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Abstract— This paper is concerned with computational meth-
ods for Lyapunov-based control design of an attractor set of a
nonlinear dynamical system. Based upon a stochastic represen-
tation of deterministic dynamics, a Lyapunov measure is used
for these purposes. This paper poses and solves the co-design
problem of jointly obtaining the control Lyapunov measure
and a controller. The computational framework is based upon
a set-oriented numerical approach. Using this approach, the co-
design problem leads to a finite number of linear inequalities
whose solutions define the feasible set of stabilizing controllers.
We provide a proof of existence for a stochastic version of
such a controller while the deterministic restriction is posed
as the solution of a related integer programming problem.
Mathematical programming techniques may be employed to
obtain such controllers. Finally, an example is provided to
illustrate the ideas.

I. INTRODUCTION

For nonlinear dynamical systems, Lyapunov function-
based methods play a vital role in both stability analysis and
control synthesis [1]. The synthesis typically relies on the
co-design of the control Lyapunov function (CLF) and the
controller. This is historically an important but challenging
problem for the general class of nonlinear systems [2]. For
linear systems, the co-design problem – after carrying out a
suitable change of co-ordinate – reduces to a linear matrix
inequality (LMI). These LMI define a feasible convex set
in both the CLF and the control. In practice, semidefinite
programming tools can be used to obtain a solution to
the linear co-design problem [3]. For nonlinear systems,
the problem of designing a Lyapunov based controller has
historically relied on either using methods such as feedback
linearization to construct a CLF [4] or simply assuming a
CLF [5]. With a given CLF, the stabilizing control law is
either obtained by using the Sontag’s formula [6] or more
generally using methods of nonlinear programming.

Spurred by the need for a more systematic and com-
putationally attractive framework for the solution of this
important problem, there have been a number of studies
on exact and approximate approaches in recent years. A
popular recent approach is to employ convex optimization
using SOS polynomial basis; cf., [7]. The control synthesis is
based upon using the Rantzer’s density function [8] together
with a polynomial basis for its numerical representation [9].

U. Vaidya is with the Department of Electrical & Computer Engineering,
Iowa State University, Ames, IA 50011 ugvaidya@iastate.edu

P. G. Mehta is with the Coordinated Science Laboratory and the
Department of Mechanical Science & Engineering, University of Illi-
nois at Urbana Champaign, 1206 W. Green Street, Urbana, IL 61801
mehtapg@uiuc.edu

U. V. Shanbhag is with the Department of Industrial & Enterprise Systems
Engineering, University of Illinois at Urbana Champaign, 104 S. Mathews
Avenue, Urbana, IL 61801 udaybag@uiuc.edu

The resulting convex optimization problem can be solved
using semidefinite programming. The other avenue is to
synthesize optimal control via efficient solutions of the HJB
equation; cf., [10], [11]. However, synthesis using dynamic
programming approaches is in general complex; cf. [12].
More significantly, even though the solution to the HJB
equation leads to a Lyapunov function, it may be an overkill
if one is interested in simply obtaining a stabilizing control.
Also, the non-unique nature of the Lyapunov function ought
to lead to a feasibility problem as opposed to a single optimal
control solution. Finally, certain graph-theoretic approaches
have also been recently proposed for approximating Lya-
punov functions with set-oriented description of dynamics;
cf., [13]. These papers exploit the graph-theoretic nature
of data structure implicit in set-oriented discretizations and
propose the shortest-path Dijkstra algorithm [12] to construct
an approximate solution to the HJB equation.

The objective of this paper is to use stochastic duality
arguments for the purposes of a Lyapunov-based control
design in deterministic nonlinear settings. Instead of a point-
wise notion of the Lyapunov function, our work relies
on weak and set-wise notions of stability. These notions
were introduced in our earlier work [14] using the con-
cept of Lyapunov measure. Lyapunov measure is a dual
to Lyapunov function and is closely related to Rantzer’s
density function. Just as an invariant measure is a stochastic
counterpart to the invariant set, the existence of Lyapunov
measure gives a stochastic conclusion on the stability of the
invariant measure. Using set-oriented numerical methods, the
approximation/computation of Lyapunov measure can be cast
as a solution to a finite system of linear inequalities.

In this paper, we extend this framework to the question
of Lyapunov-based control design. There are three contri-
butions of this paper. One, we develop a computational
framework whereby set-oriented numerical methods are used
to efficiently co-design Lyapunov measure and the control.
In particular, the co-design problem is shown to yield a
set of feasibility constraints expressed as linear inequalities.
The control Lyapunov measure as well as the controller is
efficiently computed using linear programming. Two, the
construction leads to measure-theoretic and weaker notions
of stabilization. This is related to the notion of coarse
stability defined in [14], which is more natural vis-a-vis
chaotic and nonlinear dynamics. This also brings to fore
the important question of designing controllers that utilize
beneficial aspects of dynamics. To expand on this point a bit,
we quote from the Ott-Grebogi-Yorke (OGY) paper on con-
trolling chaos [15]: “Assuming the motion of the free-running
[uncontrolled] chaotic orbit to be ergodic, eventually the
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chaotic wandering of an orbit trajectory will bring it close
to the chosen unstable periodic orbit or steady state. When
this occurs, we can apply small controlling perturbations
to direct the orbit to the desired periodic motion or steady
state [16].” Using a simple example of the chaotic logistic
map, we show that the computational method proposed in
this paper can potentially provide a systematic framework
for exploiting nonlinear dynamics for control and realizing
the vision of this quote.

The outline of this paper is as follows. In Section II,
preliminaries and the main results of [14] are reviewed.
Section III sets up the control problem. The computational
framework for the co-design problem appears in the Sec-
tion IV. Certain existence results for the same are also
discussed. Section V summarizes the results of an example
and VI presents the conclusions.

II. LYAPUNOV MEASURE & STABILITY

In [14], we used stochastic duality arguments to investigate
stability for an invariant set A ⊂ X of a dynamical system
T : X ⊂ Rn → X . T is assumed to be a continuous and non-
singular map and X ⊂ Rn is a compact set. B(X) denotes
the Borel σ -algebra on X and M (X) the vector space of
bounded real-valued measures on B(X).

The basic idea was to define certain measure theoretic
notions of stability. One such definition appears below:

Definition 1 (Almost everywhere stable): An attractor set
A for the dynamical system T : X → X is said to be stable
almost everywhere (a.e.) with respect to a finite measure m∈
M (Ac) if

m{x ∈ Ac : ω(x) 6⊆ A}= 0 (1)

where ω(x) denotes the set of ω-limit points for x and m is
generally taken to be the Lebesgue measure.
These and other notions of stability were investigated with
the aid of a certain stochastic operator, the Perron-Frobenius
operator P corresponding to the dynamical system T . For a
continuous mapping T : X → X , it is given by

P[µ](A) = µ(T−1(A)), (2)

where µ ∈ M (X) and A ∈ B(X); cf., [17]. The Perron-
Frobenius operator is useful because it defines a linear
operator for a general nonlinear map. While, evolution of
points is nonlinear and chaotic, the evolution of measures is
linear and well-behaved.

In order to study stability of a given attractor set A ⊂ X
with respect to the initial conditions lying in the complement
set, we considered the restriction of the Perron-Frobenius op-
erator to measures supported on complement set Ac .= X \A.
In particular, the restriction P1 : M (Ac)→M (Ac) is shown
to be a well-defined sub-Markov operator. With respect to
this operator, a Lyapunov measure – that is particularly suited
for stability analysis – is defined:

Definition 2 (Lyapunov measure): is any non-negative
measure µ̄ ∈ M (Ac) which is finite on B(X \U(ε)) and
satisfies

P1µ̄(B) < αµ̄(B), (3)

TABLE I
CONDITIONS FOR RECURRENCE AND TRANSIENCE

Linear (A) Nonlinear (P0, P1)
Invariant set 0 = A ·0 µ = µ ·P0
Spectral condition ρ(A) < 1 ρ(P1) < 1
Series-expansion AT ·P ·A−P =−Q µ̄ = m · (I−P1)−1

Linear inequalities −− µ̄ ·P1 < µ̄

for every set B ⊂ B(X \U(ε)) and for every ε > 0 where
µ̄(B) > 0 and α ≤ 1 is some positive constant.
The connection between the Lyapunov measure and stability
is given by the following Lyapunov theorem:

Theorem 3: Consider a continuous non-singular map T :
X → X on a compact set X ⊂ Rm with an attractor set A ⊂
V ⊂ X . Suppose there exists a Lyapunov measure (Definition
2) with α < 1, then

1) A is a.e. stable with respect to any finite measure
m which is absolutely continuous with respect to
Lyapunov measure µ̄ .

2) A is a.e. stable with geometric decay (see [14] for
definition) with respect to any measure m satisfying
m ≤ γ µ̄ for some constant γ > 0.

Proof: See [14].
For cases where Lyapunov functions exist, Lyapunov mea-
sure is a dual to the Lyapunov function.

One of the advantages of using stochastic duality argu-
ments is that they lead to efficient computational approaches
for stability analysis. In particular, stability verification can
be carried out by numerically obtaining finite-dimensional
approximations of Lyapunov measures. The computational
technique rests on set-oriented methods of Dellnitz and his
coauthors [18], where one uses a finite partition of X to
construct a Galerkin approximation of the P-F operator.
These partitions can be chosen by taking quantization for
states in X and the resulting P-F approximation arises as a
Markov matrix. The approximation of the Lyapunov measure
is computed using this Markov matrix (see Table I). For a
stable attractor, such an approximation exists but the converse
is not true. The existence of a Lyapunov measure for a
Markov matrix typically only leads to a weaker notion of
the stability, termed as coarse stability in [14]. For typical
partitions, coarse stability means stability modulo dynamic
behavior that is smaller than the size of cells within the
partition. Table I gives several equivalent characterizations
for verifying coarse stability using the Markov matrix and
associated Lyapunov measures. We refer the reader to [14]
for a discussion (including examples) on this.

III. CONTROL-PROBLEM FORMULATION

The stabilization problem is considered for a dynamical
system with input

xn+1 = T (xn,un), (4)

where xn ∈ X and un ∈U . To accommodate such maps, we
discuss a straightforward generalization of the PF formalism
to this case. Denoting Y .= X×U to be the product space, we
assume that the map T : Y → X . In general, this condition
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may be relaxed but the main ideas can be described more
clearly with this assumption. As before, let B(Y ) denote
the Borel σ -algebra on Y and M (Y ) the vector space of
bounded real-valued measures on B(Y ). The PF operator
for T , denoted by PT , is given by

PT [µ](A) =
∫

Y
χA(Ty)dµ(y), (5)

where µ ∈M (Y ), A ∈B(X) and PT [µ] ∈M (X). Note PT :
M (Y )→M (X).

The stabilization problem for (4) is to construct the control
map

un = K(xn), (6)

such that the closed-loop system

xn+1 = T (xn,K(xn)), (7)

has desired (global) stability properties for some attractor
set A ⊂ X . The attractor set A may already be present for
an open loop system or it may be the result of some locally
stabilizing control.

Denoting C(xn) = (xn,K(xn)), the stabilization problem is
considered for the closed-loop:

X C→ Y T→ X , (8)

where C : X → Y is due to control, T : Y → X is the plant
and both are assumed to be continuous non-singular maps
on compact sets X ,Y . Formally, the two maps are associated
with the P-F operators:

PC : M (X)→M (Y ),
PT : M (Y )→M (X). (9)

The following Lemma describes the P-F operator corre-
sponding to the closed-loop equation (8).

Lemma 4: The P-F operator for the closed-loop T ◦C :
X → X (see Eq. (8)) is given by PT ·PC.

Proof: Since T ◦C : X → X , the corresponding P-F
operator denoted by PT◦C is given by

PT◦C[µ](B) =
∫

X
χB(T ◦Cx)dµ(x)

=
∫

Y
χB(Ty)dPCµ(y)

= PT [PCµ](B). (10)

It has already been noted that for a nonlinear mapping, the
P-F operator is a linear operator on the space of measures.
The above Lemma shows that furthermore the nonlinear
composition of two mappings lead to linear multiplication
of the corresponding operators on the space of measures.

Using Lemma (8), the strategy will be to replace the
deterministic control problem by its stochastic counterpart.
Just as a Lyapunov measure was used for verifying stability
in [14], it is used here for obtaining a stabilizing control. In
particular, let A⊂ X be a given invariant set (of T ) for which
we seek a stabilizing control. The stabilization objective is

achieved by co-designing 1) control PC and 2) a Lyapunov
measure µ such that

µPC ·PT < µ, (11)

where µ is a non-zero Lyapunov measure defined on the
complement set Ac = X \ A. We note that in general, Y
will depend upon the choice of control space U and more
importantly, there are constraints on the map C. In particular,
C(x) = (x,K(x)), where K(x) ∈ U . For µ ∈ M (X), this is
accomplished by apriori restricting the measure PC[µ] ∈
M (Y ) to be of the form

PC[µ](D) =
∫

D
dq(a|x)dµ(x), (12)

where q(a|x) is a conditional probability measure defined
for each fixed x ∈ X and D ∈ B(Y ). As discussed in the
following section, the control design problem will be to
synthesize q(a|x) together with Lyapunov measure µ (that
satisfies (11)).

IV. COMPUTATIONAL APPROACH

For the purposes of computations, the infinite-dimensional
stochastic description of Eq. (11) is replaced by its finite-
dimensional approximation. We assume a switched system
formulation with u ∈UM where

UM = {u1, . . . ,ua, . . . ,uM}, (13)

a discrete set with finitely many (M) values. This set may
be taken after quantization of the control input space.

We also assume a finite partition of X and denote it by
XL, together with the associated measure space RL. The
partition for the joint space Y , denoted by Y = XL ×UM ,
has cardinality M · L and is identified with an associated
vector space RML. We use the notation PC to denote the
finite-dimensional counterpart (with respect to the discrete
partition) of PC. We note that the entries of this matrix
PC : RL →RML need to be designed to achieve the objective
of stability. As before PT : RML → RL denotes the discrete
counterpart of PT . Since T : Y → X , so PT is a Markov
matrix.

Without loss of generality (by re-indexing perhaps), we
assume that

X
.= {D1, · · · ,DN}, (14)

is a sub-partition contained in the complement set Ac. We
will synthesize a Lyapunov controller with respect to this
partition. Before doing so, we will need to assume that
the sub-partition {DN+1, . . . ,DL} is invariant under closed-
loop. Note that by construction, A ⊂ ∪L

j=N+1D j. So, this
property can be ensured by either constructing a fine enough
partition in the neighborhood of an attractor set or if A
is an unstable invariant set then by constructing a locally
stabilizing controller. The Lyapunov-based design aims to
construct a control and a Lyapunov measure that ensures
global stability with respect to the complement set.
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The control problem is then formulated as a co-design
of 1) control Markov matrix PC : RN → RML, and 2) an
approximation of the Lyapunov measure µ ∈ RN such that

µPC ·PT [1 : N] < αµ, (15)

where α ≤ 1. This is the discrete counterpart of Eq. (11).
This structure is too general because PC can only corre-

spond to control maps of the form C(x) = (x,K(x)). Below
we introduce notation, counterpart of (12), to incorporate
this. For each fixed value of control ua ∈U , we denote Pa :
RL →RL to be the Markov matrix for the map T (·,u = ua).
In particular, Pa are sub-matrices of PT . Next, define

Qia = Prob(un = ua|xn ∈ Di) for a ∈ [1, . . . ,M] (16)

to be the probability of choosing the ath control value
conditioned on state being in cell D j. Q is the discrete
counterpart of conditional distribution q(a|x) in Eq. (12).
We note that Qia describes all of the non-zeros entries of
PC for control maps of the form C(x) = (x,K(x)). With this
notation, Eq. (15) is written as

M

∑
a=1

N

∑
i=1

µiQiaPa
i j < µ j for j = 1, . . . ,N. (17)

The co-design problem thus involves designing a Markov
matrix Q : RN → RM for control K together with the Lya-
punov measure µ .

To solve this problem, we make a change of co-ordinate

Ria
.= µiQia for i ∈ [1, . . . ,N], a ∈ [1, . . . ,M]. (18)

By virtue of the fact that Q is a Markov matrix, we have

µ j = ∑
a

R ja. (19)

The Lyapunov equation (15) for the closed-loop is

∑
i,a

RiaPa
i j < α ∑

a
R ja, for j ∈ [1, . . . ,N]. (20)

a linear inequality in the unknowns {Ria}. Since the Lya-
punov measure is positive and Q non-negative, this is aug-
mented by constraints

Ria ≥ 0. (21)

The equations (20)-(21) thus represent a system of linear
inequalities in unknowns Ria. A feasible solution for this can
be obtained using linear programming. From any admissible
solution to the linear program, the Lyapunov measure and
control is easily obtained as

µi = ∑
a

Ria, (22)

Qia =
Ria

µi
. (23)

We note that the control Markov matrix Q is stochastic in
general. In particular, a solution to Eq. (23) in general leads
to Qia ∈ [0,1]. This is not surprising given our stochastic
approach to the problem. This also has some advantage,
namely due to expansion of the control space. Finally, a
stabilizing solution exists as long as the feasibility set as
defined by equations (20)-(21) is not empty.

A. Existence of a Stochastic Controller

The existence of a stochastic controller is linked to
whether a solution exists to the set of inequalities given by

∑
i,a

RiaPa
i j < α ∑

a
R ja, j = 1, . . . ,N

Ria ≥ 0, ∀i,a. (24)

Denoting R .= [R1,R2, . . . ,RM]′, where Ra .=
[R1a,R2a, . . . ,RNa], these inequalities may be succinctly
expressed as

AR > 0,

R ≥ 0, (25)

where A =
(
(αI−P1)′ . . . (αI−PM)′

)
. The existence

question for this linear system is easily resolved by using
the Slater’s theorem of alternative which we state below:

Theorem 5 ( [19]): Let A be a given matrix. Then either
X := {x : Ax > 0,x≥ 0} is nonempty or Y := {y : AT y1 +y2 =
0,y ≥ 0} is nonempty but never both.
Before stating and proving the necessary and sufficient
conditions for the existence of a stochastic controller, we
define eΩ to be an indicator vector in Rm. Here, Ω ⊂ X
and eΩ

i = 1 by definition if and only if i ∈ Ω. We now state
the existence result:

Theorem 6: Consider Pu to be a set of (in general) sub-
Markov matrices and let

β = min
u

λmax(Pu), (26)

where λmax(·) denotes the maximum (positive) eigenvalue.
We have the following two cases regarding the existence of
a solution to (24):

1) Suppose β < 1 then at least one solution exists for any
α ∈ (β ,1].

2) Suppose β = 1 then a solution exists (in particular for
α = 1) if and only if

PueΩ = eΩ ∀ u = 1, . . . ,M (27)

holds with only Ω = φ the empty set. If solution to (24)
exists for α = 1 then it also exists for values of α

sufficiently close but strictly smaller than 1.
Proof: Let A .=

(
(αI−P1)′ . . . (αI−PM)′

)
, X de-

notes the set of feasible R defined by X := {R : R≥ 0, AR≥
0} and Y := {y : AT y1 +y2 = 0,y > 0}. In order to prove the
existence of a solution to X , we need to show that either X
is non-empty or equivalently Y is empty. This follows from
Slater’s theorem of the alternative (see Theorem 5).

Suppose Y is non-empty then there exists an element of
Y satisfying

y2 =−AT y1

=

P1−αI
...

PM −αI

y1 >

0
...
0

 .
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Therefore, we have Pay1 > αy1 for all a ∈ {1, . . . ,m}. Then
by corollary 8.1.29 from [20], we have α < λmax(Pa) for
a ∈ {1, . . . ,m} or

α < min
a

λmax(Pa).

If α is set such that α ≥ mina λmax(Pa), then Y is empty,
implying that X is nonempty and a stochastic controller may
be designed. This concludes the proof for (1).

For part (2), assume β = 1. By Theorem 5, a solution
exists if and only if there is no common y ≥ 0 and not
identically zero such that

Puy = y ∀ u = 1, . . . ,M. (28)

Denote Ω = {i : yi > 0}. Now, for a sub-Markov matrix Puy =
y if and only if PueΩ = eΩ. The part (2) follows. Finally if a
solution exists for α = 1 then AR < 0 where the inequality is
strict. Since the system is finite, this also implies AR <−bR
for sufficiently small positive b. Thus, a solution exists for
all values of α ∈ [1−b,1].

The part (1) of this theorem is expected. It merely states
that if atleast one of the matrices Pui has largest eigenvalue
strictly less than 1 then a stabilizing control always exists.
This also follows by simply choosing the control to be open-
loop (u = ui for all states). The part (2) of the theorem is more
interesting. It states that the only way for a stochastic control
not to exist is that there be a set Ω⊂X that is left invariant
by each of the matrices Pu. Intuitively, this statement makes
sense. The interesting case thus arises where there are one
or more invariant regions Ωu for each choice of control (so
β = 1) but one can still solve the co-design problem by
using feedback. Equation (24) describes the set of feasible
controls. We note that even if β < 1, the corresponding
open-loop control (with u = ui) may not be desirable due to
control authority or optimality considerations. Equation (24)
provides for a feasibility set of all stabilizing controllers for
any choice of α . One may then obtain or choose a controller
from this set that is better.

B. Constructing a deterministic controller

The linear programming formulation typically admits a
stochastic controller. For deterministic control problems,
this may not always be desirable. In many situations, it
may be of interest to obtain deterministic control to the
stabilization problem. This requirement imposes a constraint
on the control Markov matrix Q to be deterministic.

Definition 7 (Deterministic Markov matrix [17]): A
Markov or a sub-Markov matrix Q is deterministic if the
individual entries are either 0 or 1.
Thus for the control to be deterministic, at most one entry of
the ith row of Q can be non-zero. Since the Lyapunov equa-
tion is given in terms of the co-ordinate Ria (see Eq. (20)), we
incorporate the constraint of deterministic control in terms
of this co-ordinate.

This section presents one computational approach that
leads to a mixed integer programming problem. For each
unknown Ria, we introduce a binary variable denoted by
yia ∈ {0,1}. In order to obtain a deterministic control, we

augment the system of linear inequalities in Eq. (20)-(21)
by an additional set of linear inequalities

Ria ≤ Z · yia, for i ∈ [1, . . . ,N],
and a ∈ [1, . . . ,M], (29)

∑
a

yia = 1, for i ∈ [1, . . . ,N] (30)

where Z is a suitably large real constant. The equality
constraint ensures that only one yia is non-zero for each i
and the inequality constraint then ensures that Ria is zero for
all but one entry per i. Using Eq. (23), the control matrix is
deterministic. In summary, equations (20)-(21) together with
(29)-(30) and requirement that

yia ∈ {0,1} (31)

defines the mixed-integer problem to obtain a deterministic
control solution and a Lyapunov measure. In practice, a
mixed integer problem is more complex and we plan to use
LP relaxation based techniques [21].

V. EXAMPLE

Consider control of the 1-d cubic logistic map

xn+1 = T (xn,un;λ ) = λxn− x3
n +un, (32)

with λ = 2.3, X = [−1.6,1.6] and a finite number of control
values from

U = {−0.15,−0.1,−0.05,0,0.05,0.1,0.15}. (33)

The value of λ is chosen to be at the edge where a sequence
of period-doubling bifurcations lead to chaos. X is obtained
by partitioning X into 101 equal-sized cells. The cell contain-
ing 0 is denoted as D1. The control objective is to stabilize
the unstable equilibrium at 0 by appropriately choosing
un = K(xn) from U . Figure 1(a) depicts the invariant measure
(in red) corresponding to the two symmetric attractors for
the open-loop together with the invariant measure of the
closed-loop (in blue). X0 denotes the support of the latter
and X1 = X \ X0. The control design problem considered
here consists of co-designing a Lyapunov measure together
with a deterministic control law K(x) for points x ∈ X1.
In the following, we discuss the results for mixed-integer
formulation (equations (20)-(21) and (29)-(31)) that was used
to obtain a deterministic control.

Figure 1(b)-(d) summarizes the results of the control
design with α = 1. The part (b) depicts the control law
K(x) with respect to the partition where bars are used to
reflect the fact that control takes a constant value on each
cell. The part (c) gives the Lyapunov measure µ (in red) and
µP (in blue) where P denotes the Markov approximation of
the closed-loop dynamical system. The part (c) depicts the
structure of the open and closed-loop Markov matrices (in
red and blue respectively). The structure describes evolution
of initial conditions under one iteration of the associated
map. In the limit of taking infinite number of cells such
that all points in X are distinguished, the structure will be
identical to the graph of the map.
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Fig. 1. (a) Invariant measure for the open-loop (in red) and the closed-loop (in blue), (b) control law, (c) Lyapunov measure µ , and (d) structure of the
open-loop (in red) and closed-loop (in blue) transitions.

One remarkable fact about the control is that it utilizes
the natural dynamics to aid the stabilization. The first obser-
vation is that the control is mainly inactive (see parts (b)
and (d)). The part (c) shows that the control works by
local stabilization and a relatively large control action in the
region of the attractors for the open loop (indicated by the
twin circles). The locally stabilizing nature of the control is
reflected in the smaller slope for the closed-loop structure
in the neighborhood of 0. The interesting observation is
that the large control action does not work by pushing
initial conditions in towards 0, rather just the opposite. In
a sense, it is serving to both break the attractors of the
logistic map and to utilize the natural dynamics that bring
the initial conditions starting at the boundaries near 0 (note
T (

√
(λ ),0;λ ) = 0). This is also reflected in the “peaking”

of the Lyapunov measure near the boundaries of X ; cf. [14],
[22] for interpretation of the peaks of the Lyapunov measure.

VI. CONCLUSION

In this paper, we developed an efficient computational
framework for co-synthesis of a control-Lyapunov measure
and the controller. We showed that the two notions of
linearity and convexity implicit in LMI based linear control
design are well captured using the stochastic formalism.
The formalism of this paper thus allows one to generalize
the intuition and results from linear systems to the general
nonlinear dynamical systems.

The measure theoretic notions of stability also enable a
generalization of the control design space. One, the solution
of the linear inequalities in general lead to randomized
control solutions for the stabilization problem (deterministic
controllers can be also be obtained but require additional
linear and integrality constraints). Two, the presence of
unstable points in the complement set is typically useful for
the stabilization problem. The notions of stability considered
in this paper allow for such points. It even allows for dynamic
behavior with small (than the quantization size) regions
of attraction. The intuition is that such sets are either not
important for the given scale or that large enough (size of
quantization) noise makes them irrelevant. More generally,
with the aid of a low-dimensional but chaotic example, we
showed that the computational method provides a systematic
framework to exploit nonlinear dynamics for control.
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