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Lyapunov measure for almost everywhere stability
Umesh Vaidya Member, IEEE,and Prashant G. MehtaMember, IEEE,

Abstract—This paper is concerned with analysis and compu-
tational methods for verifying global stability of an attractor
set of a nonlinear dynamical system. Based upon a stochastic
representation of deterministic dynamics, a Lyapunov measure
is proposed for these purposes. This measure is shown to be a
stochastic counterpart of stability (transience) just as invariant
measure is a counterpart of attractor (recurrence). It is a dual
of the Lyapunov function and is useful for the study of more
general (weaker and set-wise) notions of stability. In addition to
the theoretical framework, constructive methods for computing
approximations to the Lyapunov measures are presented. These
methods are based upon set-oriented numerical approaches.
Several equivalent descriptions, including a series-formula and
a system of linear inequalities, are provided for computational
purposes. These descriptions allow one to carry over the intuition
from the linear case with stable equilibrium to nonlinear systems
with globally stable attractor sets. Finally, in certain cases
exact relationship between Lyapunov functions and Lyapunov
measures is also given.

I. INTRODUCTION

For nonlinear dynamical systems, Lyapunov function based
methods play a central role in both stability analysis and
control synthesis [1]. Given the complexity of dynamic be-
havior possible even in low dimensions [2], these methods
are powerful because they provide an analysis and design
approach forglobal stability of an equilibrium solution. How-
ever, as opposed to linear systems, there are relatively few
computational methods to construct these functions in general
nonlinear settings and herein lies the barrier to their more
widespread use. For nonlinear ODEs, two ideas have appeared
in recent literature towards overcoming these barriers.

In [3], Rantzer introduced a dual to the Lyapunov function,
referred to by the author as adensity function, to define and
study weaker notion of stability of an equilibrium solution
of nonlinear ODEs. The author shows that the existence
of a density function guarantees asymptotic stability in an
almost everywhere sense, i.e., with respect to anyset of
initial conditions in the phase space with a positive Lebesgue
measure. In the context of this paper, we note that Rantzer
interprets his density function as “density of a substance that
is transported along the system trajectories.” The second idea
involves computation of Lyapunov functions using sum of
squares (SOS) polynomials; cf. [4] and [5] for an early work.
This idea has recently appeared in the work of Parrilo [6],
where the construction of Lyapunov function is cast as alinear
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semidefinite problem (or linear matrix inequalities, LMI) with
suitable choice of polynomials (monomials) serving as a basis.
LMI based methods and algorithms for verifying polynomial
to be a SOS have appeared in [7], [8], [9], [10]; see also [4]
and references therein. In a recent paper by [11], these two
ideas have been combined to show that density formulation
together with its computation using SOS methods leads to a
convex and linear problem for the joint design of the density
function and state feedback controller. In this paper, the three
elements oftransport, linearity, and computations are all
shown to be intimately related to certain stochastic operators
and their finite-dimensional discretizations.

The transport properties for ODEs, dynamical systems, or
nonlinear continuous maps has a rich history of study using
stochastic methods; cf., [12], [13]. Given a dynamical system,
one can associate two differentlinear operators known as
Koopman and Perron-Frobenius (P-F) operators. These two
operators are adjoint to each other. While the dynamical
system describes the evolution of an initial condition, the P-
F operator describes the evolution of uncertainty in initial
conditions. Under suitable technical conditions, the spectral
analysis of the linear operators provides a description of
the asymptotic dynamics of nonlinear dynamical systems. In
particular, the eigenfunction with eigenvalue one characterizes
the invariant sets capturing the long term asymptotic behavior
of the system [14], [15]. Spectrum of these operator on the
unit circle has the information about the cyclic behavior of the
system [16], [17], [18]. More recently, there has been a sig-
nificant interest in applied dynamical systems literature to de-
velop finite-dimensional approximations of these operators for
the computational analysis of global dynamics. Set-oriented
numerical methods have been proposed for these purposes;
cf. [19]. The stochastic operators together with their finite-
dimensional approximations provide for the three elements of
transport, linearity, and computations. In this paper, these and
other properties of stochastic operators are used to develop
extension of the ideas of [3] on one hand and propose a new
set of linear computational tools for verifying stability on the
other. In particular, there are three contributions of this paper
that are discussed in the following three paragraphs.

First, it is shown that the duality expressed in the paper
of [3] and linearity expressed in the paper of [11] is well-
understood using stochastic methods. Spectral analysis of the
stochastic operators is used to study the stability properties
of the invariant sets of deterministic dynamical systems. In
particular, we introduceLyapunov measure as a dual to
Lyapunov function. Lyapunov measure is closely related to
Rantzer’s density function, and like its counterpart it is shown
to capture the weaker almost everywhere notion of stability.
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Just as invariant measure is a stochastic counterpart of the
invariant set, existence of Lyapunov measure is shown to
give a stochastic conclusion on the stability of the invariant
measure. The key advantage of relating Lyapunov measure
to the P-F operator is a) the relationship serves to provide
explicit formulas of the Lyapunov measure, and b) set-oriented
methods can be used to compute it numerically.

For stable linear dynamical systems, the Lyapunov function
can be obtained as a positive solution of the so-called Lya-
punov equation. The equation is linear and the Lyapunov
function is efficiently computed and can even be expressed
analytically as an infinite-matrix-series expansion. For the
series to converge, there exists a spectral condition on the
linear dynamical system (ρ(A) < 1). The P-F formulation
allows one to generalize these results to the study of stability
of invariant and possibly chaotic attractor sets of nonlinear
dynamical systems. More importantly, it provides a framework
that allows one to carry over the intuition of the linear
dynamical systems to nonlinear systems. For instance, the
spectral condition is now expressed in terms of the P-F
operator. The Lyapunov measure is shown to be a solution
of a linear resolvent operator and admits an infinite-series
expansion. The stability result, however, is typically weaker
and one can only conclude stability in measure-theoretic (such
as almost everywhere) sense. Finally, the non-negativity of the
stochastic operator is shown to lead to a Linear Programming
(LP) formulation for computing the Lyapunov measure.

The third contribution pertains to the formulation of these
results in finite-dimensional settings. Using set-oriented nu-
merical methods such as GAIO [19], the computation of
approximate Lyapunov measure is cast as a solution to a
finite system of linear inequalities. It is efficiently solved using
Linear Programming. The finite-dimensional approximation is
motivated by the computational concerns but as a by product
leads to even weaker notions of stability. This notion is termed
ascoarse stability in this paper.

The outline of this paper is as follows. In Section II, pre-
liminaries and notation from the dynamical systems literature
related to P-F operator is reviewed. In Section III, Lyapunov
measure is introduced and related to both the stochastic
operators and certain notions of stability of an attractor set. In
Sections IV and V, discrete approximation of the P-F operator
and the Lyapunov measure respectively is given. The approx-
imation is shown to be related to a certain weaker notion of
stability, termed coarse stability, of the original dynamical
system. In Section VI, relationship between the Lyapunov
measure and function is provided. Finally, we conclude with
a discussion on the merits of the approach in Section VII.

II. PRELIMINARIES AND NOTATION

In this paper,discrete dynamical systemsor mappings of
the form

xn+1 = T(xn) (1)

are considered.T : X → X is in general assumed to be only
continuous and non-singular withX ⊂ Rn, a compact set. A

mappingT is said to be non-singular with respect to a measure
m if m(T−1B) = 0 for all B∈B(X) such thatm(B) = 0. B(X)
denotes the Borelσ -algebra onX, M (X) the vector space of
real valued measures onB(X). Even though, deterministic
dynamics are considered, stochastic approach is employed for
their analysis. To aid this, some notations from the field of
Ergodic theory is next introduced; cf., [13], [20].

A. Stochastic operators

In stochastic settings, the basic object of interest is a
stochastic transition function:

Definition 1 (Stochastic transition function) is a function
p : X×B(X)→ [0,1] such that

1) p(x, ·) is a probability measure for every x∈ X,
2) p(·,A) is Lebesgue-measurable for every A∈B.

Intuitively, p(x,A) gives the probability for a transition from
a pointx into a setA. For Eq. (1), this probability is given by

p(x,A) = δT(x)(A),

whereδ is a Dirac measure. A stochastic transition function
is used to define a linear operator on the space of measures
M (X) as follows.

Definition 2 (Perron-Frobenius operator) Let p(x,A) be a
stochastic transition function. ThePerron-Frobenius (P-F)
operatorP : M (X) → M (X) corresponding to p is defined
by

P[µ](A) =
∫

X
p(x,A)dµ(x). (2)

Borrowing terminology from applied probability theory [21],P
will also be referred to as astochastic operatorwith transition
kernel p(x,A). Since p(x,X) = 1, any stochastic operator
necessarily satisfies

P[µ](X) =
∫

X
1dµ(x) = µ(X).

For the transition functionδT(x)(·) corresponding to a mapping
T, the P-F operator is given by

P[µ](A)=
∫

X
δT(x)(A) dµ(x)=

∫
X

χA(Tx) dµ(x)= µ(T−1(A)),

whereχA(·) is the indicator function with support onA, and
T−1(A) is the pre-image set:

T−1(A) = {x∈ X : Tx∈ A}.

The more general form of the P-F operator in Eq. (2) is
convenient for considering perturbations of the dynamical
system in Eq. (1), useful for approximation and discretization
purposes.

Definition 3 (Invariant measure) is a measureµ ∈ M (X)
that satisfies

µ(A) =
∫

X
p(x,A)dµ(x) (3)

for all A ∈B(X).
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So, the invariant measures are the fixed-points of the P-F
operatorP that are additionally probability measures. From
Ergodic theory, an invariant measure is always known to exist
under the assumption that the mappingT is at least continuous
andX is compact; [12].

Definition 4 (Koopman Operator) For Eq. (1), the operator
U : C0(X)→C0(X) defined by

U f (x) = f (Tx),

is called the Koopman operator with respect to the mapping
T .

For f ∈C0(X) and µ ∈M (X), define the inner product as

< f ,µ >:=
∫

X
f (x)dµ(x).

With respect to this inner product, the Koopman operator is
a dual to the P-F operator, where the duality is expressed by
the following

< U f ,µ >=
∫

X
U f (x)dµ(x) =

∫
X

f (x)dPµ(x) =< f ,Pµ > .

B. Attractor set and almost everywhere stability

In this paper, global stability properties of an attractor set
will be investigated. Before stating the definition of attractor
set, we state the following definition ofω−limit set

Definition 5 (ω-limit set) A point y∈ X is called aω- limit
point for a point x∈ X if there exists a sequence of integers
{nk} such that Tnk(x) → y as k→ ∞. The set of allω-limit
point for x is denoted byω(x) and is called itsω- limit set.

A set A⊂ X is calledT-invariant if

T(A) = A. (4)

Definition 6 (Attractor set) A close T-invariant set A⊂ X
is said to be an attractor set if it satisfies the following two
properties

1) there exists a neighborhood V⊂X of A such thatω(x)⊂
A for almost everywhere (a.e.) x∈V with respect to finite
measure m∈M (X). V is called the local neighborhood
of A.

2) there is no strictly smaller closed set A
′ ⊂ A which

satisfies property 1.

The notation A⊂V ⊂ X is used to denote an attractor set A
with local neighborhood V in X.

Remark 7 Measuremcan typically be taken to be a Lebesgue
measure.

There are various definitions of attractor set in the dynami-
cal systems literature; Ch. 1 of [22] or the introduction in [23].
The above definition of attractor set is due to Milnor and
appears in [23]. The important point of the definition is that it
does not require the local stability (in the sense of Lyapunov)
of the invariant setA and hence allows for a broad class of

attractor sets. Using Eq. (3), a measureµ 6= 0 is said to be a
T-invariant measure if

µ(B) = µ(T−1(B)) (5)

for all B ∈ B(A). A T-invariant measure in Eq. (5) is a
stochastic counterpart of theT-invariant set in Eq. (4) [2], [12].
For typical dynamical systems, the setA equals the support of
its invariant measureµ. Now we state some measure-theoretic
preliminaries and definition of almost everywhere stability of
an attractor set.

Definition 8 (Absolutely continuous measure)A measure
µ is absolutely continuous with respect to another measure
ϑ , denoted asµ ≺ ϑ , if µ(B) = 0 for all B ∈ B(X) with
ϑ(B) = 0.

Definition 9 (Equivalent measure) Two measuresµ and ϑ

are equivalent (µ ≈ ϑ ) provided µ(B) = 0 if and only if
ϑ(B) = 0 for B∈B(X).

Definition 10 (Almost everywhere stable)An attractor set
A for the dynamical system T: X → X is said to be stable
almost everywhere (a.e.) with respect to a finite measure
m∈M (Ac) if

m{x∈ Ac : ω(x) 6⊆ A}= 0

For the special case of a.e. stability of an equilibrium pointx0

with respect to the Lebesgue measure, the definition reduces
to

Leb{x∈ X : lim
n→∞

Tn(x) 6= x0}= 0,

where Leb in this case is the Lebesgue measure. Motivated
by the familiar notion of point-wise exponential stability in
phase space, we introduce a stronger notion of stability in
the measure space. This stronger notion of stability captures
a geometric decay rate of convergence.

Definition 11 (Almost everywhere stable with geometric decay)
The attractor set A⊂ X for the dynamical system T: X → X
is said to be stable almost everywhere with geometric decay
with respect to a finite measure m∈ M (Ac) if given ε > 0,
there exists K(ε) < ∞ and β < 1 such that

m{x∈ Ac : Tn(x) ∈ B}< Kβ
n ∀ n≥ 0

for all sets B∈B(X \U(ε)), where U(ε) is the ε neighbor-
hood of the attractor set A.

Remark 12 In the definition of almost everywhere stability
and almost everywhere stability with geometric decay with
respect to measurem, it is implied that condition 1. in the
definition of attractor set (Def. 6) holds true with respect to
the measurem as well.
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C. Stochastic Analysis

Study of Markov chains on finite or countable sets is by now
a well-established discipline in applied probability theory; cf.
[24], [25], [26]. Results on the stability or Ergodic properties
of these Markov chains in more general settings appear in
recent monographs of [21], [27]. Many a results appearing
in this paper are motivated by this literature. The stochastic
transition functionp(x,A) is referred to as atransition kernel
[28], [27] or a Markov transition function [21]. Borrowing
notation from [21], the two linear operators of interest are
recognized as

P[µ](A) =
∫

X
µ(dx)p(x,A),

U f (x) =
∫

X
p(x,dy) f (y).

III. STABILITY IN INFINITE-DIMENSION

In this section, Lyapunov type global stability conditions are
presented using the infinite-dimensional P-F operatorP for the
mappingT : X → X in Eq. (1). Recall that an attractor setA
is defined to be globally stable with respect to a measurem if

ω(x)⊆ A, a.e.x∈ Ac,

where a.e. is with respect to the measurem. Now, consider
the restriction of the mappingT : Ac → X on the complement
set. This restriction can be associated with a suitable stochastic
operator related toP that is useful for the stability analysis with
respect to the complement set. The following section makes
the association precise.

A. Decomposition of Perron-Frobenius operator

Definition 13 (Sub-stochastic transition function) is a
function p: X×B(X)→ [0,1] such that

1) p(x, ·) is a real-valued measure with p(x,X)≤ 1 for x∈
X,

2) p(·,A) is Lebesgue-measurable for every A∈B.

The associated linear operator, with transition kernelp(x,A),
is called asub-stochastic operator[21]. In this section, it will
be shown that

1) the dynamical system corresponding to the mappingT :
Ac → X defines a sub-stochastic operatorP1 acting on
M (Ac), and

2) P on M (X) andP1 are related.
ConsiderT : Ac∪A→ X such thatA is left invariant byT,

i.e., T : A→ A. For B⊂B(Ac),

P[µ](B) =
∫

X
δT(x)(B)dµ(x) =

∫
Ac

δT(x)(B)dµ(x),

becauseT(x) ∈ B implies x /∈ A. Thus, corresponding to the
mappingT : Ac → X, the operator

P1[µ](B) :=
∫

Ac
δT(x)(B)dµ(x) = µ(T−1B∩Ac) (6)

is well-defined for µ ∈ M (Ac) and B ⊂ B(Ac). Next, the
restrictionT : A→A can also be used to define a P-F operator
denoted by

P0[µ](B) =
∫

B
δT(x)(B)dµ(x),

whereµ ∈M (A) andB⊂B(A).
The above considerations suggest a representation of the P-

F operatorP in terms ofP0 andP1. This is indeed the case if
one considers a splitting of the measure space

M (X) = M0⊕M1, (7)

whereM0 := M (A) andM1 := M (Ac). Note thatP0 : M0→
M0 becauseT : A→ A and P1 : M1 → M1 by construction.
Let Π : M →M0 denote the projection operatoronto M0,

Πµ(B) = µ(B∩A) & (I −Π)µ(B) = µ(B∩Ac).

The following is then easily seen:

ΠPΠ = P0, (I −Π)P(I −Π) = P1, & (I −Π)PΠ = 0.

It then follows that on the splitting defined by Eq. (7), the P-F
operator has a lower-triangular matrix representation given by

P =

[
P0 0

× P1

]
. (8)

The invariant measure defined with respect to the operatorP0

is a stochastic counterpart of the attractor set supported on the
set A. Analogously, the stability conditions are expressed in
terms of a certain sub-invariant measure that is defined with
respect to the sub-stochastic operatorP1. This is the subject
of the following section.

B. Stability & Lyapunov measure

The lower triangular representation ofP in Eq. (8) is
convenient because then

Pn =

[
Pn

0 0

× Pn
1

]
, (9)

wherePn
1 = (I−Π)Pn(I−Π). More explicitly, forB⊂B(Ac),

P1µ(B) =
∫

Ac
χB(Tx)dµ(x) = µ(T−1(B)∩Ac) (10)

Pn
1µ(B) =

∫
Ac

χB(Tnx)dµ(x) = µ(T−n(B)∩Ac). (11)

These formulas are useful because one can now express the
conditions for stability in Definitions 10 and 11 in terms of
the asymptotic behavior of the operatorPn

1.

Lemma 14 Let T : X → X in Eq. (1) be a non-singular
mapping with respect to measure m with an attractor set
A ⊂ V ⊂ X with its local neighborhood V, U(ε) is an ε-
neighborhood of A, and Ac = X \A. The following express
conditions for a.e. stability with respect to a finite measure
m∈M (Ac):

1) The attractor set A is a.e. stable (definition 10) with
respect to a measure m if and only if

lim
n→∞

Pn
1m(B) = 0 (12)

for all sets B∈B(X \U(ε)) and everyε > 0.
2) The attractor set A is a.e. stable with geometric decay

(definition 11) with respect to a measure m if and only
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if for everyε > 0, there exists K(ε) < ∞ andβ < 1 such
that

Pn
1m(B) < Kβ

n ∀ n≥ 0 (13)

and for all sets B∈B(X \U(ε)).

Proof: For B∈B(X \U(ε)), denote

Bn = {x∈ Ac andTn(x) ∈ B}.

It is then easy to see that

m(Bn) = m(T−n(B)∩Ac) = Pn
1m(B),

where the last equality follows from Eq. (11). The equivalence
for part 2 (Eq. (13)) then follows by applying definition 11.
To see part 1, note that

lim
n→∞

χBn(x) = 0 (14)

for all x whoseω-limit points lie in A. If A is assumed a.e.
stable, the limit in Eq. (14) is a.e. zero and

0=
∫

Ac
lim
n→∞

χBn(x)dm(x)= lim
n→∞

∫
Ac

χBn(x)dm(x)= lim
n→∞

Pn
1m(B)

by dominated convergence theorem; cf., [29]. Conversely, let
A be an attractor with some local neighborhoodV. For ε > 0,
consider the set

Sn = {x∈ Ac : Tk(x) ∈ X \U(ε) for somek > n}

and let
S= ∩∞

n=1Sn

i.e., S is the set of points, some of whose limit points lie in
X\U(ε). For a.e. stability, we need to prove thatm(S) = 0. Let
S̃:= S∩(X\V), then by the property of the local neighborhood
m(S) = m(S̃). So, we prove the result by showing thatm(S̃) =
0. Clearly,x∈ Sn if and only if T(x) ∈ Sn−1. By construction,
x∈ S if and only if T(x) ∈ S, i.e., S= T−1(S). Furthermore,
S⊂ Ac and we have,

m(S) = m(T−1(S)∩Ac) = P1m(S). (15)

Now, S̃⊂ S with m(S̃) = m(S). SinceT is non-singular, this
implies thatP1m(S̃) = P1m(S) and using Eq. (15),

m(S̃) = P1m(S̃), (16)

where S̃⊂ X lies outside some local neighborhood ofA. If
limn→∞ Pn

1m(B) = 0 for all B∈B(X \U(ε)) and in particular
for B= S̃ then Eq. (16) implies thatm(S̃) = 0 and thusm(S) =
0. Sinceε here is arbitrary, we have

m{x∈ Ac : ω(x) 6⊆ A}= 0,

and thusA is a.e. stable in the sense of definition 10.

The two conditions in Eq. (12)-(13) represent a certain
property,transience, of the stochastic operatorP1 with respect
to Lebesgue measurem. For stability verification, the two
conditions in by themselves are not any more useful than
the definitions themselves. The definition involves iterating
the mapping forall initial conditions in Ac while the two
conditions involve iterating the stochastic operator forall
Borel setB in Ac. Both are equally complex. However, just

as stability can be verified by constructing Lyapunov function
for the mappingT, transience can be verified by constructing
a Lyapunov measurefor the operatorP.

Definition 15 (Lyapunov measure) is any non-negative
measureµ̄ ∈ M (Ac) which is finite onB(X \U(ε)) and
satisfies

P1µ̄(B) < αµ̄(B), (17)

for every set B⊂B(X \U(ε)) and for everyε > 0 where

µ̄(B) > 0.

α ≤ 1 is some positive constant.

This construction and the Lyapunov measure’s relationship
with the two notions of transience will be a subject of the
following three theorems. The first theorem shows that the
existence of a Lyapunov measurēµ is sufficient for almost
everywhere stability with respect to any absolutely continuous
measurem.

Theorem 16 Consider T: X→X in Eq. (1) with an attractor
set A⊂ V ⊂ X. Suppose there exists a Lyapunov measureµ̄

(Definition (15)) withα = 1, then the attractor set A is almost
everywhere stable with respect to measure any finite measure
m that is equivalent to Lyapunov measureµ̄.

Proof: Consider any setB∈B(X \U(ε)) with m(B) > 0.
Using Lemma 14, a.e. stability is equivalent to

lim
n→∞

Pn
1m(B) = 0. (18)

To show Eq. (18), it is first claimed that limn→∞ Pn
1µ̄(B) = 0.

Sincem≺ µ̄, the claim implies Eq. (18) and thus a.e. stability.
To prove the claim, we note that̄µ(B) > 0 and consider the
sequence of real numbers{Pn

1µ̄(B)}. Using the definition of
Lyapunov measure (eqn. 17), this is a decreasing sequence
of non-negative numbers. Its limit is shown to be zero by
repeating the argument in Lemma 14. In particular, let

S:= {x∈ Ac : lim
nk→∞

Tnk(x) ∈ B}

be the set of points, some of whoseω-limit points lie in B.
For Bn = {x∈ Ac : Tnx∈ B}, χBn(x)→ 0 wheneverx /∈ S. By
dominated convergence theorem,

lim
n→∞

Pn
1µ̄(B) = lim

n→∞

∫
Ac

χBn(x)dµ̄(x)≤ µ̄(S). (19)

As in Lemma 14, it follows thatT−1(S) = S, P1µ̄(S) = µ̄(S),
which together with the property of the local neighborhoodV
and Lyapunov measure gives̄µ(S) = 0. Using Eq. (19),

lim
n→∞

Pn
1µ̄(B) = 0,

and this verifies the claim and thus proves the theorem.
The following theorem provides a sufficient condition for

almost everywhere stability with geometric decay in terms of
Lyapunov measure.
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Theorem 17 Consider T: X→X in Eq. (1) with an attractor
set A⊂ V ⊂ X. Suppose there exists a Lyapunov measure
(Definition 15) withα < 1, then

1) A is a.e. stable with respect to any finite measure m
which is absolutely continuous with respect to Lyapunov
measureµ̄.

2) A is a.e. stable with geometric decay with respect to any
measure m satisfying m≤ γ µ̄ for some constantγ > 0.

Proof:

1) Using definition (15) of the Lyapunov measure withα <
1, we get

Pn
1µ̄(B) < α

n
µ̄(B) which implies lim

n→∞
Pn

1µ̄(B) = 0

Sincem≺ µ̄, we have

lim
n→∞

Pn
1m(B) = 0

the proof then follows from Lemma (14)
2) Consider any setB∈B(X\U(ε)). A simple calculation

shows that

Pn
1m(B)≤ γPn

1µ̄(B)≤ α
n
γ µ̄(B) < Kα

n,

whereK(ε) = γ µ̄(X \U(ε)) is finite. Using Lemma 14,
A is stable almost everywhere with geometric decay with
respect to the measurem.

With the stronger stability condition of geometric decay,
one can construct Lyapunov measureµ̄ as an infinite series
involving sub-Markov operatorP1. This leads to the following
theorem:

Theorem 18 Let T : X → X in Eq. (1) be a non-singular
mapping with respect to finite measure m, with an attractor set
A⊂V ⊂ X, U(ε) is an ε-neighborhood of A, and Ac = X \A.
Suppose A is stable a.e. with geometric decay with respect to
measure m∈M (Ac). Then there exists a Lyapunov measure
µ̄ with α = 1 such that Lyapunov measure is equivalent to
measure m (̄µ ≈ m). Furthermore,µ̄ may be constructed to
dominate measure m i.e., m(B)≤ µ̄(B).

Proof: For any givenε > 0, construct a measurēµ as:

µ̄(B) = (I +P1 +P2
1 + . . .)m(B) =

∞

∑
j=0

P j
1m(B), (20)

whereB ∈ B(X \U(ε)). For such sets, the geometric decay
stability condition (see definition 11) implies that there exists
a K(ε) < ∞ andβ < 1 such that

Pn
1m(B) < Kβ

n.

As a result, the infinite-series in Eq. (20) converges, andµ̄(B)
is well-defined, non-negative, and finite. Since,T is assumed
non-singular with respect to measurem, the individual mea-
suresPn

1m are absolutely continuous with respect tom and
thus µ̄ ≺m. From the construction of the Lyapunov measure
it follows that

m(B)≤ µ̄(B),

and thus the two measures are equivalent Applying(P1− I)
to both sides of Eq. (20), we get

P1µ̄(B)− µ̄(B) =−m(B) < 0 implies P1µ̄(B) < µ̄(B)

wheneverm(B) > 0, and equivalently,̄µ(B) > 0.

Remark 19 In the three theorems presented above, A is a.e.
stable with respect tom ∈ M (Ac). In general,m can be
any finite measure. Our primary interest is in Lebesgue a.e.
stability, and we often takem to be the Lebesgue measure.
Another finite measure of interest is

mS(B) = m(B∩S) (21)

whereA⊂ S⊂ X , B∈B(X \U(ε)), andm is the Lebesgue
measure. Note that measuremS in this case is not necessarily
a non-singular measure with respect toT, however measure
mS can be used to 1) study local stability with respect to the
initial conditions inS⊂ X and 2) characterize the domain of
attraction of any invariant setA.

Before closing this section, we summarize the salient features
of the Lyapunov measure:

1) its existence allows one to verify a.e. asymptotic stability
(Theorem 17),

2) for an asymptotically stable system with geometric de-
cay, the infinite-series (see Eq. (20))

(I −P1)−1m= (I +P1 + . . .+PN
1 + . . .)m (22)

can be used to construct it.
The series-formulation in fact is related to the well-known
Lyapunov equation in linear settings.

C. Lyapunov function and Koopman operator

Consider a linear dynamical system

x(n+1) = Ax(n),

whereρ(A) < 1. With a Lyapunov function candidateV(x) =
x′Px, the Lyapunov equation isA′PA−P =−Q,

whereQ is positive definite. A positive-definite solution for
P is given by

P = Q+A′QA+ . . .+A′nQAn + . . . ,

where the series converges iffρ(A) < 1. Settingg(x) = x′Qx,
the infinite-series solution for anyx∈ Rn is given by

V(x) =
∞

∑
n=0

g(Anx) =
∞

∑
n=0

(Ung)(x) (23)

whereU is the Koopman operator, the dual toP. The choice
of g(0) = 0 on the complement set to the attractor{0} ensures
that the series representation converges. Even though, we have
arrived at the series representation in Eq. (23) starting from
the linear settings, the series is valid for nonlinear dynamical
system or continuous mapping of Eq. (1);U is the Koopman
operator for mappingT. If the series converges, one can
express the solution in terms of the resolvent operator as in
Eq. (23). For a convergent series, it is also easy to check that

V(Tx)−V(x) = UV(x)−V(x) =−g(x), (24)
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i.e., V is a Lyapunov function forg(x) > 0. Note that the
function g need not be quadratic or even a polynomial – any
positiveC0 function with g(0) = 0 will suffice. Moreover, the
description is linear. The following theorem shows that the
Lyapunov function can be constructed by using the resolvent
of the Koopman operator for a stable system. In particular,
we assume that the equilibrium point is globally exponentially
stable and prove in essence a converse Lyapunov theorem for
stable systems; cf., [1].

Theorem 20 Consider T: X→X as in Eq. (1). Suppose x= 0
is a fixed-point (T(0) = 0), which is globally exponentially
stable, i.e.,

‖ Tn(x) ‖≤ Kα
n ‖ x ‖ ∀x∈ X (25)

whereα < 1, K > 1, and‖·‖ is the Euclidean norm in X. Then
there exists a non-negative function V: X → R+ satisfying

a ‖ x ‖p ≤ V(x)≤ b ‖ x ‖p,

V(Tx) ≤ c·V(x),

where a,b,c, p are positive constants; c< 1. Also, V can be
expressed as

V(x) = (I −U)−1 f (x),

where f(x) =‖ x ‖p and U is the koopman operator corre-
sponding to the dynamical system T.

Proof: Let f (x) =‖ x ‖p with p≥ 1 and set

VN(x) =
N

∑
n=0

f (Tnx) =
N

∑
n=0

Un f (x). (26)

Now,

‖VN(x)‖ ≤
∞

∑
n=0

‖ Tnx ‖p≤ Kp
∞

∑
n=0

α
np ‖ x ‖p≤ Kp

1−α p‖x‖
p

(27)
satisfies a uniform bound because of globally exponentially
stability (Eq. (25)) and becauseX is compact. As a result,
V(x) = limN→∞VN(x) converges point-wise and the limit is
well-defined and can be expressed as an infinite-series,

V(x) = lim
N→∞

N

∑
n=0

Un f (x) = (I −U)−1 f (x). (28)

By Eqs. (26) and (27),

‖ x ‖p≤V(x)≤ Kp

1−α p ‖ x ‖p= b ‖ x ‖p,

where b > 1. Finally, becauseT : X → X, V(Tx) = UV(x),
Eq. (28) gives

(U− I)V(x) =− f (x) =− ‖ x ‖p≤ −1
b
·V(x) (29)

Setc = (1− 1
b). Clearly,c < 1 and using Eq. (29),

V(Tx)≤ c·V(x).

The series formulation in Eq. (22) using the P-F operator
on the complement setAc is a dual to the series expansion

using the Koopman operator in Eq. (28). The Lyapunov
measuredescription thus is a dual to the Lyapunovfunction
description. The measure-theoretic description provides aset-
wisecounterpart to thepoint-wisedescription with Lyapunov
function. One of the advantage is that weaker notions of sta-
bility, such as a.e stability are possible with measure-theoretic
description. The other advantage is that Lyapunov measures
may be computed for stability verification and control design
using much the same set-oriented methods as are used for
computation of invariant measures. This will be a subject of
the following two sections. We note that an invariant measure,
a stochastic object, is perhaps the simplest notion to capture
recurrenceof an attractor set. The point-wise or the topological
description of the same is complex. Likewise, we conjecture
that Lyapunov measure is the natural stochastic counterpart
of transienceof the complement set (stability of an attractor
set). As the following sections show, the approximation of
the Lyapunov measure for nonlinear systems is possible using
linear algorithms. These can be viewed as generalizations to
constructing Lyapunov functions for the special case of linear
dynamical systems.

IV. DISCRETIZATION OF THE P-F OPERATOR

The purpose of this section is to review the set-oriented
numerical methods for constructing finite-dimensional approx-
imations of the P-F operator. The approximation arises as a
Markov matrix defined with respect to a finite partition of the
phase space.

A. Discretization – Markov matrix

In order to obtain a finite-dimensional (discrete) approxi-
mation of the continuous P-F operator, one considers a finite
partition of the phase spaceX, denoted as

X
.= {D1, · · · ,DL}, (30)

where ∪ jD j = X. Such a partition may be constructed by
taking quantization of states inX . Instead of a Borelσ -
algebra, consider now aσ -algebra of the all possible subsets of
XL. A real-valued measureµ j is defined by ascribing to each
elementD j a real number. Thus, one identifies the associated
measure space with a finite-dimensional real vector spaceRL.
The discrete P-F approximation arises as a matrix on this
“measure space”RL.

For a mappingT : X → X, the discrete approximation is
constructed from its stochastic transition functionδT(x). In
particular, corresponding to a vectorµ = (µ1, · · · ,µL) ∈ RL,
define a measure onX as

dµ(x) =
L

∑
i=1

µiκi(x)
dm(x)
m(Di)

wherem is the Lebesgue measure andκ j denotes the indicator
function with support onD j . The approximation, denoted by
P, is now obtained as

ν j = P[µ](D j) =
L

∑
i=1

∫
Di

δT(x)(D j)µi
dm(x)
m(Di)

=
L

∑
i=1

µiPi j ,
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where

Pi j =
m(T−1(D j)∩Di)

m(Di)
, (31)

m being the Lebesgue measure. The resulting matrix is non-
negative and becauseT : Di → X,

L

∑
j=1

Pi j = 1,

i.e., P is a Markov or a row-stochastic matrix.
Computationally, several short term trajectories are used to

compute the individual entriesPi j . The mappingT is used
to transport M “initial conditions” chosen to be uniformly
distributed within a setDi . The entryPi j is then approximated
by the fraction of initial conditions that are in the boxD j

after one iterate of the mapping. In the remainder of the paper,
the notation of this section is used wherebyP represents the
finite-dimensional Markov matrix corresponding to the infinite
dimensional P-F operatorP.

B. Attractor sets & Invariant measures

The finite-dimensional Markov matrixP is used to nu-
merically study the approximate asymptotic dynamics of the
Dynamical systemT; cf., [30], [20]. Recent research interest
has focussed on carrying outspectral analysisof the Markov
matrix to obtain statistical information on the asymptotic
dynamics; cf. [16], [17], [18]. In particular, supposeµ ≥ 0
is an invariant probability measure (vector), i.e.,

µP = 1·µ,

such that∑ µi = 1 then the support ofµ gives an outer approxi-
mation of the attractor andµi = µ(Di) measures the “weight”
of the componentDi in attractor A [31]. The analysis has
also been extended to interpret other portions of the Markov
matrix’s spectrum. In particular, dynamically relevant “almost
invariant sets” correspond to eigenmeasures with eigenvalues
close to unity [32]. The cyclic behavior within a attractor can
be extracted by considering the complex unitary spectrum of
the Markov chain [16], [17].

C. Example

In this example, a Markov matrix is constructed for the
logistic map in a parameter regime where the solution shows
chaotic behavior. The logistic map given by

T(x;λ ) = λx−x3,

and is well-studied in the Dynamical Systems literature.
Figure 1 depicts the spectrum of the P-F operator forλ =
3
2

√
3+10−2 together with the invariant measure. As expected,

the invariant measure captures the asymptotic behavior of
trajectories of the logistic map. The peaks at the two ends and
in the middle suggest that the trajectories on an average spend
most of their time there. In addition to the unity eigenvalue,
there is another eigenvalue very close to unity. This eigenvalue
corresponds to the fact that there are two “almost invariant
sets” embedded in the attractor.

Fig. 1. (a) Eigenvalues and (b) the invariant measure of the discretized P-F
matrix for the logistic map

Fig. 2. A schematic of the three setsA⊂ X0 ⊂U : A denotes the attractor
set,X0 is the support of its invariant measure approximation, andU is some
neighborhood. The finite partition is shown as the rectangular grid in the
background.

V. STABILITY IN FINITE-DIMENSION

In this section, discretization methods are used to approxi-
mate the Lyapunov measure. The existence of an approxima-
tion is related to yet weaker notions of stability, termed as
coarse stability.

A. Matrix decomposition

We begin by presenting a decomposition result for the
approximation P corresponding to a finite partition. This
decomposition is a finite-dimensional analogue of Eq. (8). It
is assumed that an approximationµ0, to the invariant measure
µ supported on the attractor setA⊂X, has been computed by
evaluating a fixed-point the matrixP. An indexing is chosen
such that the two non-empty complementary partitions

X0 = {D1, ...,DK}, (32)

X1 = {DK+1, ...,DL} (33)

with domainsX0 = ∪K
j=1D j and X1 = ∪L

j=K+1D j distinguish
the approximation of the attractor set from its complement set
respectively. In particular,A⊂ X0, µ0 is supported and non-
zero onX0, and one is interested in stability with respect to the
initial conditions in the complementX1. For an attractorA with
an invariant measure defined with respect to a neighborhood
U ⊃A, such sets exist for a sufficiently fine partition such that
A⊂ X0 ⊂U ; cf., Figure 2. The following Lemma summarizes
the matrix decomposition result.

Lemma 21 Let P denote the Markov matrix for the mapping
T in Eq. (1) defined with respect to the finite partitionX in
Eq. (30). Let M ∼= RL denote the associated measure space
and µ denote a given invariant vector of P. SupposeX0 and
X1 are the twonon-emptycomponents as in Eq. (32)-(33)
defined with respect toµ such thatµ > 0 on X0; µi > 0
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iff D i ∈ X0. Let M0
∼= RK and M1

∼= RL−K be the measure
spaces associated withX0 and X1 respectively. Then for the
splitting M = M0⊕M1, the P matrix has a lower triangular
representation

P =

[
P0 0

× P1

]
(34)

where P0 : M0→M0 is the Markov matrix with row sum equal
to one and P1 : M1 →M1 is the sub-Markov matrix with row
sum less than or equal to one.

Proof: Use the splittingM = M0⊕M1 to express the
invariant vectorµ = [µ0,µ1] where µ0 ∈ M0 and µ1 ∈ M1.
By construction,µ0 > 0 for all entries andµ1 = 0. Again, use
the splitting to write

P =

[
P0 P2

× P1

]
.

In order to prove the result, note thatP is non-negative matrix
such that

[µ0,0] = µP = [µ0P0,µ
0P2].

Since,µ0 > 0 soP2 = 0.
We remark that this decomposition result does not explicitly
require either the existence of the setU or any propertyA⊂
X0⊂U regarding the partitionX0 . These two however ensure
that a)X0 andX1 are non-empty and b) the invariant vector
is a good approximation of the invariant measure and hence
the underlying attractor.

Example 22 1) Supposex0 is a locally stable fixed point
of Eq. (1). The invariant measure is the Dirac delta
measure supported onx0, denoted byδx0. Next, assume a
partition such thatD1 ⊂U , whereU lies is the domain
of attraction ofx0. The discrete approximation of the
invariant measure is then given by

µ1 = 1, µi = 0 for i 6= 1.

where µi is the measure on cellDi . The P matrix is
given by

P =

[
P0 P2

× P1

]
=

[
1 0

× P1

]
.

2) Consider next a locally stable period-two orbitA =
{x0,x1}⊂U , a neighborhood in its domain of attraction.
The physical measure is given byµ = 1

2δx1 + 1
2δx2.

Assume a fine enough partition withX0 = D1 ∪ D2

such thatx1 ∈ D1, x2 ∈ D2, X0 ⊂U , T : D1 → D2, and
T : D2 → D1. It follows that theP matrix is given by

P =

[
P0 P2

× P1

]
=


[

0 1

1 0

]
0

0
× P1


Our strategy is to study the stability in terms of properties of
the matrixP1 and define coarser (weaker) notions of stability
with respect to initial conditions corresponding to this.

B. Coarse stability

In Sec. III, stability in continuous settings was shown to be
related to the transience of the operatorP1. In discrete settings,
the stability is expressed in terms of the transient property of
the stochastic matrixP1.

Definition 23 (Transient states) A sub-Markov matrix P1
has onlytransient states if Pn

1 → 0, element-wise, as n→ ∞.

Intuitively, it makes sense that if the invariant setA is stable
or a.e. stable then the sub-Markov matrixP1 is transient.
Conversely, transience ofP1 is shown to imply yet weaker
forms of stability referred to ascoarse stability in this paper.

Definition 24 (Coarse Stability) Consider an attractor A⊂
X0 together with a finite partitionX1 of the complement set
X1 = X \X0. A is said to becoarse stablewith respect to the
initial conditions in X1 if for an attractor set B⊂ U ⊂ X1,
there exists no sub-partitionS = {Ds1,Ds2, . . . ,Dsl } in X1

with domain S= ∪l
k=1Dsk such that B⊂ S⊂U and T(S)⊆ S.

For typical partitions, coarse stability means stability modulo
attractor setsB with domain of attractionU smaller than the
size of cells within the partition. In the infinite-dimensional
limit, where the cell size (measure) goes to zero, one obtains
stability modulo attractor sets with measure 0 domain of
attraction, i.e., a.e. stability. Figure 3 compares some of the

Fig. 3. A schematic comparing a.e. stability in infinite-dimensional setting
(part (a)) to the coarse stability with finite partitions (part (b) and (c)). In
either case, appropriate notion of stochastic stability is assumed (P1 and P1
transient).

possibilities with a.e. stability in infinite-dimensional settings
and coarse stability using finite partitions. The part (a) shows
that measure 0 invariant sets such as unstable equilibrium
(denoted by o) or a (dashed) line in the plane may arise in
the complementX1 even with a.e. stability. However, stable
equilibrium with a domain of attraction of positive measure
is ruled out. The parts (b) and (c) consider coarse stability in
discrete settings with a rectangular partition in the background.
The part (b) shows that a stable equilibrium (denoted by x)
or an elongated attractor set with a smaller, than cell size,
domain of attraction is possible with coarse stability. However,
an attractor whose domain of attraction contains a sub-partition
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S (marked with bold lines in the Fig. 3) in the complement set
is not possible. In particular, coarse stability rules out the case
where the cell containing a stable equilibrium itself lies in its
domain of attraction. The part (c) shows that it is possible
to construct a partition where coarse stability holds, yet the
domain of attraction is very large with respect to the partition.
This is because the cell containing the stable equilibrium
is not itself contained in the domain of its attraction. We
believe this to be atypical for reasonable choices offine enough
finite partition with the lower figure in part (c) being a better
representative. Nevertheless, the scale of partition is important
in deducing stability as seen in the following example.

Example 25 Consider a scalar dynamical system

xn+1 = xn− (xn−a1)(xn−b)(xn−a2) for x∈ X
.= [0,1], (35)

where 0< a1 < 1
2 < b < a2 < 1; a1,a2 are stable andb is

unstable. Consider a coarse partition

X = {[0,
1
2
], [

1
2
,1]}, X0 = {[0,

1
2
]}, X1 = {[1

2
,1]}

for which the Markov matrix arises as

P =

[
1 0

1− p p

]
for some p < 1. Hence,P1 = p < 1 in this case is transient.
Using the following theorem 26, this leads to coarse stability.
The coarse stability thus misses the stable fixed pointa2 in
the complement setX1 = [1/2,1]. Next, consider any finite
refinement of the partitionX1. It is easy to verify that by
choosinga2− b to be sufficiently small, one again has the
situation whereP1 on X1 is transient. However, for any given
b−a2, there exists a partitionX1 that is fine enough so that
b and a2 lie within separate cells. For such a partition and
its refinements, the Markov matrixP1 will not be transient. In
fact, the invariant measure’s approximation supported on the
cell containinga2 will be persistent.

The theorem below formally links the transience of matrixP1

to various notions of stability considered in this paper.

Theorem 26 Assume the notation of the Lemma 21. In partic-
ular, A is an attractor set in X0⊂X with approximate invariant
measure supported on the finite partitionX0 of X0. P1 is the
sub-Markov operator onM (Ac). P1 is its finite-dimensional
sub-Markov matrix approximation obtained with respect to the
partition X1 of the complement set X1 = X \X0. For this

1) Suppose a Lyapunov measureµ̄ exists such that

P1µ̄(B) < µ̄(B) (36)

for all B⊂B(X1), and additionallyµ̄ ≈m, the Lebesgue
measure. Then the finite-dimensional approximation P1

is transient.
2) Suppose P1 is transient then A is coarse stable with

respect to the initial conditions in X1.

Proof: Before stating the proof, we claim that for any two
setsS1 andS such thatS1 ⊂ S, if µ ≈m then

µ(S1) = µ(S) if and only if m(S1) = m(S) (37)

Denote Sc
1 := S\ S1 to be the complement set. We have,

µ(S1) = µ(S) impliesµ(Sc
1) = 0 which in turn impliesm(Sc

1) =
0 and thusm(S1) = m(S).

1. We first present a proof for the simplest case where the
partition X1 consists of precisely one cell, i.e.,X1 = {DL}.
In this case,P1 ∈ [0,1] is a scalar given by

P1 =
m(T−1(DL)∩DL)

m(DL)
, (38)

wherem is the Lebesgue measure. We need to show thatP1 <
1. Denote,

S= {DL}, S1 = {x∈ DL : T(x) ∈ DL}. (39)

Clearly,S1⊂ S and existence of Lyapunov measureµ̄ satisfy-
ing Eq. (36) implies that

µ̄(S1) = P1µ̄(S) < µ̄(S).

Using (37),m(S1) 6= m(S) and sinceS1⊂ S, we havem(S1) <
m(S). Using Eqs. (38) and (39), this impliesP1 < 1, i.e.,P1 is
transient.

We prove the result for the general case, whereX1 is a
finite partition, by contradiction. SupposeP1 is not transient.
Then using either the following Theorem 28, or a general result
from the theory of finite Markov chains [24], [33], there exists
atleast one non-negative invariant probability vectorν such
that

ν ·P1 = ν . (40)

Let,

S= {x∈ Di : νi > 0}, S1 = {x∈ S: T(x) ∈ S}.

It is claimed that
m(S1) = m(S). (41)

We first assume the claim to be true and show the desired
contradiction. Clearly,S1 ⊂ S and if the claim were true, (37)
shows that

µ̄(S1) = µ̄(S). (42)

Next, becauseS⊂ X1,

P1µ̄(S) = µ̄(T−1(S)∩X1)≥ µ̄(T−1(S)∩S).

and this together with Eq. (42) gives

P1µ̄(S)≥ µ̄(S)

for a setS with positive Lebesgue measure. This contradicts
Eq. (36) and proves the theorem.

It remains to show the claim. Let{ik}l
k=1 be the indices

with νik > 0. Eq. (40) gives

l

∑
k=1

νik[P1]ik jm = ν jm for m= 1, . . . , l .

Taking a summation∑l
m=1 on either side gives

l

∑
k=1

νik

l

∑
m=1

[P1]ik jm = 1.
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Since, individual entries are non-negative andν is a probability
vector, this implies

l

∑
m=1

[P1]ik jm = 1 k = 1, . . . , l ,

i.e., the row sums are 1. Using formula (31) for the individual
matrix entries, this gives

∑l
m=1m(T−1(D jm)∩Dik) = m(Dik),

therefore, m(T−1(∪l
m=1D jm)∩Dik) = m(Dik) k = 1, . . . , l ,

where we have used the fact that the pre-image sets are disjoint
and∪T−1(D jm) = T−1(∪D jm). However, by constructionS=
∪l

m=1D jm and thus

m(T−1(S)∩Dik) = m(Dik) for k = 1, . . . , l .

Taking a summation∑l
k=1 on either side gives

m(T−1(S)∩S) = m(S),

precisely as claimed in Eq. (41). This completes the proof for
the general case.

2. SupposeP1 is transient. To show thatA is coarse stable, we
proceed by contradiction. Indeed, using definition 24, ifA was
not coarse stable then there exists an attractor setB⊂U ⊂ X1

with a sub-partitionS = {Ds1, ...,Dsl }, S = ∪l
k=1Dsk such

that B⊂ S⊂U andT(S)⊆ S. Since, the setS is left invariant
by mappingT,

Psk j =
m(T−1(D j)∩Dsk)

m(Dsk)
= 0,

wheneverD j /∈S . Moreover, becauseT : S→ S,

l

∑
j=1

[P1]sisj = 1 i = 1, ..., l ,

i.e., P1 is a Markov matrix with respect to the finite partition
S . Form the general theory of Markov matrix [24], there then
exists an invariant probability vectorν such that

ν ·Pn
1 = ν ,

for all n > 0, andP1 is not transient.

Corollary 27 Consider T: X→X in Eq. (1) with an invariant
set A⊂U(ε) ⊂ X0 ⊂ X, U(ε) is someε-neighborhood of A.
P1 is the sub-Markov matrix with respect to a finite partition
of the complement set X1 = X \X0. Suppose A is stable a.e.
with geometric decay with respect to some finite measure m∈
M (X \U(ε)). Then, P1 is transient.

Proof: Theorem 18 shows that an equivalent Lyapunov
measure exists wheneverA is a.e. stable with geometric decay.
The result follows from part 1 of the Theorem 26 above.
In summary, a.e. stability impliesP1 is transient, while one
can only conclude a weaker coarse stability given transience
of P1.

C. Formulae for Lyapunov measure

There are a number of equivalent characterizations of the
transience, expressed in Definition 23, of the sub-Markov
matrix P1. These are summarized in the theorem below and
will be used to obtain computational algorithms for deducing
coarse stability.

Theorem 28 Suppose P1 denotes a sub-Markov matrix. Then
the following are equivalent

1) P1 is transient,
2) ρ(P1)≤ α < 1,
3) the infinite-series I+P1 +P2

1 + . . . converges,
4) there exists a Lyapunov measurēµ > 0 such thatµ̄P1≤

αµ̄ whereα < 1.

Proof: (1=⇒ 2) SinceP1 is assumed to be a sub-Markov
matrix, ρ(P1) ≤ 1. By non-negativity ofP1, ρ(P1) is in fact
an eigenvalue ofP1 with a non-negative vector; cf., Sec 8.3 in
[33]. As a result, ifρ(P1) = 1 then there existsν ≥ 0, ν 6= 0
such that

νPn = ν

for all n. This contradicts 1.
(2 =⇒ 3) With ρ(P1) < 1, the inverse(I −P1)−1 exists and is
in fact analytic with the series expansion

(I −P1)−1 = I +P1 +P2
1 + . . . (43)

In particular, the series converges.
(3 =⇒ 4) Choosem> 0, and set

µ̄ = m· (I −P1)−1 = m+mP1 +mP2
1 + . . .

The non-negativity ofP1 together with convergence of series
implies that the inverse(I − P1)−1 is itself a non-negative
matrix [34]. As a result,̄µ > 0 for m> 0. A simple calculation
then shows that

µ̄ ·P1− µ̄ =−m< 0.

Because of the strict inequality, there must then exist anα < 1
such that

µ̄ ·P1 ≤ αµ̄.

(4 =⇒ 1) By taking repeated powers,̄µ ·Pn
1 < αnµ̄. The right

hand side converges to zero. SinceP1 is a non-negative matrix
and µ̄ > 0, this implies thatPn

1 → 0 asn→ ∞.
If it exists, an approximation of the Lyapunov measure can be
computed as a solution to a system of linear inequalities

µ̄ · (αI −P1) > 0, (44)

µ̄ > 0. (45)

Such a solution is efficiently computed using Linear Program-
ming (LP) methods. For a givenm > 0, convergence of the
infinite-series in Eq. (43) provides for another method for
computing the approximation:

µ̄ = m· (I −P1)−1 = m+m·P1 +m·P2
1 + . . . (46)
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In summary, transience of the Markov chainP1 can be
expressed in three equivalent ways useful for distinct com-
putational approaches:

1) Verify a spectral conditionρ(P1)≤ α < 1,
2) Compute a Lyapunov measurēµ using a series formu-

lation as in Eqs. (46),
3) Compute a Lyapunov measure using Linear program-

ming as in Eqs. (44)-(45).
The parallels with the linear dynamical system are summarized
in the Table 1. The spectral condition is a counterpart of
ρ(A) < 1 for the linear dynamical system. The series ex-
pansion corresponds to the series solution of the Lyapunov
equation. It can also be obtained as a solution of a linear
equation. Finally, the linear programming based formulation
arises due to the non-negativity of the matrixP1. It does not
share any obvious counterpart in the linear setting.

TABLE I
CONDITIONS FOR RECURRENCE AND TRANSIENCE

Linear (A) Nonlinear (P0, P1)
Invariant set 0= A·0 µ = µ ·P0
Spectral condition ρ(A) < 1 ρ(P1) < 1
Series-expansion AT ·P·A−P =−Q µ̄ = m· (I −P1)−1

Linear inequalities −− µ̄ ·P1 < µ̄

Remark 29 Computationally, it is most attractive to verify
stability using the linear inequalities (44)-(45). We used the
MATLAB command linprog to verify stability in the example
problems described in the following section. One important
point to note is that the inequality (44) needs to be strict for
deducing stability. As a result, the inequalities (44)-(45) are
implemented in MATLAB as

µ̄ ·P1 ≤ αµ̄− ε, (47)

µ̄ ≥ 0, (48)

where ε is a small positive constant used to enforce strict
inequality andα ≤ 1.

The Lyapunov measure and the computational framework
is expected to be particularly useful for control design with
the objective of stabilization of an equilibrium or an invariant
set. This framework, however, is different from the Lyapunov
function based computational methods that have appeared in
recent literature. In contrast to the set-wise measure theoretic
stability concepts of this paper, the SOS polynomial based
papers [11], or set-oriented papers [35], or papers utilizing
dynamic programming and numerical approximation ideas
for optimal control [36] all aim to synthesize point-wise
functions: density, approximate Lyapunov function, or optimal
value functions, respectively. We will establish more concrete
connection between optimal control and Lyapunov measure in
a separate publication focussing on control.

D. Examples

Example 30 Consider dynamics on a finite set,

T(xi) = x0, for i = {0,1}
T(yi) = x1, for i = {1, . . . ,N}, (49)

Fig. 4. A schematic of the discrete dynamics in Eq. 49.

TABLE II
LYAPUNOV FUNCTION V AND MEASURE µ̄ FOR THE DISCRETE DYNAMICS

IN EQ. 49

Complement set x1 yi

V 1
2 1

µ̄ N+1 1

as shown in Fig. 4. The state{x0} is a globally stable
attractor. Table 2 gives a Lyapunov function and measure
on the complement set{x1,y1, . . . ,yN}. The large value of
Lyapunov measurēµ at the pointx1 is a reflection of the size
(N) of its pre-image set. In regions (cells) such as these, where
the flow is squeezed through a narrow region, the Lyapunov
measure will have a high value. Due to the dual nature of
Lyapunov measure and Lyapunov function the behavior of
Lyapunov measure and Lyapunov function is exactly opposite.
Lyapunov measure takes smaller value on the sets which are
away from the invariant set and larger value on the set which
are closer to the invariant set, Lyapunov function on the other
hand takes lower value on the states which are closer to the
equilibrium point and larger value on the states which are
further away from the equilibrium point.

Example 31 Consider the 1-d cubic logistic map

xn+1 = λxn−x3
n, (50)

with λ = 2.3 andX = [−1.5,1.5]. The value ofλ is chosen
to be at the “edge,” where a sequence of period-doubling
bifurcations lead to chaos. Figure 5 (a) shows the asymptotic
attractor sets obtained as a function of initial conditions in
X. There are two symmetric attractors, that are stable in the
sense that any typical initial condition asymptotes too one
of these sets. Figure 5 (b) verifies this with the aid of the
Lyapunov measure on the complement set to the support of
the two invariant measures. We refer the reader to Sec. IV for
details on set-oriented approximation of the P-F operator. The
Lyapunov measure was computed as a solution of the linear
inequalities Eqs. (47)-(48). Linear programming (MATLAB
command linprog) was used to obtain this solution. The
invariant measures (in red) correspond to the two attractors
and the Lyapunov measure (in blue) is computed on the
complement set. We remark that one does not have global
stability, for initial conditions inX, for either of the attractors.
However, existence of a Lyapunov measure ensures that in
a coarse sense, any initial condition in the complement set
asymptotes to the support of one of the two invariant measures.
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Fig. 5. Asymptotic behavior of the logistic map in Eq. (50): (a) attractor
sets as a function of initial conditionx0 and (b) the invariant measures for
these attractor sets (in red) and the Lyapunov measure (in blue) verifying their
stability.

Example 32 Consider the ODE for the Vanderpol oscillator

ẍ− (1−x2)ẋ+x = 0. (51)

A dynamical systemT is obtained after numerical integration
of the ODE over a time-interval of∆t = 1. A suitably large
∆t is chosen soT : X → X, whereX = [−3,3]× [−3,3] is a
finite box containing the unstable origin and the globally stable
Vanderpol limit cycle. Figure 6 (a) depicts the approximation
of the invariant measure corresponding to this limit cycle
and part (b) shows its Lyapunov measure. In the region
inside the limit cycle, the measure shows moderate variations
with larger values near the limit cycle. Outside the limit
cycle, there are two sharp peaks denoting the regions where
most trajectories in the phase space squeeze through before
converging uniformly to the vicinity of the limit cycle. The
figure shows some of these trajectories (in white) together with
the peaks (denoted as “max”) in the value of the Lyapunov
measure.

Fig. 6. (a) Invariant measure (b) Lyapunov measure for the Vanderpol
oscillator in Eq. (51). The limit cycle is shown as a black curve and white
curves denote some representative trajectories. For the Lyapunov measure, the
maximum value of 0.026 was seen at the two regions denoted as “max.” The
color axis in part (b) is limited to[0,0.002] to better represent the variations
in the value of Lyapunov measure.

Example 33 We next consider a dynamical systemT corre-
sponding to the ODE

ẋ = −2x+x2−y2,

ẏ = −6y+2xy, (52)

In [3], the origin was shown to be a.e. stable with respect to
initial conditions inR2. This example does not have any com-
pact T-invariant setX that contains all of its equilibria. The
trajectory for any initial condition onx-axis with x > 2 grows

Fig. 7. Lyapunov measure for the equilibrium at origin for ODE in
Eq. (52) on the glued domainX. The invariant measure is supported on single
cell shown in white at the origin. White curves denote some representative
trajectories.

unbounded. To apply the results of this paper, we consider the
domain to beX = [−4,4]× [−4,4] and glue its boundaries. In
particular, the left boundary(x = −4,y) is glued to the right
boundary at(x= 4,y), the upper boundary(x,y= 4) with x> 0
is glued to(−x,y = 4), and similarly on the lower boundary
y =−4. Inside the glued domain, the dynamics are described
by the ODE in Eq. (52). The dynamical system for the same
was constructed using numerical integration with∆t = 0.2.
Figure 7 depicts the Lyapunov measure on the complement
(to the origin) set verifying coarse stability of the origin inX.
Also shown are typical trajectories showing the convergence to
the origin. The peaks in the Lyapunov measure are consistent
with the convergence of typical trajectories, a few of which
are shown in white.

E. Duality - Lyapunov function

In this section, we consider the discrete counterpart of the
Lyapunov function. In continuous settings, the analysis in
Sec. III-C and in particular, Eq. (24) shows that Lyapunov
function is related to the dual of the P-F operator. In discrete
settings, one way to proceed is to consider the transpose of the
matrix P1. Indeed, the discrete analogue of Eq. (24) is given
by

(I −P1)V = g, (53)

where multiplication on the right is equivalent to taking a
transpose ofP1 (and multiplying on left), andg is a positive
vector on the partitionX1. If P1 is transient then using the
results of Theorem 28, a unique and positive solutionV exists
for any positiveg. However, unlike the infinite-dimensional
case,V is in general not a Lyapunov function except for a
special case whereP1 is additionally deterministic.

Definition 34 (Deterministic Markov matrix [13]) A
Markov or a sub-Markov matrix P1 is deterministic if the
individual entries are either0 or 1.

It easily follows that for any row of a deterministicP1, at most
one entry is non-zero. It is necessarily 1 for a Markov matrix
but may be 0 for a sub-Markov matrix. The interpretation here
is that if P1 i j is 1, thenalmost all the states in theith cell go
to the j th cell after one iterate of the mappingT. If P1 i j = 0
for all j, then the states inith cell are transient in 1-step. Since
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all of the states within a cell behave identically, it is possible
to set one value for the Lyapunov function over the cell. Said
another way, the indicator functionsκi are the basis of the
Lyapunov function with co-ordinateVi , i.e.,

V(x) = ∑
i

Viκi(x), (54)

where κi is the indicator function for cellDi . Analogously,
define

g(x) = ∑
i

giκi(x),

The following theorem then shows that the solutionV to
Eq. (53) in fact gives the Lyapunov function.

Theorem 35 Consider a mapping T: X→X with an attractor
A, and a sub-Markov and deterministic matrix P1 that is
defined for a finite partition of the complement set. Assume
P1 is transient and let V be a solution of Eq. (53) for a
given positive g. Then V(x) defined by Eq. (54) is a Lyapunov
function with

V(x)−V(Tx) = g(x),

for all x ∈ X1 with Tx∈ X1. V(x) = g(x) where Tx∈ X0.

Proof: By transience ofP1, a unique positive solutionV
exists. If states in the celli go to cell j in one iterate of
mappingT then

(P1V)i = Vj .

Hence, the co-ordinate form of the Eq. (53) reads

Vi −Vj = gi (55)

For x in cell i with Tx in cell j,

V(x) = Vi , V(Tx) = Vj , g(x) = gi .

Using Eq. (55),

V(x)−V(Tx) = g(x), (56)

for x in cell i. Since i is arbitrary the result follows for all
x∈ X1 such thatTx∈ X1. If Tx∈ X0, the states in celli are
transient in 1 step,(P1V)i = 0, andV(x) = g(x) using very
similar arguments. For a giveng > 0, V is then a Lyapunov
function by Eq. (56).
For the deterministic case, one can use a Lyapunov function
V to obtain a Lyapunov measurēµ and vice-versa under one
additional assumption onP1. We say that a Markov or a sub-
Markov matrixP1 is 1-1 if P1 is deterministic and has atmost
one non-zero entry in each column. For such aP1, set

µ̄i =
1
Vi

. (57)

Now, if Vi > 0 is a discrete Lyapunov function soVj < Vi

wheneverP1 i j = 1, one has

(µ̄P1) j = µ̄i =
1
Vi

<
1
Vj

= µ̄ j ,

i.e.,
µ̄P1 < µ̄,

and µ̄ is a Lyapunov measure. The converse follows similarly.
In fact, the inverse relationship in Eq. (57) can be further
generalized. Let,h(·) be any monotonically decreasing positive
function of its argument then̄µ = h(V) is a Lyapunov measure
for a given V and V = h(µ̄) is a Lyapunov function for a
given µ̄. In the following section, we extend this relationship
to continuous settings.

VI. RELATION BETWEEN LYAPUNOV MEASURES AND

FUNCTIONS

Under certain conditions, it is also possible to relate the
Lyapunov function and the Lyapunov measure for the infinite-
dimensional case. The motivation here is derived from the
relationship in Eq. (57) for the discrete case and the results
in Section 3 of [3], where the relationship between density
function and Lyapunov function is given.

In this section, we impose an additional assumption ofC1-
invertibility (diffeomorphism) on the mappingT : X → X in
Eq. (1). For the diffeomorphismT, define

J−1(x) = |dT−1

dx
(x)|

where | · | denotes the determinant of the JacobianT−1(x) as
evaluated atx. BecauseT ◦T−1(x) = x, J(x) = |dT

dx (T−1(x))|.
The real-valued functionJ−1(x) has a special significance
because it gives the density of measureP[m] with respect to
the Lebesgue measurem. In particular,

Lemma 36 Let P denote the P-F operator for the mapping
T : X → X then

dPm(x) = J−1(x)dm(x). (58)

Next, suppose f(x) denotes the density of an absolutely con-
tinuous measureµ with respect to m, i.e., dµ(x) = f (x)dm(x),
then

dPµ(x) = f (T−1(x))J−1(x)dm(x). (59)

Proof: Eq. (58) follows from

Pm(A) =
∫

X
χA(Tx)dm(x) =

∫
X

χA(x)dm(T−1x)

=
∫

X
χA(x)J−1(x)dm(x).

Eq. (59) follows from

Pµ(A) =
∫

X
χA(Tx) f (x)dm(x) =

∫
X

χA(x) f (T−1(x))J−1(x)dm(x)

A. Relationship

The purpose of this Section is to present the main result re-
lating the Lyapunov measure and function under the additional
assumption thatJ(x) < 1.

Theorem 37 Let A be the invariant set for a dynamical system
T and assume that J(x) < 1 for all x ∈ Ac. Then the following
statements are true:
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1) Suppose the invariant set A is a.e. stable with the
Lyapunov measurēµ satisfying

dµ̄(x)−dP1µ̄(x) = g(x)dm(x), (60)

where g(x)≥ 0. Then

V(x) =
(

dµ̄

dm
(x)

)−1

(61)

is a Lyapunov function with the property

V(x) < V(T−1(x)). (62)

2) Suppose the invariant set A is stable with Lyapunov
function V satisfying

J−1(x)V(x) < V(T−1(x)) (63)

then the measure

µ̄(B) =
∫

B

1

Vβ (x)
dm(x)

is a Lyapunov measure such that

µ̄(T−1B) < µ̄(B) (64)

for all B ⊂ B(Ac) with m(B) > 0. β ≥ 1 is a suitable
constant chosen so1

Vβ
is integrable.

Proof:

1) Using Lemma 36,

dµ̄(x)−dP1[µ̄](x)= [V−1(x)−V−1(T−1(x))J−1(x)]dm(x).

Equation (60) then implies

V−1(x)−V−1(T−1(x))J−1(x) = g(x)≥ 0

and

V−1(x)≥V−1(T−1(x))J−1(x) > V−1(T−1(x)).

This gives the desired result in Eq. (62).
2) BecauseJ−1(x) > 1 andβ ≥ 1,

J−1(x)V(x) < V(T−1(x)) which implies

J−1(x)Vβ (x) < Vβ (T−1(x)),

i.e.,
J−1(x)

Vβ (T−1(x))
<

1

Vβ (x)

So for any positive Lebesgue measure setB⊂B(Ac),∫
B

J−1(x)
Vβ (T−1(x))

dm(x) <
∫

B

1

Vβ (x)
dm(x),

whereβ is a suitable constant that ensures that1
Vβ (x)

∈
L 1(Ac). Now, set

dµ̄(x)
dm(x)

=
1

Vβ (x)

and using Lemma 36, the above integral gives∫
T−1(B)

dµ̄(x) <
∫

B
dµ̄(x)

The inequality in Eq. (64) follows.

Note that on a transitory complement setAc, the pointT(x)
may lie inA and henceTx may not be well-defined. However,
T−1(x) is well-defined for all x ∈ Ac and the Lyapunov
function inequality is expressed in this form. Finally, we
remark that for an ODE with vector-fieldu corresponding to
a dynamical systemT, the condition isJ(x) < 1 if and only if
∇ ·u< 0. The latter is indeed the assumption in [3], where the
relationship between Lyapunov function and density function
was first described.

VII. D ISCUSSION& CONCLUSIONS

In nonlinear control, Lyapunov functions have primarily
been used for verifying stability and stabilization, using con-
trol, of an equilibrium solution. An equilibrium is only one of
the many recurrent behavior that are possible in nonlinear dy-
namical systems. A stable periodic orbit is a simple example of
non-equilibrium behavior butstranger attractorsarise even in
low-dimensions. For e.g., the Lorentz attractor and the chaotic
attractor of the logistic map in Fig. 1. In higher dimensions
such as distributed systems, non-equilibrium behavior is the
norm.

In this paper, we argued that measure-theoretic stochastic
approaches are a key to the study of non-equilibrium behavior
in dynamical systems. Indeed, stochastic methods have come
to be viewed as increasingly relevant for the study of global
recurrentbehavior such as attractor sets even in deterministic
dynamical systems. Lyapunov measures, introduced in this
paper, are a stochastic counterpart to the notion oftransience
and thus useful for verifying (weak forms of) stability of
the recurrent attractor sets. Next, recent advances using set-
oriented numerical approaches for the discretization of the
stochastic operators have made the calculation of recurrent
attractor sets as invariant measures routine. There are two
ideas of interest here: a) non-equilibrium chaotic behavior is
described more naturally on sets as opposed to with points,
and b) a measure-theoretic description allows for a coarse
and multi-scale study of such behavior. Either provide for
reduction of complexity compared to a point-wise descrip-
tion. While, evolution of points is nonlinear and chaotic, the
evolution of (measures supported on) sets is linear and well-
behaved. In our paper, the discretization leads to coarser and
multi-scale notions of stability which generalizes in a natural
way the almost everywhere stability of [3].

It is noted that the presence of unstable points in the com-
plement set is typically useful for the stabilization problem.
The existence of point-wise positive Lyapunov function with
everwhere notion of stability precludes such points. The a.e.
notion of stability, first introduced in [3], allows for such
points. It even allows for stable sets with Lebesgue measure
0 region of recurrence. The intuition being that such sets are
not important from the point of view of any meaningful opti-
mization criterion or that even smallest noise will in general
destroy the recurrence. The coarse notions of the stability as
a consequence of discretization carry this one step further. In
effect, it allows for even typical stable recurrent sets with small
(than the quantization size) regions of attraction. Once again,
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the intuition is that such sets are either not important for the
given scale or that large enough (size of quantization) noise
makes them irrelevant. We will investigate these ideas for the
purposes of control design in a separate publication.
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