder of the paper,
the notation of this section is used wherdbyepresents the
finite-dimensional Markov matrix corresponding to the infinite
dimensional P-F operatdg.

Fig. 2. A schematic of the three seAsC Xo C U: A denotes the attractor
set, Xp is the support of its invariant measure approximation, dnid some
neighborhood. The finite partition is shown as the rectangular grid in the
background.

B. Attractor sets & Invariant measures

The finite-dimensional Markov matri¥ is used to nu-
merically study the approximate asymptotic dynamics of the
Dynamical systenT; cf., [30], [20]. Recent research interest V. STABILITY IN FINITE-DIMENSION
has focussed on carrying ospectral analysiof the Markov  |n this section, discretization methods are used to approxi-
matrix to obtain statistical information on the asymptotignate the Lyapunov measure. The existence of an approxima-
dynamics; cf. [16], [17], [18]. In particular, suppoge> O tion is related to yet weaker notions of stability, termed as
is an invariant probability measure (vector), i.e., coarse stability.

pP=1-p,
hh Lthen th o gi ~ A. Matrix decomposition
such thaty y; =1 then the support qf gives an outer approxi- . : "
mation of the attractor and; = u(D;) measures the “weight” we 'F’eg”_” by presenting a decomp_os_ltlon re_s_ult for _the
approximation P corresponding to a finite partition. This

of the componenD; in attractor A [31]. The analysis has ecomposition is a finite-dimensional analoaue of Ed. (8). It
also been extended to interpret other portions of the Markov posttion 1 inite-cl ' gu g. (8).

matrix's spectrum. In particular, dynamically relevant “almost ajsug]rfs dtZit ,;2 2%?;22?:;@%:%?:tl)re“;?]rlggrtnmjtaezutr)e
invariant sets” correspond to eigenmeasures with eigenval#eg PP ' P y

close to unity [32]. The cyclic behavior within a attractor Caﬁ:valuatlng a fixed-point the matrix. An indexing is chosen

be extracted by considering the complex unitary spectrum %lfCh that the two non-empty complementary partitions

the Markov chain [16], [17]. 2o = {Di,...,Dx}, (32)

3{1 = {DK+1a"'7DL} (33)

C. Example . . T
P with domainsXo = U_;D; and X; = U}_ ;D distinguish

In this example, a Markov matrix is constructed for thgne approximation of the attractor set from its complement set
logistic map in a parameter regime where the solution showsspectively. In particularA C Xo, o is supported and non-
chaotic behavior. The logistic map given by zero onZp, and one is interested in stability with respect to the

PN initial conditions in the complemend;. For an attractoA with

(XA) = Ax—x3, o : i .
an invariant measure defined with respect to a neighborhood

and is well-studied in the Dynamical Systems literaturél O A, such sets exist for a sufficiently fine partition such that
Figure 1 depicts the spectrum of the P-F operator ¥or A C Xo C U; cf., Figure 2. The following Lemma summarizes
%\/§+ 102 together with the invariant measure. As expectethe matrix decomposition result.
the invariant measure captures the asymptotic behavior of
trajectories of the logistic map. The peaks at the two ends abeimma 21 Let P denote the Markov matrix for the mapping
in the middle suggest that the trajectories on an average sp&nih Eq. (1) defined with respect to the finite partitich in
most of their time there. In addition to the unity eigenvalué€q. (30). Let M = R" denote the associated measure space
there is another eigenvalue very close to unity. This eigenvalaed u denote a given invariant vector of P. Suppogg and
corresponds to the fact that there are two “almost invariadt; are the twonon-emptycomponents as in Eq. (32)-(33)
sets” embedded in the attractor. defined with respect tq such thaty >0 on Zo; ui >0
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iff D; € 20. Let Mp = RK and M, = R-"K be the measure B. Coarse stability
spaces associated witlto and 27 respectively. Then for the |, gec. |11, stability in continuous settings was shown to be
splitting M = Mo ® My, the P matrix has a lower triangular re|ated to the transience of the operater In discrete settings,
representation the stability is expressed in terms of the transient property of
R O i i
p_ 0 o (34) the stochastic matri;.
X 1

Definition 23 (Transient states) A sub-Markov matrix P
where 8 : Mo — Mo is the Markov matrix with row sum equalpas onlytransient statesif P! — 0, element-wise, as + o.
to one and P: M; — Mj is the sub-Markov matrix with row
sum less than or equal to one. Intuitively, it makes sense that if the invariant geis stable
or a.e. stable then the sub-Markov matik is transient.
Proof: Use the splittingM = Mo & M1 to express the Conversely, transience d# is shown to imply yet weaker
invariant vectory = [u u'] where u® € Mo and u' € M1.  forms of stability referred to asoarse stabilityin this paper.
By constructionu® > 0 for all entries andi* = 0. Again, use

the splitting to write Definition 24 (Coarse Stability) Consider an attractor AC
Xo together with a finite partitionZ7 of the complement set
P= [ P P ] . X1 =X\ Xo. A is said to becoarse stablewith respect to the

x P initial conditions in X if for an attractor set BC U C X,

there exists no sub-partition” = {Ds;,Ds,,...,Dg} in 21

In order to prove the result, note tHatis non-negative matrix | )
P g with domain S=U}_,Dg_such that BC SCU and T(S) C S.

such that

[1°,0] = uP = [uPo, u°Py)]. For typical partitions, coarse stability means stability modulo
attractor set®8 with domain of attractionJ smaller than the

. . .. . size of cells within the partition. In the infinite-dimensional
We remark that this decomposition result does not explicit ¥nit. where the cell size (measure) goes to zero, one obtains

require either the existence of the Sbfor any propertyA C stability modulo attractor sets with measure 0 domain of

Xo C U regarding the partition?o . These two h_owev_er ensureattraction, i.e., a.e. stability. Figure 3 compares some of the
that a) Zp and 27 are non-empty and b) the invariant vector

is a good approximation of the invariant measure and her~~
the underlying attractor.

Since,u® >0 soP, =0.

Example 22 1) Supposex is a locally stable fixed point Infinite Finite
of Eq. (1). The invariant measure is the Dirac delt _—
measure supported o9, denoted by,,. Next, assumea | T 7] 7
partition such thaD; c U, whereU lies is the domain Possible — - '

of attraction ofxg. The discrete approximation of the
invariant measure is then given by

B 4 ‘,/ S e
pp=1  ui=0 foriz#l Not possible = .
where y; is the measure on cel;. The P matrix is
given by {a) i0) @
P= R PR - 10 . Fig. 3. A schematic comparing a.e. stability in infinite-dimensional setting
x P x P (part (a)) to the coarse stability with finite partitions (part (b) and (c)). In

either case, appropriate notion of stochastic stability is assuihear(d P
2) Consider next a locally stable period-two orlfit= ~transient).
{Xo0,x1} C U, a neighborhood in its domain of attraction. o ) L ] ) .
The physical measure is given by = 18, + %5)(2_ possibilities wnh_g.e. s.tabllllty_ in |nf|p|_te—d|men3|onal settings
Assume a fine enough partition witho = Dy U D5 and coarse stab|l!ty using finite partitions. The part (a) .s.ho'vvs
such thatx; € Dy, X € D, Xo CU, T :D; — D», and that measure O invariant sets such as unstable equilibrium

T:D, — Dy. It follows that theP matrix is given by (denoted by o) or a (dashed) line in t_h_e plane may arise in
the complemenX; even with a.e. stability. However, stable

B P 01 0 equilibrium with a domain of attraction of positive measure
P= [ ] = 1 0 0 is ruled out. The parts (b) and (c) consider coarse stability in
x P % P discrete settings with a rectangular partition in the background.

The part (b) shows that a stable equilibrium (denoted by x)
Our strategy is to study the stability in terms of properties @fr an elongated attractor set with a smaller, than cell size,
the matrixP; and define coarser (weaker) notions of stabilitdomain of attraction is possible with coarse stability. However,
with respect to initial conditions corresponding to this. an attractor whose domain of attraction contains a sub-partition
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S (marked with bold lines in the Fig. 3) in the complement sdenote S} := S\ S; to be the complement set. We have,
is not possible. In particular, coarse stability rules out the cagéS;) = p(S) implies . (S;) =0 which in turn impliesn(S}) =
where the cell containing a stable equilibrium itself lies in it® and thusm(S;) = m(S).

domain of attraction. The part (c) shows that it is possible 1. We first present a proof for the simplest case where the
to construct a partition where coarse stability holds, yet tipartition 27 consists of precisely one cell, i.e27 = {D_}.
domain of attraction is very large with respect to the partitiorn this casePy € [0,1] is a scalar given by
This is because the cell containing the stable equilibrium 1

is not itself contained in the domain of its attraction. We P = m(T (DL)QDL)7
believe this to be atypical for reasonable choicefraf enough m(Dy)

ﬁnite partition W|th the IOWer ﬁgure il’l part (C) being a betteWherem is the Lebesgue measure. We need to Shotha:t
representative. Nevertheless, the scale of partition is importantpenote,

in deducing stability as seen in the following example.

(38)

S= {DL}, 31={X€ D.: T(X)EDL}. (39)
Example 25 Consider a scalar dynamical system ) _
Clearly, S; ¢ Sand existence of Lyapunov measuyresatisfy-

Xn+1 =Xn— (Xn — 81) (X —D)(xn —@z) forxe X =10,1], (35) ing Eq. (36) implies that

where 0< a1 < % <b<a<1, ay,a, are stable and is — — P1L(S) < iL(S
unstable. Consider a coarse partition H&) IH(S) < H(S).

1 1 1 1 Using (37),m(S1) # m(S) and sinceS; C S we havem(S,) <
2 ={05L51} Zo={03]}, Z1={[51} m(S). Using Egs. (38) and (39), this impli€s < 1, i.e.,P; is

for which the Markov matrix arises as transient. .
[ 1 0 ] We prove the result for the general case, whére is a

finite partition, by contradiction. Suppo$® is not transient.
1-p p Then using either the following Theorem 28, or a general result
from the theory of finite Markov chains [24], [33], there exists

for somep < 1. Hence,PL = p < 1 in this case is transient. {east fve | iant babilit aosuch
Using the following theorem 26, this leads to coarse stability. east one non-negative invariant probability vectosuc

The coarse stability thus misses the stable fixed pajnin

the complement seX; = [1/2,1]. Next, consider any finite v-P=v. (40)
refinement of the partitionZ7. It is easy to verify that by Let
choosingaz — b to be sufficiently small, one again has the
situation whereP, on 27 is transient. However, for any given S={xeDbi: vy>0}, §={xeS:T(x)eS}.
b—ap, there exists a partitiot#?] that is fine enough so that )

b and a, lie within separate cells. For such a partition and iS claimed that

its refinements, the Markov matri will not be transient. In m(Sy) = m(S). (41)

La;ﬁlt,Ct:net;inr:?in:ntwrirl}es:urgrzigzrr)]:ommatlon supported on We first assume the claim to be true and show the desired
922 P ' contradiction. Clearlys, C Sand if the claim were true, (37)

The theorem below formally links the transience of majx shows that
to various notions of stability considered in this paper. w(s) =u(s). (42)

Theorem 26 Assume the notation of the Lemma 21. In partid¥ext, becaus&c Xy,
ular, A is an attractor set in ¥C X with approximate invariant — — 1 — 1

. o . = > .
measure supported on the finite partitioty of Xy. P; is the Puu(S) = u(T S NX) 2 u(THYNS
sub-Markov operator on# (A°). P, is its finite-dimensional gnd this together with Eq. (42) gives
sub-Markov matrix approximation obtained with respect to the B _
partition 27 of the complement set;X X \ Xo. For this P1u(S) > u(S)

1) Suppose a Lyapunov measyreexists such that for a setS with positive Lebesgue measure. This contradicts

P (B) < u(B) (36) Eg. (36) and proves the theorem.
It remains to show the claim. Lefi}}_; be the indices

for all B C #(X1), and additionallyu ~ m, the Lebesgue [gvith v, > 0. Eq. (40) gives

measure. Then the finite-dimensional approximatign
is transient. I

2) Suppose Pis transient then A is coarse stable with z Vig[Plijm = Vijm for m=1,....1.
respect to the initial conditions in1X k=1

Proof: Before stating the proof, we claim that for any tonakmgJ a summatiory ., on either side gives

sets§ andSsuch thats; € S if u = mthen I [
1(S)=u(S ifand only if m(S)=m©S)  (37) kzlv‘krr;m”m =t
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Since, individual entries are non-negative anid a probability C. Formulae for Lyapunov measure

vector, this implies There are a number of equivalent characterizations of the

[ transience, expressed in Definition 23, of the sub-Markov
Z Piiyjm=1k=1,...,1, matrix P;. These are summarized in the theorem below and
m=1 will be used to obtain computational algorithms for deducing
i.e., the row sums are 1. Using formula (31) for the individugioarse stability.
matrix entries, this gives
| o Theorem 28 Suppose Pdenotes a sub-Markov matrix. Then
Ym=1M(T(Djp) NDy,) = m(Dy, ), the following are equivalent
therefore m(T~*(Up,_4Dj,,) NDy,) =m(Dy,) k=1....1, 1) Py is transient,
) p(P) <a<l,
) the infinite-series # P, + Pl2 + ... converges,
4) there exists a Lyapunov measure> 0 such thatuP; <
ou whereo < 1.

where we have used the fact that the pre-image sets are disjoi
anduT ~(Dj,) = T~}(UDj,,). However, by constructio§=
Ul,_1Dj,, and thus

m(T-4(S)ND;,) =m(D;,) fork=1,...,1. | |
Proof: (1= 2) SinceP; is assumed to be a sub-Markov

Taking a summatiory}_, on either side gives matrix, p(P1) < 1. By non-negativity ofP, p(P1) is in fact
. an eigenvalue oP; with a non-negative vector; cf., Sec 8.3 in
mT(§NS =m(S), [33]. As a result, ifp(P1) = 1 then there exists >0, v # 0

precisely as claimed in Eq. (41). This completes the proof fSPCh that

n__
the general case. VP =v

. . . for all n. This contradicts 1.
2. Supposé™; is transient. To show tha is coarse stable, we (2 — 3) With p(Py) < 1, the inverse(l — P1)~L exists and is
proceed by contradiction. Indeed, using definition 24 fas in fact analytic with the'series expansion

not coarse stable then there exists an attractoBsetU C X;

with a sub-partition.” = {Ds,,...,Dg}, S= U_,Ds, such (I=P) t=14+P+P?+... (43)
thatBC Sc U andT(S) C S Since, the seis left invariant _ _
by mappingT, In particular, the series converges.

L (3= 4) Choosem > 0, and set
b _MTD)NDy) i | -
i m(Dy,) ) pu=m-(I-P) " =m+mR+mk+...

wheneverD; ¢ .#. Moreover, becaus® : S— S The non-negativity oP; together with convergence of series
implies that the inversel — Pl)*1 is itself a non-negative
' i matrix [34]. As a resulty > 0 for m> 0. A simple calculation

le[Pl]SSj =1 i=1..1 then shows that

i.e., P is a Markov matrix with respect to the finite partition po-P—p=-m<o.

. Form the general theory of Markov matrix [24], there theBecause of the strict inequality, there must then existtanl
exists an invariant probability vector such that such that

v-Pl=v, pw-PL<ap.

for all n> 0, andPy is not transient. . _ _ )
(4=1) By taking repeated powerg,-P[' < o"u. The right
Corollary 27 Consider T: X — X in Eq. (1) with an invariant hand_side converges to zero. Sirgeis a hon-negative matrix
L e andu > 0, this implies tha]' — 0 asn — o, [ |
set ACU(e) € X C X, U(e) is somee-neighborhood of A, If it exists, an approximation of the Lyapunov measure can be
P, is the sub-Markov matrix with respect to a finite partition It exsts, pproximat yapunov n ure
of the complement set;X X \ Xo. Suppose A is stable a'e‘computed as a solution to a system of linear inequalities
with geometric decay vyith respect to some finite measure m p-(al—P) > 0, (44)
A (X\U(g)). Then, R is transient. i > 0 (45)

Proof: Theorem 18 shows that an equivalent Lyapundy,ch, 5 solution is efficiently computed using Linear Program-
measure exists whenevAris a.e. stable with geometric decayming (LP) methods. For a givem > 0, convergence of the

The result follows from part 1 of the Theorem 26 abov@  j dnite_series in Eq. (43) provides for another method for
In summary, a.e. stability implieB; is transient, while one computing the approximation:

can only conclude a weaker coarse stability given transience
of Pr. g=m-(1-P) t=m+m-P +m-Pi+... (46)
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In summary, transience of the Markov cha can be @
expressed in three equivalent ways useful for distinct com- 1
putational approaches: j «‘// @

1) Verify a spectral conditiop(P) < a <1, — @ 1 5

2) Compute a Lyapunov measugeusing a series formu- x

lation as in Egs. (46), \ -

3) Compute a Lyapunov measure using Linear program- @

ming as in Egs. (44)'(45)' Fig. 4. A schematic of the discrete dynamics in Eq. 49.
The parallels with the linear dynamical system are summarized

in the Table 1. The spectral condition is a counterpart of TABLE Il
p(A) < 1 fOf the Iinear dynamical SyStem. The SerieS eX|:YAPUNOV FUNCTIONV AND MF'\IA?EL(JDRIZ[; FOR THE DISCRETE DYNAMICS
pansion corresponds to the series solution of the Lyapunov '

Complement set  x; Vi

equation. It can also be obtained as a solution of a linear v T 1
equation. Finally, the linear programming based formulation Iy N1l 1
arises due to the non-negativity of the mathx It does not
share any obvious counterpart in the linear setting.

TABLE | as shown in Fig. 4. The statéxo} is a globally stable
CONDITIONS FOR RECURRENCE AND TRANSIENCE . .
attractor. Table 2 gives a Lyapunov function and measure

Linear A) Nonlinear &, P1)
rVaranT Set =A0 =R on the complement se{xl,ylz...,yN}. The I:_;lrge value .of
Spectral condition p(A) <1 p(P) <1 Lyapunov measurg@ at the pointx; is a reflection of the size
Series-expansion AT-P-A-P=-Q pg=m-(1-P)* (N) of its pre-image set. In regions (cells) such as these, where
Linear inequalities - ph<p the flow is squeezed through a narrow region, the Lyapunov

measure will have a high value. Due to the dual nature of

Lyapunov measure and Lyapunov function the behavior of
Remark 29 Computationally, it is most attractive to verify Lyapunov measure and Lyapunov function is exactly opposite.
stability using the linear inequalities (44)-(45). We used theyapunov measure takes smaller value on the sets which are
MATLAB commandlinprog to verify stability in the example away from the invariant set and larger value on the set which
problems described in the following section. One importaare closer to the invariant set, Lyapunov function on the other
point to note is that the inequality (44) needs to be strict fd(vand takes lower value on the states which are closer to the
deducing stability. As a result, the inequalities (44)-(45) aeguilibrium point and larger value on the states which are

implemented in MATLAB as further away from the equilibrium point.
p-P < ap-—e, (47) . o
i > 0 (48) Example 31 Consider the 1-d cubic logistic map

where € is a small positive constant used to enforce strict Xn+1:7LXn—X§, (50)

inequality anda < 1. , .
with A =2.3 andX = [-1.5,1.5]. The value ofA is chosen

The Lyapunov measure and the computational framewottk be at the “edge,” where a sequence of period-doubling
is expected to be particularly useful for control design withifurcations lead to chaos. Figure 5 (a) shows the asymptotic
the objective of stabilization of an equilibrium or an invarianattractor sets obtained as a function of initial conditions in
set. This framework, however, is different from the LyapunoX. There are two symmetric attractors, that are stable in the
function based computational methods that have appearedsénse that any typical initial condition asymptotes too one
recent literature. In contrast to the set-wise measure theoreficthese sets. Figure 5 (b) verifies this with the aid of the
stability concepts of this paper, the SOS polynomial basg¢gapunov measure on the complement set to the support of
papers [11], or set-oriented papers [35], or papers utilizinge two invariant measures. We refer the reader to Sec. IV for
dynamic programming and numerical approximation ideaktails on set-oriented approximation of the P-F operator. The
for optimal control [36] all aim to synthesize point-wiselyapunov measure was computed as a solution of the linear
functions: density, approximate Lyapunov function, or optimahequalities Eqs. (47)-(48). Linear programming (MATLAB
value functions, respectively. We will establish more concret®mmand linprog) was used to obtain this solution. The
connection between optimal control and Lyapunov measureifivariant measures (in red) correspond to the two attractors

a separate publication focussing on control. and the Lyapunov measure (in blue) is computed on the
complement set. We remark that one does not have global
D. Examples stability, for initial conditions inX, for either of the attractors.
Example 30 Consider dynamics on a finite set, However, existence of a Lyapunov measure ensures that in
a coarse sense, any initial condition in the complement set
T(x) = X, fori={0,1} asymptotes to the support of one of the two invariant measures.
T(y)) = xi, fori={1,...,N}, (49)
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Lyapunov measure for the stable equilibrium at origin

Attractors for Logistic map (2=2.3) Invariant measure and Lyapunov measure

Asymptotic trajectory

X, - Initial condition

(@ (b)

Fig. 5. Asymptotic behavior of the logistic map in Eq. (50): (a) attractoFig. 7. Lyapunov measure for the equilibrium at origin for ODE in
sets as a function of initial conditiory and (b) the invariant measures for Eq. (52) on the glued domai. The invariant measure is supported on single
these attractor sets (in red) and the Lyapunov measure (in blue) verifying the&ifl shown in white at the origin. White curves denote some representative
stability. trajectories.

Example 32 Consider the ODE for the Vanderpol oscillator unbounded. To apply the results of this paper, we consider the
, 2o o domain to beX = [—4,4] x [—4,4] and glue its boundaries. In
X= (13X +x=0. (51) particular, the left boundaryx = —4,y) is glued to the right

A dynamical systenT is obtained after numerical integrationboundary a{x=4,y), the upper boundargx,y = 4) with x> 0

of the ODE over a time-interval ot = 1. A suitably large is glued to(—x,y = 4), and similarly on the lower boundary

At is chosen sdT : X — X, whereX = [-3,3] x [-3,3] is a Y= —4. Inside the glued domain, the dynamics are described

finite box containing the unstable origin and the globally stably the ODE in Eq. (52). The dynamical system for the same

Vanderpol limit cycle. Figure 6 (a) depicts the approximatiowas constructed using numerical integration with= 0.2.

of the invariant measure corresponding to this limit cyclBigure 7 depicts the Lyapunov measure on the complement

and part (b) shows its Lyapunov measure. In the regidio the origin) set verifying coarse stability of the originXn

inside the limit cycle, the measure shows moderate variatioflso shown are typical trajectories showing the convergence to

with larger values near the limit cycle. Outside the limithe origin. The peaks in the Lyapunov measure are consistent

cycle, there are two sharp peaks denoting the regions wheigh the convergence of typical trajectories, a few of which

most trajectories in the phase space squeeze through befogeshown in white.

converging uniformly to the vicinity of the limit cycle. The

figure shows some of these traje_ctories (in white) together wigh Duality - Lyapunov function

the peaks (denoted as “max”) in the value of the Lyapunov

measure. In this section, we consider the discrete counterpart of the

Lyapunov function. In continuous settings, the analysis in
Sec. llI-C and in particular, Eq. (24) shows that Lyapunov
function is related to the dual of the P-F operator. In discrete
settings, one way to proceed is to consider the transpose of the
matrix P;. Indeed, the discrete analogue of Eq. (24) is given

by

Lyapunov me

Invariant measure for limit cycle

(I-=P)V =g, (53)

where multiplication on the right is equivalent to taking a
Fig. 6. (a) Invariant measure (b) Lyapunov measure for the Vander[)tgﬁnSpose oPy (anq.multlplylng c,m leﬁ)',and‘:’ IS a pqsmve
oscillator in Eq. (51). The limit cycle is shown as a black curve and whitd€Ctor on the partitionZ. If Py is transient then using the

curves denote some representative trajectories. For the Lyapunov measurergigilts of Theorem 28, a unique and positive solutioexists

maximum value of 026 was seen at the two regions denoted as "max” They gy positiveg. However, unlike the infinite-dimensional

color axis in part (b) is limited td0,0.002 to better represent the variations N .

in the value of Lyapunov measure. case,V is in general not a Lyapunov function except for a
special case wherg, is additionally deterministic.

Definition 34 (Deterministic Markov matrix [13]) A
Markov or a sub-Markov matrix {Pis deterministic if the
individual entries are eitheb or 1.

Example 33 We next consider a dynamical systéimcorre-
sponding to the ODE

X = —2x+xX2—y? _ .
y = —6y+2xy, (52) It easily fo[lows that for any row ofa Qeterm|n|stfti, at most _
one entry is non-zero. It is necessarily 1 for a Markov matrix
In [3], the origin was shown to be a.e. stable with respect tut may be 0 for a sub-Markov matrix. The interpretation here
initial conditions inR2. This example does not have any comis that if Piij is 1, thenalmost allthe states in thé" cell go
pact T-invariant setX that contains all of its equilibria. The to the ji cell after one iterate of the mappirky If Piij =0
trajectory for any initial condition ox-axis withx > 2 grows for all j, then the states i’ cell are transient in 1-step. Since
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all of the states within a cell behave identically, it is possiblend i is a Lyapunov measure. The converse follows similarly.
to set one value for the Lyapunov function over the cell. Sald fact, the inverse relationship in Eq. (57) can be further
another way, the indicator functions are the basis of the generalized. Let)(-) be any monotonically decreasing positive

Lyapunov function with co-ordinat¥, i.e., function of its argument thep = h(V) is a Lyapunov measure
for a givenV andV = h(u) is a Lyapunov function for a
X) = ZV”Q(X)’ (54)  given . In the following section, we extend this relationship

, o ) to continuous settings.
where k; is the indicator function for celD;. Analogously,

define
VI. RELATION BETWEEN LYAPUNOV MEASURES AND

X) = Zgﬂq(x% FUNCTIONS

Under certain conditions, it is also possible to relate the
Lyapunov function and the Lyapunov measure for the infinite-
dimensional case. The motivation here is derived from the
relationship in Eq. (57) for the discrete case and the results
in Section 3 of [3], where the relationship between density
functlon and Lyapunov function is given.

In this section, we impose an additional assumptioCbf
|nvert|b|I|ty (diffeomorphism) on the mapping@ : X — X in
Eq. (1). For the diffeomorphisiii, define

The following theorem then shows that the solutignto
Eq. (53) in fact gives the Lyapunov function.

Theorem 35 Consider a mapping TX — X with an attractor

A, and a sub-Markov and deterministic matrix Ehat is

defined for a finite partition of the complement set. Assum
P, is transient and let V be a solution of Eq. (53) for a

given positive g. Then %) defined by Eq. (54) is a Lyapunov
function with

V(%) =V(Tx) = g(x),
for all x € X; with Txe X;. V(X) = g(x) where Txe Xo.

3709 = |5 )

where|-| denotes the determinant of the JacobTanl( X) as
Proof: By transience oP;, a unique positive solutioh' evaluated ak. BecauseT o T 1(x) = x, J(X) = dT S(T72(%)].
exists. If states in the cell go to cell j in one iterate of The real-valued function)~(x) has a speC|aI significance
mappingT then because it gives the density of measiien with respect to
(PV)i =V;. the Lebesgue measune In particular,

Hence, the co-ordinate form of the Eq. (53) reads Lemma 36 Let P denote the P-F operator for the mapping

Vi—Vj=gi (55) T:X— X then
For x in cell i with Tx in cell j, dPm(x) = J-1(x)dm(x). (58)
V(X) =M, V(Tx=V;, g =g. Next, suppose (k) denotes the density of an absolutely con-

] tinuous measurg with respect to m, i.e.,@d(x) = f(x)dm(x),

Using Eq. (55), then
V() —V(TX) = g(x), (56) dPu(x) = £(T71(x))3~*(x)dm(x). (59)
for x in cell i. Sincei is arbitrary the result follows for all Proof: Eq. (58) follows from
X € X1 such thatTxe X;. If Txe Xo, the states in cell are 1
transient in 1 step(PV); = 0, andV(x) = g(x) using very PmA) = /XA (Tx)dm(x) :/ZA(X)dm(T X)
similar arguments. For a givem> 0, V is then a Lyapunov B X)d
function by Eq. (56). [ - /XA )dm(x).
For the d_etermlmstlc case, one can use a Lyapunov functlga_ (59) follows from
V to obtain a Lyapunov measuge and vice-versa under one
additional assumption oR;. We say that a Markov or a sub— / (TX) f (x)dm(x / NI~ x)dmix
Markov matrix Py is 1-1if Py is deterministic and has atmost al ) In(x ( )3 0gdmx)
one non-zero entry in each column. For such aset ]
_ 1
H=v SN Relationship
Now, if Vi > 0 is a discrete Lyapunov function 8¢ <V, The purpose of this Section is to present the main result re-
wheneverPyj; = 1, one has lating the Lyapunov measure and function under the additional
1 1 assumption thai(x) < 1.
5 1
(HPL)j = pi = VAV = Hj,

Theorem 37 Let A be the invariant set for a dynamical system
i.e., T and assume that(d) < 1 for all x € A®. Then the following
uPL < u, statements are true:
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1) Suppose the invariant set A is a.e. stable with the

2) Suppose the invariant set A is stable with Lyapunov

1)

2)

Lyapunov measurg satisfying

dit(x) — dPyit(x) = g(x)dm(x), (60)
where ¢x) > 0. Then
— -1
Vi = (o) (61)
is a Lyapunov function with the property
V(x) < V(T (x). (62)

function V satisfying

JY XV (x) < V(T Y(x)) (63)
then the measure
_ 1
FB) = [ Gy @m0
is a Lyapunov measure such that
a(T1B) < ii(B) (64)

for all B C #(A°) with m(B) > 0. B > 1 is a suitable
constant chosen sg% is integrable.

Proof:

Using Lemma 36,

di(x) — dPA[)(x) = V(%) —V X (T 2(0)3 71 (x)]dm(x).

Equation (60) then implies
V)~V YT (x))37 (%)

=g(x)=0
and
V) > VT (%)) 700 > VT (%)

This gives the desired result in Eq. (62).
Because)(x) > 1 andB > 1,

J LX)V (x) < V(T~1(x)) whichimplies
IHVP (x) < VA (T H(x)),

1(x) 1

I
<
VE(T1(x) ~VA(x)
So for any positive Lebesgue measure Bet %(A°),

J1(x) 1
—————d /—d ,
/B VBT1(x)) 3MX < B M)
wheref is a suitable constant that ensures % €
ZY(A°). Now, set

du(x) 1
dm(x)  VA(x)

and using Lemma 36, the above integral gives

| a0 < [ i
T-1(B) JB
The inequality in Eq. (64) follows.
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]
Note that on a transitory complement %€t the pointT (x)
may lie in A and hencdl x may not be well-defined. However,
T-1(x) is well-defined for allx € A° and the Lyapunov
function inequality is expressed in this form. Finally, we
remark that for an ODE with vector-field corresponding to

a dynamical systen, the condition isJ(x) < 1 if and only if
0-u< 0. The latter is indeed the assumption in [3], where the
relationship between Lyapunov function and density function
was first described.

VIl. DISCcUSSION& CONCLUSIONS

In nonlinear control, Lyapunov functions have primarily
been used for verifying stability and stabilization, using con-
trol, of an equilibrium solution. An equilibrium is only one of
the many recurrent behavior that are possible in nonlinear dy-
namical systems. A stable periodic orbit is a simple example of
non-equilibrium behavior bugtrange attractorsarise even in
low-dimensions. For e.g., the Lorentz attractor and the chaotic
attractor of the logistic map in Fig. 1. In higher dimensions
such as distributed systems, non-equilibrium behavior is the
norm.

In this paper, we argued that measure-theoretic stochastic
approaches are a key to the study of non-equilibrium behavior
in dynamical systems. Indeed, stochastic methods have come
to be viewed as increasingly relevant for the study of global
recurrentbehavior such as attractor sets even in deterministic
dynamical systems. Lyapunov measures, introduced in this
paper, are a stochastic counterpart to the notiotraofsience
and thus useful for verifying (weak forms of) stability of
the recurrent attractor sets. Next, recent advances using set-
oriented numerical approaches for the discretization of the
stochastic operators have made the calculation of recurrent
attractor sets as invariant measures routine. There are two
ideas of interest here: a) non-equilibrium chaotic behavior is
described more naturally on sets as opposed to with points,
and b) a measure-theoretic description allows for a coarse
and multi-scale study of such behavior. Either provide for
reduction of complexity compared to a point-wise descrip-
tion. While, evolution of points is nonlinear and chaotic, the
evolution of (measures supported on) sets is linear and well-
behaved. In our paper, the discretization leads to coarser and
multi-scale notions of stability which generalizes in a natural
way the almost everywhere stability of [3].

It is noted that the presence of unstable points in the com-
plement set is typically useful for the stabilization problem.
The existence of point-wise positive Lyapunov function with
everwhere notion of stability precludes such points. The a.e.
notion of stability, first introduced in [3], allows for such
points. It even allows for stable sets with Lebesgue measure
0 region of recurrence. The intuition being that such sets are
not important from the point of view of any meaningful opti-
mization criterion or that even smallest noise will in general
destroy the recurrence. The coarse notions of the stability as
a consequence of discretization carry this one step further. In
effect, it allows for even typical stable recurrent sets with small
(than the quantization size) regions of attraction. Once again,
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the intuition is that such sets are either not important for the]
given scale or that large enough (size of quantization) noise
makes them irrelevant. We will investigate these ideas for tf@]
purposes of control design in a separate publication.
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