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Abstract— A result on the necessary and sufficient conditions for
almost everywhere stability of an invariant set in continuous-
time dynamical systems is presented. It is shown that the
existence of a Lyapunov density is equivalent to the almost
everywhere stability of an invariant set. Furthermore, such a
density can be obtained as the positive solution of a linear
partial differential equation analogous to the positive solution
of Lyapunov equation for stable linear systems.

I. INTRODUCTION

In this paper, a linear transfer operator framework is used to

study the almost everywhere stability problem for continuous

time dynamical systems. The notion of almost everywhere

stability and density function verifying this notion of stability

were introduced for the first time by Rantzer [1]. In [2] [3]

[4] the Lyapunov measure is introduced for verifying almost

everywhere stability of an invariant set for a discrete time

dynamical system. The density function and the Lyapunov

measure were shown to be dual to the Lyapunov function and

capture the weaker notion of almost everywhere stability.

One of the remarkable properties enjoyed by the density

function and the Lyapunov measure, which is not true for

the Lyapunov function, is convexity in terms of controller

design [5] [6]. This makes the density function and the

Lyapunov measure a very useful design tool for nonlinear

control systems.

In this paper, we continue the investigation of the extended

notion of stability. In particular, we study a new notion

of stability, introduced in [4] for discrete time dynamical

systems, called almost everywhere uniform stability. We give

necessary and sufficient conditions for almost everywhere

uniform stability of an invariant set for a continuous time

dynamical system. Results on necessary and sufficient con-

ditions for almost everywhere stability of an equilibrium

point using the density function already exist in [7] [8].

However, these results were proven under the assumption

that the equilibrium point is locally stable. In this paper we

do not assume local stability of the invariant set. Instead

we assume a weaker form of stability of an invariant set

which we call almost everywhere uniform stability. The

notion of almost everywhere uniform stability and necessary

and sufficient conditions verifying this stability using the

Lyapunov measure were proved in [4] for discrete time

dynamical systems. So the result in this paper can be viewed

R. Rajaram is with the Department of Computer Science, Mathe-
matics and Engineering, Shepherd University, WV 25443. U. Vaidya is
with the Department of Electrical and Computer Engineering, Iowa State
University, IA 50011. M. Fardad is with the Department of Electrical
and Computer Engineering, University of Minnesota, MN 55455. email:
rrajaram@shepherd.edu, ugvaidya@iastate.edu, makan@umn.edu .

as the continuous time counterpart of the discrete time result

presented in [4]. We show that almost everywhere uniform

stability of an invariant set, according to Definition (2),

is equivalent to the existence of a positive solution, i.e.

Lyapunov density, to the advection equation with a positive

right hand side. We believe that this connection between

stability and the solution of a partial differential equation

will be an important step towards computing the Lyapunov

density and opening up a new approach towards verifying

stability.

The paper is organized as follows. In Section (II), we briefly

mention the preliminary concepts required for this paper.

We introduce the new notion of almost everywhere uniform

stability in Section (III). The main result is stated and proven

in Section (IV). We show an important link between a.e.

uniform stability and the spectrum of a certain operator

in Section (V). Numerical simulations for three different

systems are shown in Section (VI). Conclusion follows in

section (VII)

II. PRELIMINARIES

In this paper we are interested in the global stability property

of the invariant set for the following ordinary differential

equation

ẋ = f (x) (1)

where f : X → X is assumed to be smooth and X is a

compact subset of R
n. We use the notation φt(x) to denote

the solution or flow of (1) at time t, having started from the

initial condition x. Equation (1) can be used to study the

evolution of a single trajectory. The evolution of ensembles

of trajectories or the densities on the phase space can be

studied using a linear operator called the Perron-Frobenius

(P-F) operator Pt : L1(X) → L1(X) defined as follows
∫

A
Ptρ(x)dx =

∫

φ−t (A)
ρ(x)dx =

∫

A
ρ(φ−t(x))|

∂φ−t(x)

∂x
|dx (2)

for every set A ⊂ X . Hence the following identity is true

Ptρ(x) = ρ(φ−t(x))|
∂φ−t(x)

∂x
|, (3)

where | ∂φ−t (x)
∂x

| is the determinant of the Jacobian of the flow

φ−t .

Furthermore, the Perron-Frobenius operator introduced

above is the semigroup corresponding to the operator Aρ =
−▽·(ρ f ). In other words, Pt = eAt describes the evolution

of densities ρ via the advection equation

∂ρ

∂ t
= −▽·(ρ f ) =: Aρ. (4)
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For more details on the Perron-Frobenius operator and its

infinitesimal generator see ([9]). If (X ,B,µ) is a measure

space and Pt is the Perron-Frobenius operator correspond-

ing to the dynamical system (1), then the Pt satisfies the

following properties [9].

1) Pt(α1 f1 + α2 f2) = α1Pt f1 + α2Pt f2 for all f1, f2 ∈ L2

and α1,α2 ∈ R.

2) Pt f ≥ 0 if f ≥ 0

3)
∫

X Pt f (x)µ(dx) =
∫

X f (x)µ(dx)

Roughly speaking, the Perron-Frobenius operator and the

advection equation can be thought of as describing the

evolution of the density of a fluid as it moves under the

influence of the vector-field (1). Properties 2) and 3) above

can then be thought of as the fluid always having positive

density and the total mass of the fluid remaining constant as

it moves under (1).

III. ALMOST EVERYWHERE STABILITY

We are interested in the global almost everywhere stability

of the invariant set Λ. Let us first describe what we mean by

an invariant set.

Definition 1 (Invariant Set): A closed set Λ ⊂ X is said to

be an invariant set for (1) if for every x ∈ Λ, φt(x) ∈ Λ for

all time t ∈ R, i.e., φt(Λ) = Λ.

To define almost everywhere stability of an invariant set Λ,

we let

At := {x ∈ Λc : φt(x) ∈ A}

for any set A ⊂ X \Bδ , where Bδ ⊃ Λ, is the δ neighborhood

of the set Λ for some fixed δ > 0.

Definition 2 (Almost Everywhere Uniformly Stability): The

invariant set Λ ⊂ Bδ for the differential equation (1) is said

to be almost everywhere uniformly stable with respect to

measure m if for any given ε > 0, there exists a T (ε,δ ) > 0

such that
∫ ∞

T
m(At)dt < ε (5)

for every set A ⊂ X \Bδ .

Remark 3: The measure m in the definition of almost every-

where uniform stability will be assumed to be the Lebesgue

measure or any measure that is absolutely continuous with

respect to Lebesgue measure.

The definition says that the measure (w.r.t. m) of set of points

that stay outside the δ neighborhood of the invariant set can

be made arbitrarily small with increasing time. Since the

global stability is with respect to the set of points which

are outside the δ neighborhood of the invariant set, this

motivates us to look at the restriction of the Perron-Frobenius

semigroup to the space L1(X \ Bδ ). Hence we define the

new semigroup corresponding to the restriction of the flow

φt : X \Bδ → X as follows

P
1
t ρ(x) := χX\Bδ

(x)ρ(φ−t(x))|
∂φ−t(x)

∂x
|, (6)

where ρ(x) is supported on the set X \Bδ and χX\Bδ
(x) is

the indicator function of the set X \Bδ . So we have

P
1
t = ΣPt : L1(X \Bδ ) → L1(X \Bδ ),

where Σ : L1(X)→ L1(X \Bδ ) is the projection operator, and

Σρ(x) = χX\Bδ
(x)ρ(x).

Let A
1 be the infinitesimal generator corresponding to the

semigroup of the restriction P
1
t . The relation between the

infinitesimal generator corresponding to P
1
t and that of Pt is

established in the following Lemma.

Lemma 4: Let A
1 and A be the infinitesimal generators

corresponding to the semigroups P
1
t and Pt respectively and

Σ : L1(X) → L1(X \Bδ ) be the projection operator, then we

have

A
1 = ΣA on L1(X \Bδ ).

Proof: For ρ ∈ L1(X \Bδ ), we have

Σρ = ρ.

Now, we have the following identity:

P
1
t ρ(x)−ρ(x) = ΣPtρ(x)−Σρ(x).

Therefore we have,

lim
t→0

P
1
t ρ(x)−ρ(x)

t
= Σ lim

t→0

Pt(ρ(x))−ρ(x)

t
= ΣAρ.

Since by assumption the measure m is either the Lebesgue

measure or absolutely continuous with respect to the

Lebesgue measure, we let ρ0 be the density of the measure

m with support on the set X \Bδ , i.e.,

m(A) =
∫

A
ρ0(x)dx

for A ⊂ X \Bδ . The following Lemma establishes the con-

nection between the almost everywhere uniform stability of

the invariant set and the asymptotic property of the restricted

semigroup P
1
t .

Lemma 5: The invariant set Λ ⊂ X for the system of differ-

ential equations (1) is almost everywhere uniformly stable

with respect to measure m if and only if for every ε > 0

there exits a T (δ ,ε) such that

∫

A

∫ ∞

T
P

1
t ρ0(x)dtdx < ε (7)

for any set A ⊂ X \Bδ .

Proof: Almost everywhere uniform stability with re-

spect to measure m implies that for any ε > 0 there exists

an T (δ ,ε) > 0 such that
∫ ∞

T
m(At)dt < ε

For A ⊂ X \Bδ , we have

At = φ−t(A)∩Λc
.

∫ ∞

T
m(At)dt =

∫ ∞

T

∫

At

ρ0(x)dxdt

=
∫ ∞

T

∫

A
ρ0(φ−t(x))|

∂φ−t(x)

∂x
|dxdt

=
∫ ∞

T

∫

A
χX\Bδ

(x)ρ0(φ−t(x))|
∂φ−t(x)

∂x
|dxdt (8)

=
∫ ∞

T

∫

A
P

1
t ρ0(x)dxdt < ε.
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where we have use the fact that A ⊂ X \Bδ .

IV. MAIN RESULT

In this section, we prove the main result of this paper giving

a necessary and sufficient condition for almost everywhere

uniform stability of the invariant set Λ. Before proving the

main theorem, we prove the following lemma, which is used

in the proof of the main theorem.

Lemma 6: Let φt(x) denote the solution of Equation (1).

Then we have the following identity

det
dφt(x)

dx
= e

∫ t
0 ▽· f (φs(x))ds

. (9)

Proof: We first note that the following integral identity

is true by the assumption that φt(x) is the solution of

Equation (1)

φt(x) = φ0(x)+
∫ t

0
f (φs(x))ds, (10)

and φ0(x) = x. Next we differentiate Equation (10) with

respect to x to get the following

dφt(x)

dx
= I +

∫ t

0

d f

dx
(φs(x))

dφs(x)

dx
ds.

Let us denote M(t) =
dφt(x)

dx
. We note that M(0) = I.

Furthermore we have the following

M′(t) =
d f

dx
(φt(x))

dφt(x)

dx
=

d f

dx
(φt(x))M(t) = A(t)M(t),

where we have denoted A(t) =
d f

dx
(φt(x)). Hence we have

shown that M(t) is a solution to the following differential

equation in time

M′(t) = A(t)M(t); M(0) = I.

By Abel’s formula, we have the following

det M(t) = det M(0) e
∫ t

0 trace(A(s))ds

= e
∫ t

0 ▽· f (φs(x))ds
.

Now we state and prove the main result of this paper.

Theorem 7: The invariant set Λ ⊂ X for the system of

differential equation (1) is almost everywhere uniformly

stable with respect to measure m, with density ρ0, if and only

if the following steady-state partial differential equation

A
1ρ(x) = −ρ0(x) (11)

admits a positive solution ρ(x) > 0 and ρ(x) is integrable on

X \Bδ .

Proof: To prove the sufficiency of (11) we construct a

solution ρ(x) as follows

ρ(x) =
∫ ∞

0
P

1
t ρ0(x)dt. (12)

The definition of a.e. uniform stability w.r.t. ρ0 given by (7)

guarantees the convergence of (12) for a.e. x∈X \Bδ . Also,

by the property of the Pt , we have that ρ(x) > 0. It remains

to verify that (15) defines a solution for (11). To see this, we

apply the operator A
1 to (15). We get the following

A
1ρ(x) = A

1
∫ ∞

0
P

1
t ρ0(x)dt =

∫ ∞

0
A

1
P

1
t ρ0(x)dt,

where we have used the closedness of the operator A
1 (guar-

anteed by the Hille-Yosida semigroup generation theorem) to

obtain the last equality. We now have the following:

∫ ∞

0
A

1
P

1
t ρ0(x)dt =

∫ ∞

0

d

dt
P

1
t ρ0(x)dt =

lim
t→∞

P
1
t ρ0(x)− lim

t→0
P

1
t ρ0(x) = −ρ0(x),

where we have used lim
t→∞

P
1
t ρ0(x) = 0 (implied by the defini-

tion of a.e. uniform stability) and the semigroup property of

P
1
t to obtain the first equality above and lim

t→0
P

1
t ρ0(x) = ρ0(x).

To prove the necessity of (11), we first find a representation

formula for the following PDE

−Aρ = ▽· ( f ρ) = ρ0. (13)

Equation (13) can be rewritten as

n

∑
i=1

fi(x)ρxi
+ρ(x)(▽· f ) = ρ0(x). (14)

Since this is a first order PDE, we use the method of char-

acteristics to obtain a solution formula. The characteristic

curves are given by the solution of the following ODE

ẋ(t) = f (x), x(0) = x0 ∈ R
n
. (15)

Let φt(x) denote the solution of (15). Then (14) can be

rewritten as

d

dt
ρ(φt(x))+ρ(φt(x))(▽· f ) = ρ0(φt(x)), (16)

which is a first order ODE in the t variable. The solution of

(16) is obtained by multiplying (16) by the integrating factor

e
∫ t

0 ▽· f (φs(x))ds
.

We obtain the following

d

dt
(ρ(φt(x))e

∫ t
0 ▽· f (φs(x))ds) = e

∫ t
0 ▽· f (φs(x))dsρ0(φt(x)). (17)

Hence we obtain the following solution formula for (13)

along the characteristic curves given by the solution of (15):

ρ(φt(x)) = e−
∫ t

0 ▽· f (φs(x))dsρ(φ0(x)) (18)

+e−
∫ t

0 ▽· f (φs(x))ds

∫ t

0
e
∫ s

0 ▽· f (x(τ))dτ ρ0(φs(x))ds.

From Lemma (6) we have

det
d(φt(x))

dx
= e

∫ t
0 ▽· f (φs(x))ds

.
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Using the above equation and rearranging Equation (18), we

have the following

|
d(φt(x))

dx
|ρ(φt(x)) = ρ(φ0(x))

+
∫ t

0
|
d(φs(x))

dx
|ρ0(φs(x))ds

⇒ P−tρ(x) = ρ(φ0(x))+
∫ t

0
P−sρ0(x)dt

⇒ ρ(x) = Ptρ(x)+
∫ t

0
Pt−sρ0(x)dt. (19)

Next, we note that φ0(x) = x and integrate Equation (19) in

space with respect to A ⊂ X \Bδ to obtain the following
∫

A
ρ(x)dx =

∫

A
Ptρ(x)+

∫ t

0

∫

A
Pt−sρ0(x)

⇒
∫

A
ρ(x)dx =

∫

A
P

1
t ρ(x)+

∫ t

0

∫

A
P

1
t−sρ0(x)dxds

⇒
∫

A
ρ(x)dx =

∫

A
P

1
t ρ(x)+

∫ t

0

∫

A
P

1
τ ρ0(x)dτ

Since ρ(x),ρ0(x) are both finite positive densities on X \Bδ ,

we have the following
∫ t

0

∫

A
P

1
τ ρ0(x)dτ < (20)

∫

A
P

1
t ρ(x)+

∫ t

0

∫

A
P

1
τ ρ0(x)dτ =

∫

A
ρ(x)dx < ∞, ∀ t > 0,

which is equivalent to Definition (2).

Remark 8: The solution of Equation (11) has to be under-

stood in the weak sense i.e., the derivatives that appear in

Equation (11) are weak derivatives since the regularity of the

initial density L1(X \Bδ ) is maintained by the solution.

For the case when m is the Lebesgue measure, we have

ρ0(x) = χX\Bδ
. If the equilibrium point is stable with respect

to the Lebesgue measure then it is easy to prove the following

theorem.

Theorem 9: Assume that the invariant set Λ ⊂ X for the

system of differential equation (1) is almost everywhere

uniformly stable with respect to Lebesgue measure, then for

any given positive ρ0 ∈ L1(X \Bδ ), the following steady state

partial differential equation

A
1ρ = −ρ0(x) (21)

admits a positive solution ρ which is integrable on X \Bδ .

Proof: Fix ε > 0. We have that any function ρ0(x) ∈
L1(X \Bδ ) is a strong limit (in L1 norm) of a sequence of

simple functions {ψN(x)}∞
N=0. Also, we can choose {ψN(x)}

to be an increasing sequence satisfying 0 ≤ ψN(x) ≤ ρ0(x).
We denote the sequence as follows:

ψN(x) =
N

∑
i=1

λiχAi
(x),

where Ai ⊂ X \Bδ . We have

0 ≤
∫

X\Bδ

∑
i

λiχAi
dx ≤ M =⇒ 0 ≤ ∑

i

λi ≤
M

m(X \Bδ )
= C.

(22)

Now
∫ ∞

T

∫

A
P

1
t ρ0(x)dxdt =

∫ ∞

T

∫

A
P

1
t ψN(x)dxdt (23)

+
∫ ∞

T

∫

A
P

1
t (ρ0(x)−ψN(x))dxdt.

First we estimate the first term using Equation (22):

∫ ∞

T

∫

A
P

1
t ψN(x)dxdt ≤

N

∑
i=1

λi

∫ ∞

T

∫

A
P

1
t χAi

dxdt

N

∑
i=1

λi

∫ ∞

T

∫

A
P

1
t χAi

dxdt ≤
N

∑
i=1

λi

∫ ∞

T

∫

X\Bδ

P
1
t χAi

dxdt

Since Ai ⊂ X \Bδ we have χAi
(x) ≤ χX\Bδ

(x). Furthermore,

it is easy to see that property 2 holds true for P
1
t also. Hence

we have P
1
t χAi

≤ P
1
t χX\Bδ

. and the following:

N

∑
i=1

λi

∫ ∞

T

∫

X\Bδ

P
1
t χAi

dxdt ≤
N

∑
i=1

λi

∫ ∞

T

∫

X\Bδ

P
1
t χX\Bδ

dxdt

≤

(

N

∑
i=1

λi

)

∫ ∞

T

∫

X\Bδ

P
1
t χX\Bδ

dxdt

≤
M

m(X \Bδ )

∫ ∞

T

∫

X\Bδ

P
1
t χX\Bδ

dxdt.

Since we have a.e uniform stability w.r.t Lebesgue measure

there exists T = T0 such that
∫ ∞

T0

∫

X\Bδ
P

1
t χX\Bδ

dxdt <
ε

2C
,

where C = M
m(X\Bδ ) . Hence we have

∫ ∞

T0

∫

A
P

1
t ψN(x)dxdt ≤

ε

2
. (24)

Next we look at the second term. We note that P
1
t (ρ0(x)−

ψN(x)) ≥ 0 ∀N ∈ N, by property 2 applied to P
1
t . Hence we

have the following:
∫ ∞

T0

∫

A
P

1
t (ρ0(x)−ψN(x))dxdt

≤
∫ ∞

T0

∫

X\Bδ

P
1
t (ρ0(x)−ψN(x))dxdt

Since ρ0(x) and ψN(x) are both supported on X \Bδ , we

have the following:
∫

X\Bδ

P
1
t (ρ0(x)−ψN(x))dx = ||P1

t (ρ0(x)−ψN(x))||L1(X\Bδ ).

Using the continuity of P
1
t on L1(X \Bδ ) for fixed t > 0,

there exists an N large enough such that

||P1
t (ρ0(x)−ψN(x))||L1(X\Bδ ) ≤ εe−t

Hence we have,
∫ ∞

T0

∫

X\Bδ

P
1
t (ρ0(x)−ψN(x))dxdt ≤

∫ ∞

T0

εe−tdt =
ε

2
e−T0 ≤

ε

2
.

Hence we have,
∫ ∞

T0

∫

A
Pt(ρ0(x)−ψN(x))dxdt ≤

ε

2
. (25)
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From Equations (24) and (25) we have
∫ ∞

T0

∫

A
Ptρ0(x)dxdt ≤ ε ∀A ∈ X \Bδ . (26)

Corollary 10: Assume that the invariant set Λ ⊂ X for the

system of differential equation (1) is almost everywhere

uniformly stable with respect to Lebesgue measure. Then
∫ ∞

0
‖ P

1
t ρ0(x) ‖ dt < ∞ (27)

for all ρ0(x) ∈ L1(X \ Bδ ), where ‖ P
1
t ρ0(x) ‖=

∫

X\Bδ
|P1

t ρ0(x)|dx

Proof: From theorem (9), we know that for any positive

ρ0 ∈ L1(X \Bδ ) and any given ε > 0 there exists a time T0

such that
∫ ∞

T0

‖ P
1
t ρ0(x) ‖≤ ε

and hence

∫ ∞

0
‖ P

1
t ρ0(x) ‖< ∞ (28)

Any ρ0(x) ∈ L1(X \Bδ ) can be written as

ρ0(x) = ρ+
0 (x)−ρ−

0 (x)

where both ρ+
0 (x) > 0 and ρ−

0 (x) > 0. Hence we have
∫ ∞

0
‖ P

1
t ρ0(x) ‖ dt ≤

∫ ∞

0
‖ P

1
t ρ+

0 (x) ‖ dt (29)

+
∫ ∞

0
‖ P

1
t ρ−

0 (x) ‖ dt < ∞

V. SPECTRUM OF A
1

In this section, we show that almost everywhere uniform

stability implies that the spectrum of the operator A
1 has to

necessarily be a subset of the left half plane. We recall the

following definitions and theorems from Semigroup theory

[10].

Theorem 11: A strongly continuous semigroup (T (t))t ≥ 0

on a Banach space Lp(X) is uniformly exponentially stable

if and only if for one/all p ∈ [1,∞) one has
∫ ∞

0
‖ T (t)ρ(x) ‖p dt < ∞

for all ρ(x) ∈ Lp(X)
Proof: Refer [10], page 300.

From Theorem (11) and Corollary (10), we have the follow-

ing Theorem:

Theorem 12: The invariant set Λ ⊂ X for the system of

differential equation (1) is almost everywhere uniformly

stable with respect to Lebesgue measure if and only if the

semigroup P
1
t is uniformly exponentially stable.

Next, we relate the spectrum of the semigroup P
1
t to that of

its generator A
1, towards this we use following definition of

growth bound and spectral bound.

Definition 13 (Growth bound): For a strongly continuous

semigroup (T (t))t≥0, we call

ω0 := inf{ω ∈ R : ∃Mω ≥ 1s.t. ‖ T (t) ‖≤ Mω eωt∀t ≥ 0}

its growth bound.

Definition 14 (Spectral bound): Let A be a closed operator.

Then

s(A) := sup{Reλ : λ ∈ σ(A)}

is called the spectral bound of A.

We have the following proposition relating the spectral bound

of the generator A to the growth bound of the generated

semigroup (T (t))t≥0.

Proposition 15: For the spectral bound s(A) of a generator

A and for the growth bound ω0 of the generated semigroup

(T (t))t≥0, one has

−∞ ≤ s(A) ≤ ω0

Proof: Refer [10], page 251.

Proposition 16: A strongly continuous semigroup T (t)t≥0 is

uniformly exponentially stable if and only if ω0 < 0, where

ω0 is the growth bound of semigroup.

Proof: Refer [10]

From Propositions (15),(16) and Theorem (12), we have the

following theorem about the spectrum of the operator A
1.

Theorem 17: Assume that the invariant set Λ ⊂ X for the

system of differential equation (1) is almost everywhere

uniformly stable with respect to Lebesgue measure then

s(A1) < 0. (30)

VI. NUMERICAL SIMULATION

In this section, we show numerical results for the computa-

tion of density ρ for the following three systems:

ẋ = Ax where A =

(

−2 0

0 −2

)

, (31)

ẋ =

{

y

−y− sin(x)
, (32)

ẋ =

{

y

0.5(1− x)2y− x
. (33)

The equilibrium point (0,0) is well known to be exponen-

tially stable for (31) and (32). The Van der Pol oscillator

(33) is also known to have a stable limit cycle. For each

case, we show the characteristic curves on a region outside

a neighborhood of the invariant set. The initial density ρ0 is

chosen to be the characteristic function of this region. The

characteristic curves were calculated backwards in time first

and the density was computed using a discretized version of

Equation (19) to compute the density function. The results

are shown below. Since the density function assumes large

values near the invariant set, we choose to plot the natural

logarithm of the density in order to show the growth of the

density better.
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Fig. 1. Characteristic curves and ln(ρ) for the linear system (31) with
(0,0) as the invariant set

Fig. 2. Characteristic curves and ln(ρ) for the damped oscillator (31) with
(0,0) as the invariant set

Fig. 3. Characteristic curves and ln(ρ) for the Van der Pol system (31)
with stable limit cycle as the invariant set

VII. CONCLUSION

We have proved result on the necessary and sufficient condi-

tion for almost everywhere uniform stability of an invariant

set in continuous time dynamical system. Lyapunov density

verifying the almost everywhere uniform stability of an

invariant set is shown to be obtained as a positive solution

of steady state linear partial differential equation. Use of this

result for an efficient computation of the Lyapunov density

and its application to controller design is currently under

investigation.
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