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Abstract

We prove a KAM-type result for the persistence of two-dimensional invari-
ant tori in perturbations of integrable action-angle-angle maps with degen-
eracy, satisfying the intersection property. Such degenerate action-angle-
angle maps arise upon generic perturbation of three-dimensional volume-
preserving vector fields, which are invariant under volume-preserving action
of S1 when there is no motion in the group action direction for the un-
perturbed map. This situation is analogous to degeneracy in Hamiltonian
systems. The degenerate nature of the map and the unequal number of
action and angle variables make the persistence proof non-standard. The
persistence of the invariant tori as predicted by our result has implications
for the existence of barriers to transport in three-dimensional incompressible
fluid flows. Simulation results indicating existence of two-dimensional tori
in a perturbation of swirling Hill’s spherical vortex flow are presented.

1. Introduction

The KAM (Kolmogorov-Arnold-Moser) [1, 2, 3, 4] theorem is one of the
most important results in the stability theory of Hamiltonian systems. The
theorem asserts that most of the invariant n-tori of n degrees of freedom
integrable Hamiltonian systems will persist under small Hamiltonian per-
turbations. Arnold proved this theorem under both non-degenerate and de-
generate assumptions on the unperturbed Hamiltonian [2, 3]. Moser proved
a version of the theorem for the perturbation of two dimensional integrable
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twist map [5] (Chapter 3; Section 32). In both of these cases the system is
defined on an even dimensional manifold and has a symplectic structure.

Extension of the KAM theorem to odd dimensional systems is a challeng-
ing problem, that has many practical applications [6, 7]. Volume-preserving
flows and maps which arise in the context of fluid dynamics and magnetohy-
drodynamics are of odd dimensions. Because of that, these maps and flows
have a looser structure than symplectic maps and flows. The KAM-type
results have been developed for volume-preserving flows [8, 9, 10] and for
diffeomorphisms which either preserve volume [10, 11, 12, 13, 14] or satisfy
the intersection property, a relaxed version of volume- preservation [15, 16].
The result in this paper differs from the above mentioned references in that
we prove the KAM-type result for the degenerate case of three-dimensional
volume preserving maps (in fact, more generally for action-angle-angle maps
with one degenerate angle and satisfying the intersection property). A
KAM-type result for maps with unequal number of actions and angles and
with degeneracy of the same type as that considered by us also appears in
[13]. However there are some major differences between the KAM proof
that appears in [13] and the main results of this paper. In particular, in
[13], the KAM-type results are proved for the case where the size of the per-
turbations are assumed to be smaller than the size of the degenerate drift
in the angles, whereas in this paper we assume that both the degenerate
drift and the perturbations are of same size. Furthermore the proof in the
paper [13] achieves their stated result only when an additional - unstated -
assumption on the perturbation is used (see section 3.1 below). Similarly
[14] prove KAM type result for the case where the unperturbed system con-
sists of arbitrary number of action and angle variables. However the set-up
does not consider the case of degenerate angle which is the case discussed
in our paper.

The degenerate three dimensional volume preserving action-angle-angle
map considered in this paper arises in the context of fluid flow problems.
The following example from [6], shows how such action-angle-angle maps can
arise in three-dimensional incompressible volume-preserving flows, which are
invariant under a one-parameter symmetry group. Consider the following
flow in cylindrical coordinates.

ṙ = rz, ż = 1− 2r2 − z2, θ̇ =
2c

r2
, (1)

where c is an arbitrary constant. The system preserves the volume form
rdr ∧ dz ∧ dθ [17, 18]. In the fluid-mechanics context, c

2 is the circulation.
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The flow (1) is a superposition of the well-known Hill’s spherical vortex with
a line vortex on the z axis, which induces the swirl velocity θ̇ = 2c

r2
. The

system of equation satisfies Euler’s equation of motion for the an inviscid
incompressible fluid everywhere except on the z axis, where the swirl velocity
becomes infinite. After transforming the first two components into canonical
Hamiltonian form by letting R = r2

2 , the system (1) becomes

Ṙ = 2Rz, ż = 1− 4R− z2, θ̇ =
c

R
. (2)

This system preserves the volume form dR∧dz∧dθ [17, 18] and in the R−z
components takes the form

Ṙ =
∂H(R, z)

∂z
, ż = −∂H(R, z)

∂R
(3)

where H(R, z) = Rz2 − R + 2R2 is the Hamiltonian. By first introducing
action-angle coordinate with respect to form dR ∧ dz, we transform (R, z)
to action-angle coordinate i.e., (R, z) → (I, φ1). To obtain action-angle-
angle flow, we would need to perform addition transformation on the angle
variable θ to get the second angle variable φ2(θ, I, φ1) (for the details of the
derivation refer to [6]). Hence we get,

İ = 0, φ̇1 = ω1(I) φ̇2 = cω2(I). (4)

For the case where c is very large (i.e., c >> 1 or c ≈ 1
ε ), we get the following

degenerate action-angle-angle flow equations, after rescaling time t = τ
c and

in the limiting case of ε = 0.

İ = 0, φ̇1 = 0 φ̇2 = ω2(I). (5)

The dynamics of (5) evolves on a cylinder torus and consist of periodic
orbits (refer to Fig. 1 for the schematic). In this paper, we are interested in
time periodic volume preserving perturbations of degenerate action-angle-
angle flows as given in (5) and the three dimensional maps that arise from
it after taking appropriate Poincare section. We study the perturbation of
the above discussed Hill spherical vortex flow for the case of large swirl in
further detail in section 4.

Geometrical structures such as invariant manifolds play an important
role in understanding the transport dynamics - specifically mixing and the
lack thereof - in such maps. From numerical studies and perturbation
method calculations, no invariant two-dimensional structure persists upon
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Figure 1: Geometry of action-angle-angle coordinates on cylinder torus with periodic orbit
(red)

perturbation from an integrable action-angle-angle map with degenerate an-
gle [19]. However the numerical studies carried out in [19] do not consider
the class of perturbations for which the main result of this paper is proved
and in fact corresponds to class of perturbations that is indicated in [20] as
ones with possibility of having invariant tori. Dynamics related to transport
in phase space for action-angle-angle maps with dynamically degenerate an-
gle has been studied systematically in [20] where it is shown that for a large
class of such maps, upon perturbation, most of the invariant surfaces are
broken. The invariant surfaces break where resonance exists and at these
locations in phase space, periodic orbits of specific types persist and dom-
inate transport. This has been named Resonance-Induced Dispersion [19].
The result in this paper proves that, for a different class of perturbations,
whose structure was also discussed in [20], two-dimensional invariant tori
indeed exists for the perturbed action-angle-angle maps with degenerate an-
gle satisfying intersection property - a condition that is implied by volume
preservation. This proves the conjecture on such maps stated in [20].

The KAM type of result for the action-angle-angle maps is analogous
to the degenerate Hamiltonian case treated by Arnold [3]. In proving this
degenerate case of KAM, we are faced with two important problems. The
first is due to unequal numbers of fast and slow variables. Because of this a
drift term is introduced at each step of the coordinate transformations, we
solve this problem by using proof techniques similar to the one which ap-
pears in [15]. The second problem is due to the degenerate nature of the one
of the angles. We solve this problem by introducing an intermediate finite
sequence of coordinate transformations. This finite sequence of coordinate
transformations is different from the intermediate coordinate transforma-
tions which appear in Arnold’s proof [3] of degenerate KAM. The difference
arises because of the difficulty with carrying out the Moser strategy of so-
lution of the sequence of equations by backward substitution which in this
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case leads to O(1) terms after an iteration step. Thus our proof is different
in nature from the degenerate KAM proof which appears in [3].

The paper is organized as follows. In section 2, we state the main the-
orem for the persistence of invariant tori in action-angle-angle maps with
a degenerate angle. In section 3, we give an outline of the proof. Simula-
tion results for the Hill’s spherical vortex example are presented in section
4 followed by conclusions in section 5.

2. Formulation of the theorem

Consider the following mapping

M =


x1 = x+ f(z) + εX (x, y, z)
y1 = y + εg0(z) + εY(x, y, z) (x, y mod 2π)
z1 = z + εZ(x, y, z)

(6)

where X ,Y, and Z are real analytic functions of period 2π in (x, y) with
ε being a small positive number. The f and g0 are analytic functions of
z ∈ [a, b] = G. To simplify the analysis we assume that f(z) = z and
|g0| ≤ 1. Since X ,Y and, Z are real analytic functions, they can be extended
to a complex domain:

D : |Im x| < r ≤ 1, |Im y| < r ≤ 1, z ∈ G, (7)

where G is the complex neighborhood of the interval [a, b]. We now make
following assumptions on the mapping (6).

Assumption 1. The functions Y and Z are assumed to satisfy∫ 2π
0 Ydx =

∫ 2π
0 Zdx = 0.

The condition
∫ 2π

0 Ydx = 0 can be relaxed by requiring that the integral∫ 2π
0 Ydx be only a function of z because any function of z can always be

absorbed in g0(z).

Assumption 2. Mapping (6) need not be measure preserving but we assume
that the map satisfies the intersection property, i.e., any torus of the form:

z = γ(x, y) where γ(x+ 2π, y) = γ(x, y) & γ(x, y + 2π) = γ(x, y) (8)

intersect its image under the mapping.
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Assumption 3. The function g0 satisfies g
′′
0 (z) ≥ c1 > 0. g

′′
0 > 0 is also

referred to as second twist condition [15].

Now we state the main theorem for the persistence of invariant tori in the
action-angle-angle map with one degenerate angle.

Theorem 4. Consider the mapping (6) satisfying assumptions 1, 2, and 3.
There exists a positive number ε0 depending upon domain D, such that on
D and for all ε ∈ (0, ε0), the mapping (6) admits a family of invariant tori
of the form:

x = ξ + u(ξ, ζ, ω), y = ζ + v(ξ, ζ, ω), z = w(ξ, ζ, ω), (9)

where u, v, w are real analytic functions of period 2π in the complex domain
|Im x| < r

2 , |Im y| < r
2 with ω ∈ Sω ⊂ G = [a, b], and Sω is a Cantor set

with positive Lebesgue measure. Moreover the mapping can be parameterized
so that the induced mapping on the tori is given by

ξ1 = ξ + ω, ζ1 = ζ + εg0(ω) + g∗(ω, ε), (10)

where g∗(ω, ε) is an analytic function that satisfies g∗(ω, 0) = 0.

3. Outline of the proof

The proof consists of applying coordinate transformations in three differ-
ent steps. The first step of averaging coordinate transformation is applied
to reduce the size of all the three perturbations to order ε2. The second
step consists of applying a finite sequence of coordinate transformations to
reduce the size of the action perturbation to order ε3. In the third and final
step, we apply an infinite sequence of coordinate transformations similar to
the one applied in proving the classical KAM theorem [2, 3, 5, 15], but with
some modifications.

3.1. First coordinate transformation

With f(z) replaced with z in (6), we denote the original mapping M
(Eq. 6) by M0 and write it as follows:

M0 =


x1 = x+ z + εX (x, y, z)
y1 = y + εg0(z) + εY(x, y, z) (x, y mod 2π)
z1 = z + εZ(x, y, z).

(11)

This map is defined in the complex domain D (Eq. 7). Now we prove the
main Lemma of the first coordinate transformation. This Lemma is similar
to the averaging Lemma from [3].
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Lemma 5. Consider a coordinate transformation Iε, defined in domain D,
of the form:

Iε = {x̄ = x+ εh1(x, y, z), ȳ = y + εh2(x, y, z), z̄ = z + εh3(x, y, z),

where h1, h2 and h3 are real analytic functions and periodic with period 2π
in x and y. Using this coordinate transformation, the mapping M0 (Eq. 11),
defined in the domain D, is transformed to the form M̄0 = IεM0I

−1
ε

M̄0 =


x̄1 = x̄+ z̄ + X̄(x̄, ȳ, z̄)
ȳ1 = ȳ + εg0(z̄) + Ȳ (x̄, ȳ, z̄) (x, y mod2π)
z̄1 = z̄ + Z̄(x̄, ȳ, z̄).

(12)

The mapping M̄0 is defined in a smaller domain:

D̄ : |Im x| < r − δ, |Im y| < r − δ, z ∈ G′ ,

where δ is a small positive number. The domain G′ is the complex neighbor-
hood of G

′
and G

′
is obtained from G = [a, b] by removing finite number of

resonance zones. In this reduced domain G
′
, z satisfies following inequalities

|kz + 2πn| ≥ K̄|k|−µ̄ (0 < |k| ≤ N),

where K̄ is a positive constant, N is a large integer, and µ̄ ≥ 3. We have
the following estimates on the perturbations X̄, Ȳ , Z̄ in the domain D̄

|X̄|+ |Ȳ |+ |Z̄| < ε2 = d0.

Proof : The difference equation (11) in the new coordinates can be
written as follows:

x̄1 = x̄+z̄+εX 1+O(ε2), ȳ1 = ȳ+εg(z̄)+εY1+O(ε2), z̄1 = z̄+εZ1+O(ε2).

The size of the perturbations in the new coordinate will be of the order ε2

if each of the following terms is of order ε.

X 1 := X (x, y, z) + h1(x+ z, y, z)− h1(x, y, z)− h3(x, y, z)

Y1 := Y(x, y, z) + h2(x+ z, y, z)− h2(x, y, z)

Z1 := Z(x, y, z) + h3(x+ z, y, z)− h3(x, y, z) (13)

Perturbations X ,Y, and Z can be expressed in the Fourier series as

X =

∞∑
k=−∞

Xk(y, z)eikx, Y =

∞∑
k=−∞

Yk(y, z)eikx, Z =

∞∑
k=−∞

Zk(y, z)eikx.
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Now we represent each of the hi by the finite series hi =
∑
|k|≤N hik(y, z)eikx,

where hik satisfies following equality for |k| ≤ N :

h1k =
Xk − h3k

(1− eikz)
, h2k =

Yk
(1− eikz)

, h3k =
Zk

(1− eikz)
.

To satisfy the above equation for bounded hik, we require z to satisfy the
following inequalities:

|kz + 2πn| ≥ K̄|k|−µ̄ (0 < |k| ≤ N),

for some positive constant K̄ and µ̄ ≥ 3. Since average value of Z and Y
with respect to x is equal to zero, h30 and h20 are free to take any value.
We make h30 = X0 so as to satisfy first equality of (13). With these choices
of hi (13) reduces to

X 1 =
∑
|k|>N

Xkeikx, Y1 =
∑
|k|>N

Ykeikx, Z1 =
∑
|k|>N

Zkeikx.

Each of these terms will be of order ε, if N is chosen sufficiently large to be
of order greater than 1

δ ln 2
(1−e−δ)ε , (refer to [3], technical Lemmas on page

163). The δ is related to the new domain D̄ as follows:

D̄ : |Im x| < r − δ, |Im y| < r − δ, z ∈ G′ .

This new complex domain G′ of z is a complex neighborhood of G
′
, where G

′

is obtained from G after removing the finite number of resonance intervals.
The total measure of the resonance intervals has an upper bound of (b −
a)2K̄, so that the reduced domain is of order 1 for small value of K̄ (refer
to [3], technical Lemmas on page 163).

In this new domain following inequalities are satisfied

|kz + 2πn| ≥ K̄|k|−µ̄ (0 < |k| ≤ N).

After this first averaging coordinate transformation, we get following
estimates on the perturbations

|X̄|+ |Ȳ |+ |Z̄| < ε2 = d0.

The action variable z now belongs to the domain which is a function of
ε i.e., z ∈ G′(ε) and the magnitude of the connected components of G

′
is

going to zero as (ln 1
ε )
−2.
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At this point it seems that with some work is needed to deal with the
(ln 1

ε )
−2 shrinkage of connected components of G

′
, we should be able to

utilize results of [13] to conclude existence of a Diophantine invariant tori
in the perturbed mapping. However, careful examination of the proof of
the result in [13] reveals that the proof holds true only under the additional
assumption that the perturbation Z̄ = 0. The assumption of Z̄ = 0 is clearly
not satisfied in our case since Z is not assumed to be zero. In fact, the finite
sequence of coordinate transformations discussed in the following section are
precisely introduced to decrease the size of action perturbation Z̄ relative
to other perturbations, if not to make it zero.

3.2. Second coordinate transformation

At this point we would like to continue with the standard infinite se-
quence of coordinate transformations as in Moser [5] but we are faced with
the following problem. The aim is to reduce the size of all the three pertur-
bations X̄, Ȳ and Z̄. Due to the degenerate nature of the angle y, the small
denominator problem is exaggerated. The degenerate angle y introduces a
term of order 1

ε in the estimates, which gives O(1) estimates for the size of
the coordinate transformation. This makes it impossible to continue with
the infinite sequence of coordinate transformations. This problem can be
solved by introducing an intermediate finite sequence of coordinate trans-
formations. The aim of the finite sequence of coordinate transformations is
to reduce the size of action perturbation Z to order ε3 so that 1

ε order term
introduced by the degenerate angle can be compensated.
For notational convenience we remove the over-bar notation from the coor-
dinates and the perturbations X̄, Ȳ and Z̄ and parameterize the map by ω.
The new map after the first coordinate transformation is denoted by M0(ω).
At this stage it is not really necessary to parameterize the mapping by ω
however the importance of this parameterization will become clear later in
the infinite sequence of coordinate transformations. We have,

M0(ω) =


x1 = x+ ω + z +X(x, y, z, ω)
y1 = y + εg0(z, ω) + Y (x, y, z, ω)
z1 = z + Z(x, y, z, ω)

(14)

defined in the domain:

D0(ω) : |Im x| < r̂0 < 1, |Im y| < r̂0 < 1, |z| < ŝ0, ω ∈ G′ ,

where r̂0, ŝ0 are positive numbers defined later and |X| + |Y | + |Z| < d0 in
D0(ω). The mapping M0(ω) is parameterized such that g0(z, ω) = g0(z +
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ω), X(x, y, z, ω) = X(x, y, z + ω) and so on for Y and Z. In the second
coordinate transformation we treat this map as an action-angle map, where
x is the angle and z is the action, and we consider y as a parameter. Note
that ω ∈ G

′
, and the magnitude of the connected components of G

′
is

going to zero as (ln 1
ε )
−2. In order to account for the shrinking size of the

connected components of the domain G
′

with decreasing ε, we require ω to
satisfy infinitely many inequalities of the form:

|kω + 2πn| ≥ εγ1K̂|k|−µ̂ (k, n = 1, 2, ...), (15)

where K̂ is a positive constant, µ̂ ≥ 3, and γ1 is a suitably chosen constant
satisfying 0 < γ1 << 1. The introduction of εγ1 term in (15) ensures that
while the size of the domain G

′
goes to zero as (ln 1

ε )
−2 the reduction in the

size of perturbation can be obtained in the neighborhood of the nonresonant
value of action, the length of which tends to zero as power of ε. Now we
show that after applying finitely many coordinate transformations we can

reduce the size of action perturbation Z to order d
3
2
0 . Let Ti(ω) denote

these coordinate transformations. Let Mk(ω) = T−1
k−1(ω)Mk−1(ω)Tk−1(ω)

be the mapping obtained after applying these coordinate transformations
and defined in the domain Dk(ω). We will suppress the dependence on
ω of the mapping M and coordinate transformation T at some places for
notational convenience. We have following Lemma for the intermediate step
of coordinate transformation.

Lemma 6. There exists a coordinate transformation T (ω) of the form:

T (ω) = {x = ϕ+ Û(ϕ,ψ, η, ω), y = ψ, z = η + Ŵ (ϕ,ψ, η, ω) (16)

such that the mapping M0(ω) (Eq. 14) defined in the domain:

A0(ω) : |Im x| < r̂, |Im y| < r̂, |z| < ŝ,

with |X|+ |Y |+ |Z| < d, takes the form M(ω) = T−1(ω)M0(ω)T (ω)

M(ω) =


ϕ1 = ϕ+ ω + η + X̂(ϕ,ψ, η, ω)

ψ1 = ψ + εg0(η, ω) + Ŷ (ϕ,ψ, η, ω)

η1 = η + Ẑ(ϕ,ψ, η, ω).

(17)

The mapping M(ω) is defined in the smaller domain A1(ω) : |Im ϕ| < ρ̂,
|Im ψ| < ρ̂, |η| < σ̂, with 0 < ρ̂ < r̂, 0 < σ̂ < ŝ. Assume that

r̂ < 1, 0 < 3σ̂ < ŝ <
r̂ − ρ̂

4
, d <

ŝ

6
, ϑ̂ <

ϑ̂2

ŝ
<

1

7
, (18)
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where ϑ̂ =
a1

K̂2
(r̂ − ρ̂)−2µ̂−2d

ŝ
ε−2γ1 <

1

7
, ϑ̂2 =

a1

K̂4
(r̂ − ρ̂)−4µ̂−3dε−4γ1 ,

and a1 is a positive constant independent of the domain and depends only
upon µ̂. Using the above assumptions, we get following estimates for Û , Ŵ , X̂, Ŷ ,
and Ẑ

|Ŷ | < d, |Û |+ |Ŵ | < ϑ̂ŝ,

|X̂|+ |Ẑ| < a4

(
(r̂ − ρ̂)−2µ̂−3ε−2γ1dŝ+ (r̂ − ρ̂)−2µ̂−3ε−2γ1 d

2

ŝ

+ (r̂ − ρ̂)−2µ̂−3ε1−2γ1d+ (
σ̂

ŝ
)5d
)
,

where a4 is a positive constant independent of the domain.

The proof of this Lemma is similar to the Moser version of the KAM proof
for action-angle maps [5] with the difference being that the angle variable y
in this proof is treated as a parameter. We refer the readers to [5] (Chapter
3; Section 32) for the proof. We now use the result of this Lemma to prove
that at the end of the second coordinate transformation, the size of action

perturbation Z is of order d
3
2
0 . To this end we apply the Lemma to the

mapping M0(ω) defined in the domain:

D0(ω) : |Im x| < r̂0, |Im y| < r̂0, |z| < ŝ0,

where D0(ω) correspond to the domain A0(ω) of the Lemma. By assump-
tion, we have

|X|+ |Y |+ |Z| < d0 in D0(ω).

Transforming the mapping M0(ω) by the coordinate transformation T0(ω) =
T (ω) provided by the Lemma, we obtain the mappingM1(ω) = T−1

0 (ω)M0(ω)T0(ω)
defined in the domain:

D1(ω) : |Im x| < r̂1, |Im y| < r̂1, |z| < ŝ1,

where D1(ω) correspond to the domain A1(ω) and r̂1, ŝ1 corresponds to the
parameter ρ̂, σ̂ of the Lemma. We define the following sequences

r̂n = r̂0
2 (1 + 1

2n ), ŝn = d
11
50
n , ŝ0 = ŝ, dn+1 = r̂−χ̂0 ĉn+1

7 d
6
5
n ε−2γ1 , χ̂ = 2µ̂+ 3

r̂0 = r − δ, ĉ7 > 3, d0 < ĉ−20
7 r̂7χ̂

0 ε14γ1 .

For the above sequences to be well defined we require that γ1 <
1
5 . We need

to check whether these sequences satisfies the inequality (18). Towards this
we have,
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(
ŝn+1

ŝn
)
50
11 =

dn+1

dn
= ĉn+1

7 d
1
5
n = e

1
5
n ĉ
−5
7 r̂χ̂0 ,

where en = r̂−5χ̂
0 ĉ

5(n+6)
7 ε10γ1dn and en+1 = e

6
5
n . Since d0 < ĉ−20

7 r̂7χ̂
0 ε14γ1 , we

have e0 < 1 and
sn+1

sn
< ĉ

−11
10

7 <
1

3
, since ĉ7 > 3.

The inequality ŝn = d
11
50
n < r̂n−r̂n+1

4 , dn <
ŝn
6 , and ϑ̂ < 1

7 can be satisfied
by taking d0 sufficiently small and using the fact that

r̂ − ρ̂ = r̂n − r̂n+1 = r̂02−n−2, ŝn = d
11
50
n .

Using dn+1 = r̂−χ̂0 ĉn+1
7 dβnε−2γ1 with β = 6

5 , we have

dn+1 = r̂
−χ̂(

∑n
k=1 β

k)
0 ĉ

(n+1+nβ+(n−1)β2+...+βn)
7 ε−2γ1(

∑n
k=1 β

k)dβ
n+1

0 .

We want that after finitely many coordinate transformations dn+1 < d
3
2
0 .

Using the fact that ε = d
1
2
0 and d0 < ĉ−20

7 r̂7χ̂
0 ε14γ1 , it follows for n = 5 that

d6 < d
3
2
0 and we get,

|X̂6|+ |Ẑ6| < a4

(
27(2µ̂+3)ĉ−6

7 d
1
50
5 + 27(2µ̂+3)ĉ−6

7 d
29
50
5 + r̂χ̂0 27(2µ̂+3)ĉ−10

7 + (
d6

d5
)

1
10

)
d6.

The coefficient multiplying d6 can be made less than one by choosing ĉ7

sufficiently large, γ1 sufficiently small, and noticing that d6
d5
< 1 to give us

|X̂6|+ |Ẑ6| < d6 < d
3
2
0 .

3.3. Infinite sequence of coordinate transformation

At this stage of infinite sequence of coordinate transformations, our aim
is to decrease the size of all the three perturbations simultaneously. In
both the KAM proof for Moser twist map [5], and the action-angle-angle
maps [15], the size of all the perturbations decreases simultaneously with
the same estimates on the perturbations at each step of the infinite sequence
of coordinate transformations. In our proof, due to the degenerate nature
of the angle y, we require that the size of action perturbation Z is always
d

1
2 order smaller than the angle perturbations. This requires us to estimate

13



the size of action perturbation Z separately from the size of the angles
perturbations X and Y .

Now we have a problem which is different from the Moser version of the
KAM proof for the twist maps, but similar to the one faced in proving the
KAM theorem for action-angle-angle maps. The problem is due to unequal
numbers of action and angle variables. Due to this problem, it is not possible
to predict which tori will survive the perturbation and hence at this stage
it becomes necessary to parameterize the mapping by ω.

We denote the mapping obtained after the second coordinate transforma-
tion M6(ω) byM0(ω). We are using the same notation for the perturbation
X,Y , and Z as at the beginning of the second coordinate transformation
i.e., we define X := X̂6, Y := Ŷ6, Z := Ẑ6 and again the parametrization
on X,Y, Z and g0 are chosen such that X(x, y, z, ω) = X(x, y, z + ω) and
g0(z, ω) = g0(z + ω) and so on for Y and Z. So we have

M0(ω) =


x1 = x+ ω + z +X(x, y, z, ω)
y1 = y + εg0(z, ω) + Y (x, y, z, ω)
z1 = z + Z(x, y, z, ω),

(19)

with |X| < d
3
2
0 < d0, |Y | < d0, and |Z| < d

3
2
0 defined in domain D0(ω) :

|Im x| < r0 ≤ r̂6, |Im y| < r0 ≤ r̂6, |z| < s0 ≤ ŝ6. To account for
the shrinking size of the connected components of domain G

′
(ε) 3 ω with

decreasing ε, in this step of coordinate transformation we require (ω, εg0(ω))
to satisfy infinitely many inequalities of the form:

|k1ω + εk2g0(0, ω) + 2πn| ≥
{

εγ2K|k|−µ if k1 6= 0
ε1+γ2K|k|−µ if k 6= 0

∀(k1, k2, n) ∈ Z3 \ {0},(20)

where |k| = |k1|+ |k2|, K some positive constant, µ ≥ 5 and γ2 is sufficiently
small positive constant i.e., 0 < γ2 << 1. Now we use an infinite sequence
of coordinate transformations similar to the one used in [5] but with some
modification. We have following induction Lemma for the third and final
step of coordinate transformation.

Lemma 7. There exists a coordinate transformation U(ω) of the form:

U(ω) = {x = ϕ+U(ϕ,ψ, η, ω), y = ψ+V (ϕ,ψ, η, ω), z = η+W (ϕ,ψ, η, ω)

such that the mapping M0(ω) (Eq. 19), defined in the domain:

B0(ω) : |Im x| < r, |Im y| < r, |z| < s,

14



with |X|+|Y | < d and |Z| < d
3
2 takes the formM(ω) = U−1(ω)M0(ω)U(ω).

The mapping M(ω)

M(ω) =


ϕ1 = ϕ+ ω + η + Φ(ϕ,ψ, η, ω)
ψ1 = ψ + εg0(η, ω) + g1(η, ω) + Ψ(ϕ,ψ, η, ω)
η1 = η +H(ϕ,ψ, η, ω)

(21)

is defined in the following smaller domain:

B1(ω) : |Im ϕ| < ρ |Im ψ| < ρ |η| < σ,

with 0 < ρ < r, 0 < σ < s. Now assume that

0 < r ≤ r̂6, 0 < 3σ < s < d
1
2 (r − ρ), d <

s

2
, ϑd

1
2 <

ϑ2d
1
2

s
<

1

8
, (22)

where ϑ =
b1
K2

(r − ρ)−2µ−4ε−2γ2 d
1
2

s
, ϑ2 =

b1
K4

(r − ρ)−4µ−4ε−2γ2d
1
2

and b1 is a positive constant independent of the domain and depends only
on µ. Under the above assumptions, it follows that M(ω) is well defined in
B1(ω) and there are following estimates:

|U |+ |V | < b1
K2

(r − ρ)−2µ−4ε−2γ2d
1
2 , |W | < b1

K
(r − ρ)−µ−2ε−2γ2 d

3
2

ε

|Φ|+ |Ψ| < b6

((r − ρ)−2µ−5

K2
ε−2γ2d

1
2 s+

(r − ρ)−2µ−4

K2
ε−2γ2 d

1
2

s
|H|

+
(r − ρ)−2µ−4

K2
ε−2γ2 d

2

s
+

(r − ρ)−4µ−8

K4
ε−4γ2 d

5
2

s2

)
(23)

|H| < b5

((r − ρ)−2µ−5

K2
ε−2γ2ds+

(r − ρ)−4µ−8

K4
ε−4γ2 d

5
2

s

+
(r − ρ)−6µ−13

K6
ε−6γ2 d

7
2

s2
+

(r − ρ)−2µ−4

K2
ε−2γ2 d

5/2

s
+ (

σ

s
)3d

3
2

)
where g1(0, ω) = −εg0η(0, ω)X̃(0, ω) + Ỹ (0, ω), X̃ and Ỹ are average value
of X and Y respectively and b5, b6 are positive constants independent of
the domain. The functions g0(0, ω) and g1(0, ω) satisfy the following new
Diophantine conditions:

|k1ω + k2(εg0(0, ω) + g1(0, ω)) + 2πn| ≥
{

εγ2 K2 |k|
−µ if k1 6= 0

ε1+γ2 K
2 |k|

−µ if k 6= 0
∀(k1, k2, n) ∈ Z3 \ {0}
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Proof of this Lemma follows along the similar lines for the Moser version
of the KAM proof for the action-angle map [5] (Chapter 3; Section 32).
Due to unequal numbers of action and angle variables we have a problem
which is different from the KAM proof for the twist map. The term g1(η, ω)
in the mapping M(ω) of the Lemma gives rise to the shift in frequency
of the degenerate angle. In general at the (n + 1) step of the coordinate
transformation there is a frequency drift from (ω, εg0(0, ω) +

∑n
j=1 gj(0, ω))

to (ω, εg0(0, ω) +
∑n+1

j=1 gj(0, ω)) similar to the case in [15]. In order to
compensate for this frequency drift we need to broaden the set of admissible
values of ω. This can be achieved by allowing the constant K in inequalities
(20) to decrease at each step of the coordinate transformation. However
decreasing the size of K will lead to increase in the size of estimates for
the perturbations and hence the scheme to make the mapping closer to the
double twist mapping might be a failure. We show that this is not always
the case and there exists a nonempty set S(ω) ⊂ G on which corresponding
K decrease at most like power of K0 (Kn = K0

2n ) so that the size of the
perturbations decreases exponentially. To prove this we employ the strategy
similar to that in [15] with the difference that while the strategy in [15] is
developed for action-angle-angle map with no degeneracy in angle, we extend
it to the case of degenerate angle. More specifically there are following
differences between our proof and proof technique developed in [15]; 1) The
averaging transformation is not needed in [15]; 2) The intermediate sequence
of transformations is not needed in [15]; 3) The “Cantor set” calculations are
substantially modified; 4) Whitney theory is used directly instead of doing it
from scratch. Before explaining this strategy, we prove the following Lemma
similar to the one in [15] except for the fact that the estimates in this Lemma
are derived for the case of degenerate angle.

Lemma 8. Let ε > 0 be fixed and assume εg0(z) ∈ C2, g
′′
0 (z) ≥ c1 > 0.

Then the set S(ω), where

S(ω) = {ω ∈ G′ : |k·Ω+2πn| ≥ ε1+γ2K|k|−µ, (µ ≥ 5), (k, n) ∈ Z3\{(0, 0, 0)}}

is a Cantor set with the Lebesgue measure µl(S(ω)) > µl(G
′
) − c3

(
εγ2K
c1

) 1
2

where, (k · Ω) = k1ω + εk2g0(0, ω), c3 is a positive constant, and µl is the
Lebesgue measure.

Proof For a fixed (k1, k2, n) ∈ Z3, consider the lines

l1 : k1ω1 + εk2ω2 + 2πn = 0, l2 : k1ω1 + εk2ω2 + 2πn− ε1+γ2K|k|−µ = 0
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l3 : k1ω1 + εk2ω2 + 2πn+ ε1+γ2K|k|−µ = 0.

The minimum distance between the lines l1, l2 or l1, l3 in the (ω1, εω2) plane

is ε1+γ2K|k|−µ(k2
1 + k2

2)−
1
2 . Consider the points (ω1, εω2) in the set

Ω1 = {(ω1, εω2) ∈ R2 : d((ω1, εω2), l1) ≥ δ}, δ = ε1+γ2K|k|−µ(k2
1 + k2

2)−
1
2 .

The points in Ω1 set will satisfy the inequality (20) for a fixed (k1, k2, n,K),
where d(#, l) means the distance to the line l. Let Ω2 = R2 \Ω1, Γ = graph
εg0, and T1 the projection over first component. The length of T1|(Γ∩Ω2) is

less than 4( δ
εc1

)
1
2 . For a fixed k ∈ Z2, if (ω1, εω2) is restricted in the domain

Rω:
0 ≤ min(ω1, εω2) < max(ω1, εω2) ≤ a8,

then the set Ω2 ∪ Rω is non empty only if |n| < a8|k|
2π . So the Lebesgue

measure of the set S(ω) is

µl(S(ω)) > µl(G
′
)− 4a8

2π

(
εγ2K

c1

) 1
2 ∑
k∈Z2

|k|
−µ
2

+1(k2
1 + k2

2)−
1
4 ,

which is positive if µ ≥ 5 and K is sufficiently small. Now

4a8

2π

∑
k∈Z2

|k|
−µ
2

+1(k2
1 + k2

2)−
1
4 <

4a8

2π

∑
k∈Z2

|k|
−µ
2

+1− 1
4 =: c3

and the sum converge because µ ≥ 5 and µl(S(ω)) > µl(G
′
)− c3( ε

γ2K
c1

)
1
2

We now introduce a sequence of coordinate transformation Un(ω) on a
nonempty set S̃n ⊂ G′:

Mn+1(ω) = U−1
n (ω)Mn(ω)Un(ω), with S̃n(ω) ⊂ S̃n−1(ω).

By Lemma 8, there exists a Cantor set S0(ω) = S̃0(ω) given by

S0(ω) = {ω ∈ G′ |(ω, εg0(0, ω)) satisfies (20) with K0 replacing K}.

The Lebesgue measure of the set S0(ω) is µl(S0(ω)) > µl(G
′
)−c3

(
εγ2K0
c1

) 1
2
,where

µl is the Lebesgue measure. Let S̃1(ω) =
⋂1
j=0 Sj(ω), where

S1(ω) = {ω ∈ G′ |(ω, εg0(0, ω)+g1(0, ω)) satisfies (20) with
K0

2
replacing K}.

In order to derive the Lebesgue measure of the set S1(ω) we need g1(0, ω) to
be defined on the entire domain G. However, g1 is only defined on the set
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S̃0(ω). This problem can be solved using the Whitney extension theorem
[21]. By using the Whitney extension theorem, we can extend the perturba-
tions X,Y, Z and subsequent perturbations Xj , Yj , Zj coming from infinite
sequence of coordinate transformation to the entire domain G w.r.t. variable
ω. The proof for the extension follows along the lines of proof outlined in
[11, 22]. Since X,Y , and Z are extended to the domain G, the function g1

is well defined for all values of ω ∈ G because

g1(0, ω) = −εg0η(0, ω)X̃(0, ω) + Ỹ (0, ω),

where X̃ and Ỹ are the average values of X and Y respectively. We will
use the same notation for the functions and its extension to the domain G
w.r.t. variable ω with the following estimate

‖ X ‖2,1,G + ‖ Y ‖2,1,G< cwd i = 0, 1, 2,

where cw is the Whitney constant and is independent of the domain. The
notation ‖ · ‖2,1,G is used as a measure for the norm of the function and
the second derivative of the function w.r.t. variable ω in the domain G (For
more details on the norm refer to [22]). Differentiating g1(0, ω) twice w.r.t.
ω we get, ∣∣∣∣ d2

dω2
g1(0, ω)

∣∣∣∣ < 5 sup(εg0η, εg0ηω, εg0ηω2 , 1)cwd < εβ1.

Hence

d2

dω2
(εg0 + g1) > ε(c1 − β1), and µl(S1(ω)) > µl(G

′
)− c3

(
K0ε

γ2

2(c1 − β1)

) 1
2

.

The measure of the set S1(ω) is obtained from Lemma 8 by applying the
results to k · Ω = k1ω + k2(εg0 + g1). Now S̃1(ω) = S0(ω)

⋂
S1(ω) and

µl(S̃1(ω)) > µl(G
′
)− c3

(
K0ε

γ2

c1

) 1
2

(
1 +

(
c1

2(c1 − β1)

) 1
2

)
.

For K0 and β1 sufficiently small µl(S̃1(ω)) is positive. We obtain the fol-
lowing expression for gj+1 by induction on g1 and its derivation is similar to
that of g1

gj+1(0, ω) = −

(
εg0η(0, ω) +

j∑
l=1

glη(0, ω)

)
X̃j(0, ω) + Ỹj(0, ω),
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where Xj and Yj are extended to interval G by using Whitney’s extension
with the following estimates

‖ Xj ‖2,1,G + ‖ Yj ‖2,1,G< cwdj .

Assume that there exists a positive constant c5 such that

sup

∣∣∣∣∣ dvdωv (εg0η(0, ω) +

j∑
l=1

glη(0, ω))

∣∣∣∣∣ < c5 v = 0, 1, 2. (24)

The existence of such a positive constant c5 can be proved as follows:

|εg0η| ≤ 1 for η ∈ G, and |εg0ηω2 | ≤ 1

|g1| = |εg0ηX̃0|+|Ỹ0| ≤ 2d0, |g1η| ≤
2d0

s0
for |η| < s0, and |g1ηω2 | ≤ cw

2d0

s0

|gj+1| ≤ 2djΠ
j−1
i=1 (1 +

di
si

), |gj+1,η| ≤
2dj
sj

Πj−1
i=1 (1 +

di
si

) for |η| < sj and

|gj+1,ηω2 | ≤
cw2dj
sj

Πj−1
i=1 (1 +

di
si

),

so by choosing d0 sufficiently small it is possible to find the constant c5 such
that (24) is true. Now setting c6 = 5 max(c5, 1) we get∣∣∣∣ d2

dω2
gj+1(0, ω)

∣∣∣∣ < c6cwdj = εβj+1,

j+1∑
l=1

βl =
c6cw
ε

j+1∑
l=1

dl−1

and this can be made less than c1
2 , if we choose d0 sufficiently small. So we

have
∑j+1

l=1 βl <
c1
2 and then following inequality holds

d2

dω2
(εg0η(0, ω) +

j+1∑
l=1

glη(0, ω)) > εc1 − ε
j+1∑
l=1

βl > ε
c1

2
.

By defining S̃j+1(ω) =
⋂j+1
l=0 Sl(ω), where

Sj+1(ω) = {ω ∈ G′ |(ω, εg0(0, ω) +

j+1∑
l=1

gl(0, ω)) satisfies (20) with Kj+1 = K0/2
j+1 in place of K},

we obtain,

µl(Sj+1(ω)) > µl(G
′
)− c3

(
K0ε

γ2

(c1 −
∑j+1

l=1 βl)2
j+1

) 1
2
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µl(S̃j+1(ω)) > µl(G
′
)− c3

(
K0ε

γ2

c1

) 1
2
j+1∑
l=1

2−l/2

(
c1

c1 −
∑l

n=1 βn

)

> µl(G
′
)− c3

(
K0ε

γ2

c1

) 1
2
j+1∑
l=0

2−l/2+1.

The measure of set S̃j+1 (i.e., µl(S̃j+1(ω))) is positive if K0 is sufficiently
small. The total drift in the degenerate angle at the jth step of iteration
is given by εg0(0, ω) +

∑j
k=1 gj(0, ω) and in the limit as j → ∞ we get

εg0(0, ω) + g∗(ω, ε), where g∗(ω, ε) :=
∑∞

j=1 gj(0, ω).

Now we define a sequence similar to the one in [5]. Let rn, rn+1, sn, sn+1, dn,
K0
2n

correspond to parameter r, ρ, s, σ, d0,K respectively. Setting

rn =
r0

2
(1+

1

2n
), Kn =

K

2n
, sn = d

11
16
n , s0 = ŝ6, dn+1 = r−χ0 cn+1

7 ε−6γ2d
9
8
n

where c7 > 2, χ = 2µ + 5 are suitable constants, rn converges to r0
2 , and

dn converges to zero provided d0 is chosen sufficiently small. The sequence

en = r−8χ
0 c

8(n+9)
7 ε−48γ2dn satisfies en+1 = e

9
8
n and hence converges to zero if

we take 0 < d1−24γ2
0 < r8χ

0 c−72
7 . The inequality 3σ < s follows from

( sn+1

sn
)
16
11 = dn+1

dn
= r−χ0 cn+1

7 d
1
8
n = e

1
8
nc
−8
7 < 1

c87
, sn+1

sn
< 1

c5.57
< 1

3 , and

rn − rn+1 = r02−n−2.

Now we will use induction Lemma to show that |Hn+1| < d
3
2
n+1 and |Φn+1|+

|Ψn+1| < dn+1. By induction on second inequality of (23) and the fact that

sn = d
11
16
n we have

|Hj+1| < b5

(rχ/20 2χ(j+2)+2j

K2
0

c
− 3

2
(j+1)

7 ε7γ2 +
r

2−χ
2

0 22(χ−1)(j+2)+4j

K4
0

c
− 3

2
(j+1)

7 ε5γ2d
1
8
j

+
r

2− 3χ
2

0 2−(j+2)(2−3χ)+6j

K6
0

c
− 3

2
(j+1)

7 ε3γ2d
7
16
j +

r
1+χ

2
0 2−(j+2)(1−χ)+2j

K2
0

c
− 3

2
(j+1)

7 ε7γ2d
2
16
j

+ (
dj+1

dj
)

9
16

)
d

3
2
j+1. (25)

Since dj is bounded, the coefficient of dj+1 can be made less than 1 by
choosing c7 sufficiently large and hence we have

|Hj+1| < d
3
2
j+1. (26)
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Using the fact that s = d
11
16 , |H| < d

3
2 and by induction on the first inequality

of (23) and using equation (26), we have

|Φj+1|+ |Ψj+1| < b4

(2χ(j+2)+2j

K2
0

c
−(j+1)
7 ε4γ2d

1
16
j +

2r02−(1−χ)(j+2)+2j

K2
0

c
−(j+1)
7 ε4γ2d

3
16
j

+
r

(−χ+2)
0 2−(j+2)(2−2χ)+4j

K4
0

c
−(j+1)
7 ε2γ2

)
dj+1. (27)

The coefficient of dj+1 can be made less than one by choosing c7 sufficiently
large and hence

|Φj+1|+ |Ψj+1| < dj+1.

Thus there exists a positive constant d∗ = d∗(r, c1,K0, K̂0, K̄, µ, µ̂, µ̄, γ1, γ2)
such that the theorem is true for d0 ∈ (0, d∗) with g∗(ω, ε) :=

∑∞
j=1 gj(0, ω).

4. Application to Hill’s spherical vortex flow

A particularly important application of the theorem proven above is
in the case of a three-dimensional, time-periodic, volume-preserving fluid
flows [20, 23]. A steady integrable example of a three-dimensional vortex
structure was developed in [6] as an extension (called swirling Hill’s vortex)
of the well-known Hill’s spherical vortex flow (see Eq. 1). The swirling
Hill’s vortex, besides radial and axial velocity in three-dimensional polar
coordinates, contains a strong swirl induced by a line vortex situated at the
z axis. Here we consider the volume-preserving time-dependent perturbation
of the swirling Hill vortex (1) with strong swirl. In cylindrical coordinates
the equations of motion of fluid particles are given as follows:

ṙ = rz +
√

2r sin θ sin Ω(c)t

ż = 1− 2r2 − z2 − z
√

1

2r
sin θ sin Ω(c)t

θ̇ =
2c

r2
+
√

2r cos θ sin Ω(c)t, (28)

where Ω(c)
c =: ω is assumed to be of O(1) size. Under the assumption that

the swirl c >> 1 or 1
c ≈ ε and after rescaling the time t = τ

c , we get the
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following time periodic perturbed flow equations in the transformed action-
angle-angle coordinates:

İ = εFI(I, φ1, φ2, τ)

φ̇1 = εω1(I) + εFφ1(I, φ1, φ2, τ)

φ̇2 = ω2(I) + εFφ2(I, φ1, φ2, τ), (29)

where the action-angle variables (I, φ1) are obtained from (r, z) and the
second angle variable φ2 is obtained using the following transformation [6]

φ2 = θ +
φ1

2π

∫ 2π

0

2

r2(I, φ1)ω1(I)
dφ1 −

∫
2

r2(I, φ1)ω1(I)
dφ1. (30)

We are interested in showing that the Poincare map constructed from the
system (29) satisfies the Assumption 1 of the main theorem. Towards this
goal, we write θ as θ = φ2−ϕ(I, φ1), where ϕ is defined using (30) as follows:

ϕ(I, φ1) :=
φ1

2π

∫ 2π

0

2

r2(I, φ1)ω1(I)
dφ1 −

∫
2

r2(I, φ1)ω1(I)
dφ1.

The action-angle perturbations terms appearing in (29) can be written as:

Fφ1[I] = sin(φ2 − ϕ) sinωτ

(
∂φ1[I]

∂r

√
2r(I, φ1)− ∂φ1[I]

∂z
z(I, φ1)

√
1

2r(I, φ1)

)
.(31)

Defining Gφ1[I] :=
(
∂φ1[I]
∂r

√
2r(I, φ1)− ∂φ1[I]

∂z z(I, φ1)
√

1
2r(I,φ1)

)
, we write

(31) as

Fφ1[I] = (sinφ2 cosϕ− cosφ2 sinϕ) sinωτGφ1[I](I, φ1). (32)

The vector field (29) is time periodic with time period T = 2π
ω and hence

we can construct the Poincare map. Using the regular perturbation theory,
the solutions of (29) are O(ε) close to the unperturbed solutions on the time
scale of O(1), and hence can be written as

Iε(t) = I0 + εI1(t) +O(ε2)

φε1(t) = φ0
1 + εφ1

1(t) +O(ε2)

φε2(t) = φ0
2 + εφ1

2(t) +O(ε2).
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Using the above perturbation expansion in ε, the time period T Poincare
map can be written as

Pε : (Iε(0), φε1(0), φε2(0))→ (Iε(T ), φε1(T ), φε2(T ))

(I0, φ0
1, φ

0
2)→ (I0 + εI1(T ), φ0

1 + εω1(I0)T + εφ1
1(T ), φ0

2 + ω2(I0)T + εφ1
2(T )) +O(ε2).

From this Poincare map, we are interested in the perturbations terms of
order ε entering in I and φ1 directions (i.e., I1(T ) and φ1

1(T )) and verifying
that their average with respect to φ0

2 is zero thereby satisfying Assumption
1 of the main theorem. The perturbation terms of O(ε2) and their zero
average with respect to φ0

2 is not necessary because the averaging Lemma 5,
where the Assumption 1 of the main theorem is used, only reduces the size
of perturbations from order ε to ε2. We have following expressions for I1(T )
and φ1

1(T )

I1(T ) =
∫ T

0 sin(φ0
2 + ω2(I0)τ) cosϕ sinωτGI(I

0, φ0
1)dτ

−
∫ T

0 cos(φ0
2 + ω2(I0)τ) sinϕ sinωτGI(I

0, φ0
1)dt =: fI(I

0, φ0
1, φ

0
2)

φ1
1(T ) =

∫ T
0 sin(φ0

2 + ω2(I0)τ) cosϕ sinωτGφ1(I0, φ0
1)dτ

−
∫ T

0 cos(φ0
2 + ω2(I0)τ) sinϕ sinωτGφ1(I0, φ0

1)dτ =: fφ1(I0, φ0
1, φ

0
2).

Using the trigonometric identities for sin(a + b) and cos(a + b), it follows
that ∫ 2π

0
fI(I

0, φ0
1, φ

0
2)dφ0

2 =

∫ 2π

0
fφ2(I0, φ0

1, φ
0
2)dφ0

2 = 0.

This verifies that the Poincare map of system (29) satisfies the Assumption
1 of the main Theorem.

We pursue a visualization technique based on ergodic partition to visu-
alize the dynamics of this three-dimensional map. The basic idea behind
the constructing of the ergodic partition is to identify the set of points in
the phase space which have same time averages for a set of basis functions
[24, 25, 26, 27]. We pursue the implementation of this idea as presented
in [26]. Ideally these time averages are computed for a basis set functions
defined on the phase space. We provide a computational implementation
using only finitely many functions. Fig. 2, shows the two dimensional slice
of the ergodic partition in the three dimensional (r, z, θ) space. The two
dimensional slice is taken at θ = 0 plane. The initial conditions for the time
averages are chosen from the set I = [0.2, 0.3]×[−0.1, 0.1]×{0}. The number
of initial conditions for the simulation are chosen to be equal to 7000 and
the total number of functions used for time averages equal 83 = 512 . The
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averaging functions were selected as the truncated set of complex harmonics
functions on the rectangle D = [0, 0.5]× [−1, 1]× [0, 2π] and are of the form

fk̄(x) = (2π)−
3
2 ei2π〈x,k̄〉,

where k̄ ∈ [0, 7]3 so that in each spatial direction up to 8 harmonics are
considered, and x = T (R, z, θ), with T : D → [0, 1]3 consists of translation
and rescaling of domain D. For more details on the computation of ergodic
partition refer to [25, 26, 27]. In Fig. 2, we show the results of the computa-
tion for values of perturbation ε = 0.05 and ε = 0.01. Given the finite color
resolution and the computation of time average with finitely many functions
we can only resolve the ergodic partition to finite approximation. However
even with the finite resolution one can identify the signature of the surviving
KAM tori as smooth banded structure of the invariant sets shown in figure
2.

(a) (b)

Figure 2: Visualization of ergodic partition on θ = 0 plane for the Poincare map of system
(28); (a) ε = 0.05; (b) ε = 0.01

5. Conclusions

In conclusion, we have proved the persistence of two-dimensional in-
variant tori in the perturbation of integrable action-angle-angle maps with
degenerate angle. The persistence proof requires a combination of the proof
techniques for non-degenerate volume-preserving maps as pursued in [15]
and Arnold’s methods in proving the KAM theorem in the case of Hamil-
tonian systems with degenerate angles [2, 3]. A specific peculiarity of our
proof is the need for an intermediate sequence of coordinate transformations
that reduces the size of the perturbation in the action variable by an order
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and allows us to proceed with a Moser-type technique pursued in [15]. El-
egant and shorter proof technique for KAM-type results has recently been
pursued by Broer, Huitema and Sevryuk [9]. It would be interesting to see
whether their “parametric” KAM-type technique could be used to prove a
version of our theorem in a simpler way. In addition, we have used the main
result of this paper to prove persistence of invariant tori in a perturbation
of a volume-preserving Euler fluid flow, swirling Hill’s vortex, under the as-
sumption of large swirl. Note that our proof above can be easily extended
to the full class of perturbation similar to the single-mode perturbation in θ
that we have used, as any such perturbation can be expanded in Fourier se-
ries. In other words, any sufficiently small, volume-preserving perturbation
that has axial (z) symmetry will have a set of tori preserved.
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