Completely Mixed Activated Sludge (CMAS) Bioreactor Design Equations

Mass Balance:

Biomass:

$$QX_{O} + V\left(\frac{\mu_{\max} SX}{K_{S} + S} - k_{d} X\right) = (Q - Q_{w})X_{e} + Q_{w} X_{w}$$

Substrate:

$$QS_O - V\left(\frac{\mu_{\max} SX}{Y(K_S + S)}\right) = (Q - Q_w)S_e + Q_w S_w$$

where $Q, Q_w = influent$ flow and waste flow, respectively, m^3/d

 $V = volume of aeration basin, m^3$

 μ_{max} = maximum specific growth rate coefficient, h⁻¹

 K_s = half saturation coefficient, mg/L

 k_d = decay coefficient, h^{-1}

 X_0 , X, X_e , X_w = biomass in influent, bioreactor, effluent, and waste, mg/L as MLVSS

S = soluble substrate concentration in bioreactor, mg/L as BOD or COD

 S_0 = influent substrate concentration, mg/L as BOD or COD

Y = biomass yield, mg biomass formed/ mg substrate utilized (mg VSS/ mg BOD)

Assumptions:

1.	Influent and effluent	concentration	is neg	ligił	ole
			<u> </u>	<u> </u>	

2. Aeration basin is a _____ CSTR, $S = S_w = S_e$

3. All reactions occur in _____ basin

Then:

$$\frac{\mu_{\max} S}{K_S + S} = \frac{Q_w X_w}{VX} + k_d \qquad ; \qquad \frac{\mu_{\max} S}{K_S + S} = \frac{QY}{VX} (S_O - S)$$

Observe:

$$\frac{Q}{V} = \frac{1}{\theta} \qquad ; \qquad \frac{Q_w X_w}{V X} = \frac{1}{\theta_c}$$

Where θ = the hydraulic retention time, HRT, and θ_c = the solids residence time, SRT. This results in the following design equations:

$$S = \frac{K_{S}\left(1 + k_{d} \theta_{c}\right)}{\theta_{c}\left(\mu_{\max} - k_{d}\right) - 1} \quad ; \quad \theta_{c} = \frac{K_{S} + S}{S\left(\mu_{\max} - k_{d}\right) - K_{S} k_{d}} \quad ; \quad X = \frac{\theta_{c} Y(S_{O} - S)}{\theta\left(1 + k_{d} \theta_{c}\right)}$$

The minimum soluble BOD concentration that can be achieved as $\theta_c \rightarrow \infty$:

$$S_{\min} = \frac{K_S k_d}{\mu_{\max} - k_d}$$

The minimum θ_c achievable as $\mu \rightarrow \mu_{max}$:

$$\theta_{c_{\min}} = \frac{K_S + S_O}{S_O \left(\mu_{\max} - k_d \right) - K_S k_d}$$

Steps for Activated Sludge Design

- 1. Establish effluent soluble BOD₅ allowable to meet BOD₅ and SS effluent limits.
- 2. Determine what θ_c is required to meet the effluent soluble BOD₅ allowable.
- 3. Solve for the mixed liquor volatile suspended solids, MLVSS, concentration given a particular hydraulic residence time, θ . Or solve for θ given a particular MLVSS.
- 4. Calculate the return activated sludge (RAS) flow, Q_r , and concentration, X'_r .

$$X_r'Q_r = X'(Q_r + Q)$$
; $X_r' = 10^6/SVI$

where X' = MLSS, mg/L (X' typically is approximately 1.2·X) $X'_r = RAS$ concentration, mg/L $Q_r = RAS$ flow rate, m³/s

Find X[']_r using the sludge volume index, SVI, from the following figure:

5. Sludge production can be estimated as follows:

$$P_X = Y_{OBS} Q (S_O - S) \frac{kg}{1000 g}$$

where:

 P_x = sludge production, kg/d Y_{OBS} = observed growth yield, mg biomass formed, VSS/ mg BOD_5 utilized Q = influent flow, m³/d S_0 = influent BOD₅ S = effluent BOD₅

Y_{OBS} can be estimated as :

$$Y_{OBS} = \frac{Y}{1 + k_d \cdot \theta_c}$$

6. Oxygen requirement for carbonaceous BOD removal can be calculated as:

$$O_2 \ req = \left(\frac{Q(S_O - S)}{f} \cdot \frac{kg}{1000 \ g}\right) - 1.42 \cdot P_X$$

where f = the conversion from BOD₅ to BOD_L, (0.45-0.68)

When nitrification is occurring the oxygen requirement can be calculated as:

$$O_2 \ req = \left(\frac{Q(S_O - S)}{f} \cdot \frac{kg}{1000 \ g}\right) - 1.42 \cdot P_X + 4.57 \ Q \left(N_O - N\right) \cdot \frac{kg}{1000 \ g}$$

where N₀ and N are the influent and effluent NH₄-N concentrations, respectively.

7. Calculate the alkalinity consumed.

The conversion of NH_3 -N to nitrate not only requires oxygen but it also consumes considerable amount of alkalinity (7.1 mg/L as $CaCO_3$ for every mg/L NH_3 -N):

alk consumed (kg/d) = Q (N_o - N) \cdot 7.1 mg/L as CaCO₃/mg NH₄-N \cdot (kg/1000 g)

8. Settling Tank Design

The design of primary and secondary settling tanks can be done on the basis of settling tests and/or established design criteria. In general, the design of tanks must meet established overflow rate and weir loading criteria.

10 State Standards Criteria							
Criteria	Primary Settling Tanks		Secondary Settling Tanks				
Overflow Rate, m ³ /m ² ·d	Avg	Peak	Peak				
OR = Q/A	41	60-120*	49				
Weir Loading, m ³ /m·d	< 1 mgd	> 1 mgd	< 1 mgd	> 1 mgd			
WL = Q/L	250	375	250	375			

* for tanks not receiving waste activated sludge, use 49 $m^3/m^2 \cdot d$ for primary clarifiers receiving WAS

Activated Sludge Operational Considerations

An operator of an activated sludge plant is concerned with three things:

- 1. E_____ quality (BOD₅ and SS)
 - 2. S_____ characteristics of the biomass (SVI)
 - 3. Sludge w_____ or solids inventory (θ_c , F/M)

These three objectives/operational parameters are interrelated. A good settling sludge will produce good effluent quality. Maintaining the proper solids inventory will produce a good settling sludge. Controlling θ_c will maintain the proper solids inventory.

SVI - Sludge v_____ index.

- Measure of s_____ characteristics of biomass.
- Measured in a g_____ cylinder after 30 minutes of settling.
- Units of mL/g.
 A d______ SVI is in the range of 75 150.

	_
	-
	<u> </u>
	_
	_
	_
	_
1	
/	

Sludge Bulking

- Sludge bulking is the condition where the SVI is h_____ and the suspended solids are not settling in the secondary settling tank.
- It is usually an indication of **f organisms** long string-like organisms which outcompete the flocculent organisms because of their large surface area.
- Filamentous organisms can be caused by

F/M Ratio

High

F/M

Selector

• The f_____ to m_____ (F/M) ratio is an alternative control/design parameter to θ_c for the operation of an activated sludge plant.

$$\frac{F}{M} = \frac{Q S_o}{V X} = \frac{mg BOD_5/dD}{mg MLVSS}$$

Note: the F/M ratio is inversely proportional to θ_c .

- Low F/M ratios are typical in c mixed
 - activated sludge (CMAS) systems.
- CMAS systems, consequently, often have filamentous b_____ problems.

Low F/M

CMAS with Selector

By using a s_____, the F/M in the first compartment of an activated sludge system can be increased, giving the f______ microorganisms a competitive advantage.

SUMMARY OF ACRONYMS

SRT	solids retention time (or solids residence time), also MCRT, mean cell residence time
MLSS	mixed liquor suspended solids
MLVSS	mixed liquor volatile suspended solids (used as a surrogate measurement of the
	biomass in an activated sludge system
SVI	sludge volume index - a measurement of the settling properties of activated sludge
F:M	food:microorganisms ratio, an alternative design parameter for A.S. system
DAS WA	S raturn and wasta activated sludge

RAS, WAS return and waste activated sludge