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Abstract—In this work, Fault Induced Delayed Voltage Re-
covery (FIDVR) phenomenon has been characterized as the loss
of Entropy in the voltage time series. The relationship between
entropy and the voltage recovery rate has been established. It is
shown that, the entropy can be an estimate of the recovery rate.
Furthermore, the entropy computation has been done entirely
from the statistical properties of the time series, without using
any model information. Kullback-Leibler(KL) divergence, an
entropy based quantity, has been demonstrated to capture both
the rate and the level of recovery. A critical value of the KL
divergence is computed, which can indicate possible violations of
the WECC voltage performance criterion. The KL divergence is
then applied to identify weak buses , and severe contingencies in
power network.

Index Terms—Delayed Voltage Recovery, Entropy, Contin-
gency analysis.

I. INTRODUCTION

U.S. Department of Energy Workshops on FIDVR recog-
nized the growing concerns of utilities over FIDVR events
and considers it as a national issue because of the increasing
penetration of residential air conditioner (AC) loads [1], [2].
FIDVR related studies have got increased attention from
industry and academic researchers in the recent past [3],
[4]. Increasing efforts have been made to properly represent
the behavior of induction motor loads in planning studies
[5]. The major cause for FIDVR events is related to the
dynamic behavior of induction motor loads, which tend to
decelerate and stall following a large disturbance resulting in
low voltages in a significant portion of the power system. The
reactive requirement of the induction motor increases when the
induction motor stalls and may prevent quick voltage recovery.
The enhanced voltage instability predictor (VIP) method is
used in [4] to identify FIDVR and short term voltage stability
problems. The VIP method represents the power system using
a Thevenin equivalent and the parameters are recursively
estimated at the rate which the PMU data are measured. In [6],
[7], slope based voltage recovery calculation is used to predict
FIDVR events. Successive voltage measurements are used to
calculate the slope of the voltage recovery trajectory. Using
this slope the expected voltage recovery for the future time
is predicted. The predicted voltage recovery is compared with
the specified transient voltage recovery criteria for identifying
FIDVR events. For the identification of FIDVR using steady
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state screening of buses, MVA-Volt index is proposed in [8].
The MVA-volt index is summation over all system buses of
load MVA times voltage depression from the nominal value
during a three phase fault at any bus. The MVA-volt index can
be perceived as an integral error type quantity.
The previously devised methods can be broadly classified into
two categories - slope based techniques [6], [7], and integral
error based methods [8]. Integral error based measure could
not differentiate between two different voltage trajectories
- one showing moderate recovery, the other showing fast
recovery over a small period of time. On the other hand, any
measure based on the slope or the derivative of the voltage
trajectory will suffer in case of oscillations or sudden almost
discontinuous changes in the voltage magnitude.
In this work, the entropy, a popular measure of complexity and
uncertainty in the Statistical Mechanics [9], and Information
Theory [10], is used to characterize the rate of recovery of
the voltage signal. From the perspective of communication,
the higher entropy of a signal implies, that more bits of
data is needed to encode the signal [11]. Computation of
the finite time entropy using model of the dynamical system
has been pursed in [12]. In this work, a model-free method
has been proposed to compute entropy from the time series
data to characterize the nature of recovery. If the bus voltage
recovers fast, it converges to the nominal value within a shorter
time period. Henceforth, if the time series is viewed as an
unknown variable, the corresponding probability distribution
will have less of uncertainty, as the probability of finding
the voltage values around the nominal value would be higher.
The implication of this observation is that the entropy is an
indicator of the rate of recovery.
The exact voltage level, where the voltage value finally con-
verge, is also equally important along with the rate of recovery.
To encompass both rate of recovery and level of it, Kullback-
Leibler (KL) divergence, an entropy based measure of distance
between distributions, is utilized [13]. Successively, a critical
bound on the value of the divergence is computed, which meets
the WECC voltage performance criteria. KL divergence is also
used to identify critical buses and contingencies.
The contributions of the paper is as follows, - 1. demonstrating
FIDVR as a phenomenon of loss of entropy of voltage signal,
2. Application of entropy based KL divergence to characterize
both rate and level of recovery, 3. Using KL divergence
to identify critical buses and contingencies. The rest of the
paper is structured as follows. Section III describes how
entropy and rate of recovery of voltage time series are related.
Kullback-Leibler divergence based joint characterization of
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rate and level of recovery is discussed in Section III-D. The
applications of the proposed method are outlined in Section
V. Finally, conclusions are drawn in Section VI.

II. PROBLEM DESCRIPTION

WECC transient voltage dip criterion states that for a
Category B disturbance (single element outage), should not
cause a transient voltage dip that is greater than 20% for
more than 20 cycles at load buses, or exceed 25% at load
buses or 30% at non-load buses at any time other than during
the fault [14]. Also, the steady state voltage limit prescribes
at steady state voltage values should be between the bound
of 95% to 105%. Figure 1 summarizes the WECC voltage
performance criteria. There are two important factors in the

Fig. 1. WECC Voltage Performance Criteria [14].

recovery process - rate of recovery (how fast the waveform
converges), and level of recovery (to which voltage level
it converges). The WECC voltage performance criteria is a
point-wise condition on the voltage waveform. It can only be
inferred, whether or not the waveform satisfies the WECC
criterion. It can not be used to identify the rate or level of
recovery, and also can not be used to compare quantitatively
recovery nature of several waveforms. The slope or integral
based methods have limitations in quantifying the voltage
recovery as an index for comparison. In the proposed method,
first we show the rate of recovery is captured by entropy.
Then we adopt a entropy based quantity, KL divergence, to
simultaneously capture rate and level of recovery.

III. DENSITY-BASED APPROACH FOR THE
CHARACTERIZATION OF FIDVR

We propose a density-based approach for the prediction
of FIDVR. The basic idea behind the proposed approach is
to construct a (probability) density function from the voltage
time series data. Entropy of the density function is computed
to determine the rate of recovery. However, we show that
the entropy alone is not enough to determine if the recovery
criteria as specified by WECC is violated or not. To address
this problem, we propose to construct appropriate metric
on the space of densities. In particular, we use Kullback-
Leibler (KL) divergence to measure the distance between
the given density and the density corresponding to the ideal
voltage recovery. Based on the value of KL divergence we
determine if there is a violation or not. We start this section

by first outlining the procedure for the construction of density
function from a given time series data. Discussion on the
computation of entropy to determine the rate of recovery and
the KL divergence to determine the WECC violation follow
in subsequent subsections.

A. Computation of density function from time series data
It is important to emphasize that the criteria as specified

by WECC voltage performance criterion involves both tem-
poral and magnitude information of the voltage time series
data. WECC voltage performance criteria involves information
where it is required for the voltage magnitude to have reached
certain value within particular time interval. These two (tem-
poral and magnitude) pieces of information can be combined
with the help of density function. Mathematically speaking,
the density function, p : X → R, is any nonnegative scalar
value function with finite integral. Furthermore, the density
function is said to be a probability density if the integral of
the function over X is equal to one i.e.,

p(x) ≥ 0, and
∫
X

p(x)dx = 1. (1)

We now provide a procedure for the construction of approx-
imation density function p from the voltage time series data.
Consider a voltage time series data where a fault occurs at
t = T0 and is cleared at t = Tcl, the voltage waveform starts
to rise. The bus voltage vmin < v(t) < vmax is observed from
the time instant t = Tcl to t = Tf . vmin is the voltage level
at the time instant when the fault is cleared and vmax is the
nominal value before fault (e.g. 1 pu). The interval(vmin, vmax)
is divided into N intervals such that

[vmin, vmax) =

N⋃
i=1

[vi, vi+1) =
⋃
i

Di. (2)

. The time spent by the trajectory in the interval [vi, vi+1) is
denoted as ∆ti and defined as,

∆ti :=

∫ Tf

Tcl

χ[vi,vi+1) (v(t)) dt. (3)

where χA(x) is the characteristic function of set A,

χA(x) =

{
1 for x ∈ A
0 otherwise

(4)

We define

pi :=
∆ti
T

=
1

T

∫ Tf

Tcl

χ[vi,vi+1) (v(t)) dt. (5)

It can be verified that sum of pi over index i adds to one i.e.,
N∑
i=1

pi =
1

T

∫ Tf

Tcl

N∑
i=1

χ[vi,vi+1) (v(t)) dt =
1

T

∫ Tf

Tcl

1dt = 1.

The pi for i = 1, . . . , N can now be used to approximate the
probability density function p(x) from Eq. (1). In particular,

p̃ := (p1, . . . , pN )

is an approximation to p(x), where the approximation essen-
tially involves discretization of the space X into intervals Di

(2). The entries pi ≈
∫
Di
p(x)dx. Furthermore, in the limit as

N →∞, the p̃ will converge to p in weak sense.
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B. Entropy and rate of recovery

The probability density function, p, and its approximation,
p̃, can be used to compute entropy. Entropy is a measure
of uncertainty and will be used to characterize the rate of
recovery of voltage waveform. We start with the definition of
entropy.

Definition 1 (Entropy): The entropy corresponding to a
probability distribution function p(x) is defined as follows:

H(p) := −
∫
X

p(x) ln p(x)dx (6)

The entropy corresponding to the approximation, p̃, is defined
as

H(p̃) := −
N∑
i=1

pi ln pi (7)

Remark 1: It is to be noted that pi ln pi is taken as 0 for
pi = 0, using limit argument.
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Fig. 2. (a) Voltage trajectory where v(t) = 1−0.8e−αt+0.09 sin 8.3t, α =
0.04. (b) Corresponding probability distribution (Entropy = 2.1)
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Fig. 3. (a)Voltage trajectory where v(t) = 1−0.8e−αt+0.09 sin 8.3t, α =
0.9. (b) Corresponding probability distribution (Entropy = 1.1)

Entropy is a measure of uncertainty where larger value
of entropy implies more uncertainty and vice versa. For
example, the entropy corresponding to uniform probability
distribution will be maximum and one corresponding to Dirac
delta distribution (where the probability mass is concentrated
at single point and hence certain) will be minimum. For a given
voltage waveform if the voltage magnitude recovers fast then it
converge to the nominal value quickly. The probability density
function computed using the procedure outlined in Section
III-A will be concentrated closer to the nominal value and
hence will correspond to a smaller value of entropy. On the
other hand, if the voltage magnitude recovers slowing to its
nominal value then the density function corresponding to such
a recovery will be more dispersed and hence will lead to larger
value of entropy. So the entropy can be used as a measure of
voltage recovery where larger value of entropy corresponds to
slower recovery and vice versa. We now demonstrate using
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Fig. 4. Evolution of voltage magnitudes for buses 163 (red) and 164 (green).

simple example the connection between the rate of recovery
and the entropy value.

Example 1: Consider voltage waveform of the form v(t) =
1 − 0.8e−αt + 0.09 sin 8.3t. The rate of recovery is captured
by parameter α > 0. Larger value of α corresponds to faster
recovery and vice versa. Fig. 2 and 3 demonstrate two different
scenarios when α = 0.04 and α = 0.9. The time span for
observing is 100 and in both cases voltage recovers from 0.2
pu to 1 pu. Comparing Figs. 2 and 3, we observe that the
probability distribution corresponding to slower recovery (i.e.,
α = 0.04) is more dispersed compared to the one with faster
recovery (i.e., α = 0.9). Hence the entropy value for the slower
recovery is relatively larger (H = 2.1) compared to faster
recovery (H = 1.1).
The following claim demonstrates that for the special case
when the voltage recovery is exponential then the entropy
decreases with the increase in recovery rate.

Claim 1: Let the bus voltage evolves exponentially with
recovery rate α as described by the following equation,

v(t) = vmax − (vmax − v(0))e−αt.

Then, for sufficiently large T entropy is a decreasing function
of the recovery rate, i.e.

∂H(α, T )

∂α
< 0

where,

H(α, T ) := −
N∑
i=1

pi ln pi, & pi =
1

T

∫ T

0

χ[vi,vi+1) (v(t)) dt.

We provide the proof in the Appendix.

C. Simulation Results for Entropy

In Figs. 4 and 5, we show the simulation results for IEEE
162 bus system. A three phase fault is created at bus 120 for
six cycles and the fault is cleared by opening the line 5−120.
For this fault, the evolution of bus voltage magnitudes for
buses 163 and 164 is shown in Fig. 4. It can be observed that
the bus voltage corresponding to 164 recovers faster compared
to voltage at bus 163. Fig. 5 shows the probability distribution
for the corresponding bus voltages. The entropy values are 1.7
and 1.5 for the buses 163 and 164 respectively. The entropy
values are in agreement with the observed rate of recovery of
the corresponding buses.

Although entropy serves as a good measure for the rate
of recovery, it is insensitive to the final steady state value
of bus voltage. In particular, consider a scenario where the
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Fig. 5. Bus voltage probability distribution for buses 163 (red) and 164
(green)

two voltage waveform recovers with the same rate but they
converge to two different steady state values. It is not difficult
to show that the entropy values computing from the probability
distribution function corresponding to these waveform will be
the same. However, given the fact these waveforms converge
to two different steady state values it is desirable that our
proposed approach will able to differentiate such cases. To
elaborate this point further, we consider the following example
case.
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Fig. 7. Entropy values corre-
sponding to voltage recoveries as
% of AC load is increased from 0
- 45%

Example 2: It is known that the increase in percentage
of AC load has a negative effect on the rate of recovery.
Simulations are performed for varying percentage of AC load
from 0 to 45% and the voltage time series data is observed.
It can be observed from Fig. 6 that the recovery becomes
slower with increase in AC load percentage. Figure 7 shows
the entropy values plotted for different AC load percentage. It
can be observed that the entropy does not show an increasing
pattern over the entire range. In fact, for AC load larger
than 40%, there is a decrease in entropy value. This is due
to the fact, that for both the 0% and 45% AC load cases,
recovery rates are same but the voltage recovers to two
different levels. A complete characterization of the FIDVR
phenomenon is only possible if both the rate and level of
recovery are captured. In order to address this problem, we
propose following modification of the entropy measure to
capture not only the rate of recovery but also the final steady
state value.

D. Kullback-Leibler divergence for joint characterization of
rate and level of recovery

In order to circumvent the problem highlighted at the
end of previous section, we propose the use of Kullback-
Leibler (KL) divergence. KL divergence also known as relative
entropy, is a popular measure of distance used in statistics and

information theory [13]. It is used to capture the difference
between information contained in two different probability
density functions and is defined as follows:

Definition 2: The Kullback-Liebler divergence or relative
entropy between two probability density function p(x) and
q(x) is denoted by D(p ‖ q) as is given by following formula

D(p ‖ q) =

∫
X

p(x) ln
p(x)

q(x)
dx (8)

It can be shown that the KL divergence is always nonngetive
and is zero if and only if p = q. However, it is not a true
distance between two density function in true sense because it
is not symmetric and does not satisfy triangular inequality.
However it is convenient to think of KL divergence as a
distance between two density functions. The KL divergence
will be used for the purpose of characterizing rate as well
as level of recovery of voltage signal. Towards this goal we
first define a probability density function, pideal(x), corre-
sponding to ideal voltage recovery. The ideal density function
will correspond to an voltage waveform which will recover
instantaneously to a rated voltage value, say vmax, following
a fault. Hence, pideal, will be a Dirac-delta function with
all its mass concentrated at x = vnom = 1 p.u. However,
strictly speaking the Dirac-delta function does not qualify
the definition of probability density function and hence we
use following approximation for the ideal probability density
function

pideal(x) = Ẑ−1e−Λ(x−vnom)2 , Ẑ =

∫
X

e−Λ(x−vnom)2dx.

where Ẑ is the normalization constant and is introduce to
ensure that

∫
X
pideal(x)dx = 1. The positive parameter Λ > 0

controls the concentration of the density near x = vmax. For
large value of λ more mass is concentrated near x = vnom.
Now let p(x) be the probability density function corresponding
to a particular voltage waveform with a given recovery. The
objective is to compare the ”distance” between p(x) and
pideal(x) using KL divergence i.e., D(p ‖ pideal) to determine
the recovery. We will show that the KL divergence will
capture not only the rate but also the level of recovery.
We now discuss the finite dimensional approximation of the
KL divergence formula (8). Let p̃ and p̃ideal be the finite
dimensional approximation of the density p(x) and pideal(x)
respectively and of the form

p̃ = (p1, . . . , pN ), p̃ideal = (pideal1 , . . . , pidealN ).

where, p̃ is constructed using the procedure outlined in Section
III-A and

pideali :=
e−λ(N∗−i)2

Z
, Z :=

N∑
i=1

e−λ(N∗−i)2 ,

where, Z is the normalizing factor to maintain property
of probability distribution pideal, and N∗ is the index cor-
responding to the nominal voltage. The finite dimensional
approximation of KL divergence is defined as follows.
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loads. Red line corresponds to the critical KL value

Definition 3: The KL divergence between p̃ and p̃ideal is
denoted by K and is defined as follows

K :=

N∑
i=1

pi ln
pi

pideali

.

The KL divergence could be further simplified to,

K = lnZ +

N∑
i=1

pi ln pi + λ

N∑
i=1

pi(N
∗ − i)2 (9)

Now, inspecting (9), it can be observed that if the recovery
is poor the KL divergence would be higher. If the voltage
signal does not recover fast, pi will be higher for smaller i.
The weighting factor (N∗ − i)2 would be more for smaller
i in comparison to larger ones. This would ensure the KL
divergence would be more if the pi is more for lower voltage
levels. The KL divergence values are also plotted for various
different AC load percentage in Fig. 8. It can be observed from
the plot that the KL divergence shows an increasing trend with
increase in percentage of AC load. This verifies the claim that
KL divergence could be used to characterize both the rate and
the level of recovery. In the next section, we compute the
critical value of the KL divergence, which is to be satisfied in
order to meet WECC criterion. The red horizontal line in the
Fig. 8, shows the critical KL divergence and it can be observed
that the recovery starts to violate the WECC criterion after the
AC load percentage crosses 25.

IV. WECC CRITERION AND CRITICAL VALUE OF KL
DIVERGENCE

The WECC criteria, as described in Section II, has been
used to compute the critical value of the KL divergence. The
computation involves identifying an envelope of the voltage
signal, that satisfies the WECC criterion. The critical value is
computed as the KL divergence of voltage curve, which forms
the boundary of the envelope.The fault is cleared at Tcl and
the voltage is observed till Tf . A pictorial representation of
the voltage performance constraints is shown as dotted lines
in fig.9. It is to be noted we have taken the envelope as an
increasing function of time. As the KL divergence computation
involves the probability density computation, this modification
does not affect the the computation. The voltage value satisfies
the following condition for two time instant T1 and T2 such
that, Tcl < T1 < T2 < Tf ,

E :=

 v(t) ≥ V1, Tcl ≤ t < T1,
v(t) ≥ V2, T1 ≤ t < T2, V2 > V1,
v(t) ≥ V3, T2 ≤ t ≤ Tf , V3 > V2

(10)

V1
V2

V3
Vnom

Fast Recovery (KL=0.4)
Recovery to low voltage level (KL=34)
Critical KL Envelope

T1

T2

Tf

Fault
Fault Cleared at Tcl

Fig. 9. Critical voltage performance envelope based on WECC criteria

where, ∆T1 := T1−Tcl, ∆T2 := T2−Tcl, and ∆Tf := Tf −
Tcl. Any voltage curve, which satisfies the above condition,
falls within the envelope described by voltage T1, T2, and
V1, V2, V3. These quantities are treated as parameters, which
could be chosen to prescribe the envelope. WECC criterion
prescribes a specific values for the voltage levels and the
time intervals. But the bound is computed for more general
scenario, where appropriate values could be chosen for the
parameters. The following proposition summarizes the critical
value of the divergence,

Proposition 1: If a voltage trajectory v(t) satisfies the con-
dition, given by the envelope E , then K ≤ K∗ where,

K∗ :=
1

∆Tf
(∆T1 log ∆T1 + (∆T2 −∆T1) log (∆T2 −∆T1))

+
1

∆Tf
(∆Tf −∆T2) log (∆Tf −∆T2) + logZ − log ∆Tf

+
λ

∆Tf

(
∆T1(1− V1)2 + (∆T2 −∆T1)(1− V2)2

)
+

λ

∆Tf
(∆Tf −∆T2)(1− V3)2. (11)

The proof of this proposition is provided in the appendix.
Remark 2: For Λ = 450 and N = 50 we get λ = 0.18. By

putting appropriate values of Vi’s and ∆Ti’s corresponding to
WECC criterion, the critical threshold of the KL divergence
is obtained as K∗ = 4.9. It also can be noted that the critical
value K∗ is not only a function of the parameters of the
WECC voltage performance criterion, but also depends on the
parameters λ, and N . The value K∗ is an increasing function
of λ. It has been shown that, if the KL divergence is more
than the K∗, WECC criterion would be violated. Through
extensive simulations, it is verified that the converse statement
is also true in most cases, i.e. Almost all cases, satisfying the
WECC criterion, would produce KL divergence less or equal
K∗. In order to achieve a more tighter sufficiency condition,
the time interval can be divided into subdivisions, and the KL
divergence can be computed for each one of these intervals.
For each of these intervals, we can find corresponding critical
KL values. In that case, if the KL divergence values for
different intervals are within the prescribed critical bounds,
the WECC criterion would almost surely be met.

V. APPLICATIONS

The framework developed for characterizing the voltage
recovery phenomenon has been tested using IEEE 162 bus
system and one of the applications of KL measure for system
analysis has been presented in this section. The IEEE 162
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bus test system has 17 generators, 111 loads, 34 shunts, and
238 branches. The power flow and dynamics data for the 162
bus system are available in [15]. For a more accurate load
representation, the 22 load buses were stepped down through
distribution transformers to the 12.47 kV level, and the new
low voltage buses were assigned the numbers 163 through 174.
To capture the dynamic behavior of motor loads, composite
load model represented by CMDL [16] was used at the new
representative load buses in the dynamic simulation studies.

The modified IEEE 162 bus system has NB buses (184)
and a total of NC contingencies (316) of the type, a three
phase fault at a bus which is cleared after 6 cycles by opening
one of the transmission lines connected to the faulted bus
are considered for simulation studies. The voltage time series
corresponding to bus i and contingency j are stored in the
vector vij(t), 0 ≤ t ≤ Tf , i ∈ NB , j ∈ NC . Tf represents
the final simulation time instant which is chosen as 5 second
for all the simulations.

Using the time domain simulation results (vij), KL diver-
gence at each bus is computed for all contingencies and the
results are stored in a matrix K̄ ∈ RNB×NC . Figure 10 shows
the pictorial representation of the K̄ matrix, where each row
has KL measure corresponding to a particular bus for all the
contingencies and each column has KL measure for all the
buses corresponding to a particular contingency. The element
Kij corresponds to the KL divergence measure for ith bus and
jth contingency.
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Fig. 10. Representation of K̄ matrix where each row has KL numbers of a
particular bus for all contingencies and each column has KL numbers of all
buses corresponding to a particular contingency

The recovery information from the time series has been
captured in a scalar form using KL divergence measure.
This will greatly reduce the burden of analyzing time series
data especially when dealing with multiple contingencies
and scenarios. For example, in our simulation studies, each
contingency results in a time series data of length 2500 for
every bus. By computing KL divergence the key information
in the huge set of time series data is captured in a single
number corresponding to each bus in the system. Further, these
KL numbers can be used to ascertain the behavior of different
contingencies and buses in the system.

The average value of the KL divergence for individual
buses, for all contingencies could be used to determine the
relative severity of an individual bus. Equation (12) is used to
compute the average KL divergence value for all the buses,
where ~1 ∈ RNC is a row vector of all entries equal to 1.

The ith entry of the vector RB contains the average value of
the KL divergence for the ith bus, when averaged over all
contingencies.

RB :=
1

NC
~1 ∗ K̄, RB ∈ RNC ,~1 ∈ RNC (12)
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divergence for different buses
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Figure 11 shows the RB vector plotted against different
buses. The red horizontal line corresponds to the critical value
of the KL divergence, which is derived as 4.9 (Section IV).
The buses whose average KL values are greater than the
critical KL value can be termed as severe buses. However
it is not sufficient to conclude the severity of buses only
based on the average KL values because of the masking effect.
The number of contingencies that results in the performance
violations at a particular bus is also important to decide the
severity level of a particular bus. Figure 12 shows the number
of performance violations at all the buses. For example, from
fig.11, it is found that bus 148 has the highest average KL
value and bus 106 has relatively less average KL value.
However from fig.12, it is observed that more number of
contingencies creates violation at bus 106 than at bus 148.
This example shows that decisions solely based on average KL
value or number of performance violations is not sufficient to
arrive at critical buses.

TABLE I
TOP 8 SEVERE BUS IDS (SORTED IN DESCENDING SEVERITY)

sorted by 148 147 177 117 88 52 116 173
avg. KL
sorted by 177 106 52 88 147 115 116 117
violations

Table I shows the top 8 severe bus numbers, sorted based
on average KL values (row 1) and number of performance
violations (row 2). Although, there are common elements
between the lists the ranking of buses is different in both
the lists. There are multiple options to combine these two
information (severity and number of violations) to arrive at
the list of critical buses. When the average KL value is below
critical and number of violations are very small, then such
buses are termed as non-severe and they can be disregarded
for further analysis. Buses having high average KL values and
more number of performance violations (e.g Bus 177) can
be grouped as the most critical buses. Such information can
be very valuable in selecting the locations to be monitored
for voltage performance violations. The above example has
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showed that KL can be a useful measure to compare the
voltage recovery behavior of different buses under different
contingencies.

Similarly for deciding the critical contingencies both sever-
ity of contingency and number of performance violations have
been considered. The severity of a contingency is defined
as average KL values of all the buses corresponding to that
contingency. Equation (13) is used to calculate the average KL
value for different contingencies. The jth entry in RC vector
captures the severity level for contingency jth. The severity of
different contingencies and the number of buses that violate
the WECC performance criterion are shown in Fig. 13 and
Fig. 14 respectively.

RC :=
1

NB
K̄ ∗~1, RC ∈ RNC ,~1 ∈ RNB (13)

If the number of violations for a particular contingency is
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small, the recovery is tolerable for that contingency provided
the severity level is small. Contingencies that have lower
severity value and small number of violations are termed
as non-severe. A higher severity value and fewer number of
violations signifies that those contingencies are severe for only
certain buses. Contingencies that have lower severity value and
has larger number of violations affects a wider region of the
network (e.g C190 - Refer fig .13 & 14). The most critical
contingencies are those with higher severity value and also it
has large number of performance violations (e.g. C35).

TABLE II
TOP 8 SEVERE CONTINGENCY IDS (SORTED IN DESCENDING SEVERITY)

sorted by 35 2 190 34 131 289 256 167
avg. KL
sorted by 35 190 2 34 162 131 4 98
violations

Table II provides the indices of top 8 severe contingencies,
sorted based on average KL value for contingencies and num-
ber of performance violations. The number of performance
violations and severity level can be used to identify critical
contingencies. Non-severe contingencies can be eliminated for
further system level analysis.

VI. CONCLUSION

In this work, FIDVR has been shown as a phenomenon of
loss of entropy in the voltage time series. KL divergence, an
entropy based quantity, has been used to characterize both the

rate and level of voltage recovery. KL divergence provides
a quantitative measure of voltage recovery phenomenon and
is very useful for comparing different voltage waveforms. A
critical value of the KL divergence based on WECC criteria
has been derived. This will be very useful to identify the
degree of WECC voltage performance in a quantitative way.
KL divergence calculations can be extended to identify the
degree of violations during the recovery phase and steady state
settling phase. One of the applications of KL divergence for
system level studies, identification of critical contingencies
and buses, has been presented. Characterization of voltage
waveforms using KL divergence can be very useful in system
level studies dealing with large sets of data such as PMU data,
planning studies etc. KL divergence, alongside statistical tools,
can be used to classify contingencies and buses, according to
nature of recovery. This classification of contingencies and
buses would reduce substantially the further data processing,
for planning and optimization.
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VII. APPENDIX

The proof of claim 1 is outlined below,
Proof: The voltage evolves according to the following

equation,

v(t) = vmax − (vmax − v(0))e−αt.

where, α > 0 is the rate of recovery. The time instant when
voltage value reaches vi is denoted as ti i.e. v(ti) = vi.
This gives,

v2 = v(t2) = vmax − (vmax − v(0))e−αt2

α∆t1 = αt2 = ln
vmax − v(0)

vmax − v2
= lnβ1

It is to be noted that, β2 > 0 which makes, ∆ti > 0. Now,
for i = 2, ...N − 1,

vi = v(ti) = vmax − (vmax − v(0))e−αti

vi+1 = v(ti+1) = vmax − (vmax − v(0))e−αti+1

The above two equations imply,

α∆ti = α(ti+1 − ti) = ln
vmax − vi
vmax − vi+1

= lnβi

where, βi = vmax−vi
vmax−vi+1

> 0. Finally the case is considered
when i = N . It can be shown similarly,

α∆tN = ln
vmax − vN
vmax − v(T )

= lnβN

Finally, the following equation could be obtained.

α∆ti = lnβi (14)

where,

βi =
vmax − v(0)

vmax − v2
, i = 1

=
vmax − vi
vmax − vi+1

, i = 2, ....N − 1

=
vmax − vN
vmax − v(T )

, i = N.

From Equation (14), pi = 1
αT . lnβi

This implies,

H(α, T ) = −
N∑
i=1

pi ln pi = −
N∑
i=1

lnβi
αT

(γi − ln(αT ))

where, γi = ln (lnβi). Taking partial derivative of H w.r.t. α,

∂H(α, T )

∂α
=

1

α2T
.

N∑
i=1

lnβiγi +

N∑
i=1

lnβi
α2T

−
N∑
i=1

lnβi ln (αT )

α2T

=
1

α2T
.

N−1∑
i=1

γi lnβi +

N−1∑
i=1

lnβi
α2T

−
N−1∑
i=1

lnβi ln (αT )

α2T

+
1

α2T
.γN lnβN +

lnβN
α2T

− lnβN ln (αT )

α2T

Now,

βN =
vmax − vN
vmax − v(T )

= eαT
vmax − vN
vmax − v(0)

lnβN = αT + ln

(
vmax − vN
vmax − v(0)

)
lnβN = αT + cN

This implies,

∂H(α, T )

∂α
=

1

α2T
.

N∑
i=1

lnβiγi +

N∑
i=1

lnβi
α2T

−
N∑
i=1

lnβi ln (αT )

α2T

=
1

α2T

(
N−1∑
i=1

γi lnβi +

N−1∑
i=1

lnβi + γNcN + cN

)

− ln (αT )

α2T

(
cN +

N−1∑
i=1

lnβi

)
+

1 + γN
α

− ln (αT )

α

=
1

α2T
aN1 −

ln (αT )

α2T
aN2 + aN3 −

ln (αT )

α

where, aN1, aN2, and, aN3 are constants. Clearly after suffi-
ciently large T , the quantity ∂H(α,T )

∂α would be dominated
by − ln(αT )

α because rest of the terms are either constant
or inversely proportional to T (This contain both the terms
proportional to 1

αT and ln(αT )
αT . After sufficiently large T ,

ln(αT )
αT will decay as it would be dominated by the αT in

denominator). Finally for sufficiently large T ,

∂H(α, T )

∂α
≈ − ln (αT )

α
< 0

This implies entropy decreases with faster recovery (higher
α). Hence the proof.

Proof of Proposition 1:
Proof: Let us consider the voltage curve, that forms the

envelope of E .

v∗(t) = V1, Tcl ≤ t < T1,

v∗(t) = V2, T1 ≤ t < T2, V2 > V1,

v∗(t) = V3, T2 ≤ t ≤ Tf , V3 > V2.

The KL divergence, corresponding to v∗(t), is given by K∗,
which is given by (11). The KL divergence for any voltage
signal v(t), that satisfies E , the time spent on lower voltage
levels would be less than that of v∗(t). This gives, K ≤ K∗.
Next, K∗ is to be expressed in terms of the various parameters,
specified by WECC. Let the probability corresponding to the
v∗(t) be denoted as p∗i , where,

p∗i =
∆T1

∆Tf
, vi ≤ V1 ≤ vi+1,

=
∆T2

∆Tf
, vi ≤ V2 ≤ vi+1,

=
∆T3

∆Tf
, vi ≤ V3 ≤ vi+1,

= 0, Otherwise.

Plugging these values of the probability into 8, we get the
expression for K∗.


