
 
 

TinyDiffussion Design: 
 
 
Project Goal: 
 
Packaging TinyDiffusion (Direct Diffusion for Sensors) into a software module that can be easily 
used by researchers who want to quickly put together applications involving 

(1) Various types of sensors and sensor data; 
(2) Customizable in-network aggregation and processing (Filtering);  

 
Supported Data Types 

- int16                             - Default 16bit data type currently in use by most applications. 
- blob [ Length, Data]     - Uninterpreted binary data allows for User Defined data type  

 
Attribute: 
 
Key 
1 byte 

Operator 
1 byte 

Value 
2 bytes 

 
 
Both data requests and data responses are composed of data attributes that describe the data. Each 
piece of the subscription/publish (an Attribute) is described via a key-operator-value triplet. 
 
key indicates the semantics of the attribute (latitude, frequency, etc.). Keys are simply constants 
(integers) that are either defined in the network routing header or in the application header. 
Allocation of new key numbers will be done with an external procedure to be determined.  
Keys in the range 0 - 99 are reserved and should not be used by an application. 
 
Operator describes how the attribute will match when two attributes are compared. 
Available operators are: IS, EQ, NE, GT, GE, LT, LE, EQ_ANY. 
The IS operator indicates that this attribute species a literal (known) value (the LATI- 
TUDE KEY IS 30:456). Other operators (GE, LE, NE, etc.) mean that this value must match against 
an IS attribute. Note however that for blobs the API doesn't know how the information is encoded 
and will perform a bit wise comparison only (i.e. IS can be used to specify a literal blob value that 
can only be matched using binary comparisons). 
 
Value has some type and contents. Some values also have a length (if it’s not implicit from the type).  
 
 
 
 
 
 
 



Matching Rules 
 
Data is exchanged when there are matching between subscriptions and publications. 
Since diffusion is based on the core concept of subject-based routing, it is very important to make 
sure attributes in publications, subscriptions and filters match. Users/Applications subscribes an 
interest. Sources publish data. For both Publish/Subscribe and Filters API, matches are determined 
by one way match applying the following rules between the attributes associated with the publish (P) 
and subscribe (S): 
 
For each attribute Sa in S, where the operator Sa.op is something other than IS 

Look for a matching attribute Sa in S where Sa.key = Pa.key and Pa.op = IS 
If none exists, exit (no match) 
else use Sa.op to compare Pa and Sa 

If all attributes where matched – than S matches P 
  

 
For example,  
 
A user might look for temperature values by subscribing with the attribute: 
 
TEMP_KEY EQ 32 or  
TEMP_KEY LE 40 or  
TEMP_KEY GE 25 
 
 
A sensor would publish this set of attributes: 
 
LATITUDE_KEY IS 30.455 
LONGITUDE_KEY IS 104.1 
TEMP_KEY IS 32 
 
A user might also look for anything in a particular region with: 
 
TARGET_KEY EQ_ANY 
LATITUDE_KEY GE 30 
LATITUDE_KEY LE 31 
LONGITUDE_KEY GE 104 
LONGITUDE_KEY LE 104.5 
 
 
 
 
 
 
 
 



 
 
 
 
 

Basic TinyDiffusion Description 
 
TinyDiffusion implements a one-way-pull. 
 
Implementation Assumption. 
 

1. Every node holds a symmetric connectivity list of his neighbors. 
2. Links are symmetric. 
3. A node maintains a Black List of neighbors of insufficient connectivity.  
4. All packets from or to a Black node are dropped.  
5. Every node holds an Interest Cache and a Data list. 

 
 
Subscribe 
Each subscription causes TinyDiffusion to send an Interest Message to the network. These Interest 
Messages are flooded (broadcast) throughout the network. On arrival of an Interest Message to a 
node, it is matched against the Interest Cache. Duplicate interests are dropped. Overlapping interests 
are aggregated. An Interest Gradient is set in the Interest Cache based on first arriving interest.  
When an Interest arrives to publishers with matching data, a simple hop-by-hop route is set up from 
the publisher to the subscriber.  
 
Publish 
A publisher sends a Data Message in reply to an Interest or Reinforcement. From a publisher point 
of view there is no different between an Interest and Reinforcement. Periodically, a publisher 
compares its data list to its Interest Cache. Matching data is aggregated and send in a Data Message. 
Data Messages are sent only through Interest Gradients of unique neighbors.  On arrival of Data 
Message to a node, it is first matched against a Data list. Duplicate Data Messages are dropped. 
Later, it is matched against the Interest Cache. Matching Data Message is forwarded down stream 
through Interest Gradients of unique neighbors. On a match the Data Gradient list is updated.    
 
Reinforcement 
Reinforcement is performed Unicast through neighboring nodes providing distinct data. Specific 
sources or location box can be reinforced using the attribute triple matching mechanism. 
In order to establish Reinforcement Gradient, the Reinforcement is matched against the Interest 
Cache. The matching rules for the reinforcement are relaxed to support a match between 
Reinforcement and an Interest. Basically, Reinforcement with different EPIRATION time and 
INTERVAL attributes matches a cached Interest with the same other attributes. The Reinforcement 
can be further constraint than the Interest but not less constraint. The Interest entry in the cache holds 
a matching Data Gradient list. The Data Gradient list is updated at each match between a Data 
Message and the Interest. 
 



 
Filter API     
Filters API is the same as Subscribe/Publish API. The filters are mapped with a unique key.  
Keys: 200 - 250 are reserved for filters. The filters have to be precompiled with TinyDiffusion, in a 
filters.h file before deployment. On Data Message arrival it first matched against all subscribed 
filters. On a match a copy of the data is forwarded to the filter. The data than is matched against 
other interests. The filter can decide if to drop a Data Message or forward it down stream modified 
or unmodified.   
 
 
 
 
 
 

User Interface: 
 
From the user point of view an Interest and a Reinforcement are the same entity. The user subscribes 
an Interest to TinyDiffusion using the following API. The user needs to be familiar only with the 
structure of an attribute. The subscription requires input of array of attributes of limited size, as 
defined in TinyDiffution Definition file, the number of attributes in the array, and expiration time of 
the interest. The subscribing opens a pipe to diffusion from which data arrives with a LAST key 
terminated attributes array. TinyDiffusion allows for aggregation of data, thus multiple attributes of 
the same kind can arrive at the same attributes array. The application layer is responsible to extract 
and verify multiple arriving data since as long as at least one match of data to an interest is attained, 
the data will be forwarded to the sink.  
 
 
Attribute * subscribe(uint8_t AttNum, Attribute  attributes[MAX_ATT], 
        uint16_t expiration); 
 
// Pre: expiration - expiration time of interest (or reinforcement) 
//      AttNum - number of attributes contained in the packet 
//      attributes - an array of max size containing the attribute list 
//Post: Sends (broadcast) interest message up stream. 
//      Opens a pipe stream of data- attributes arrays. 
//      The last attribute is Null Terminated. 
//      One data can contain up to MAX_ATT limit aggregated data.     
 
The sources publish data and intermediate nodes forward it down stream from source to sink.  
The programmer needs to be familiar just with the attribute structure. The programmer of the source 
put the sensed data in the attribute format and stores it in a LAST key terminated array.  
   
void   publish(uint8_t AttNum, Attribute  attributes[MAX_ATT]); 
 
// Pre: expiration - expiration time of interest (or reinforcement) 
//      AttNum - number of attributes contained in the packet 
//Post: Sends data pocket down stream to sink. 
 
 
 



 
 

Data Structures 
 
General:  
Pocket size is limited – Max size need to be determined. 
Currently it limits the number of attributes to 4! 
 
InterestMessage 
 
Sequence Number -  4 bytes 
Sink                        - 2 bytes 
Round                     - 1 byte 
Previous Hop         - 2 bytes 
TTL – time to live – 1 byte 
Expiration Time     - 2 bytes 
AttNum – Number of attributes  - 1 byte 
Key Operator Value 
… … … 
Key Operator Value 
 
 
 
DataMessage 
 
Sequence Number -  4 bytes 
Source                    - 2 bytes 
Previous Hop         - 2 bytes 
TTL – time to live – 1 byte 
AttNum – Number of attributes – 1 byte 
Key Operator Value 
… … … 
Key Operator Value 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Interest Cache 
The Interest Cache provides the data structure to cache Interests, the Interest Gradients list to which 
the interest corresponds, and the Data Gradients list to which Reinforcements correspond. The cache 
is implemented as a FIFO structure of predetermined size. Expired entries are cleaned on every 
cache update.   
The Interest Entry also implements a FIFO structure of limited size for the Interest and Data 
Gradient lists. 
 
Interest Cache Entry 
 
Interest Message 
 
Interest Gradient List 
[Max – Degree] 
Data Gradients List  
[Max – Degree]  
 
 
Interest Gradient Entry 
Expiration Previous 

Hop 
 
 
 
Data Gradient Entry   
 
Source Previous 

Hop 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Data List 
 
The sole purpose of the Data List is to eliminate data packet duplicates.  . The list is implemented as 
a FIFO structure of predetermined size.  
 
 
Data Cache Entry 
 
Sequence 
Number 

Source 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tiny Diffusion Definition File 



 
• The definition file contains: 

o Pre-defined parameters for fine-tuning of TinyDiffusion. 
o Keys and Operations definition for attribute matching. 
o Application Types definitions. 
o Data Types definition. 
o Packet Types definition. 

 
 
 
//  Size Definitions For Fine Tunings. 
 
#define MAX_INTERESTS      10 
#define MAX_GRADIENTS      10 
#define MAX_REINFORCEMENTS 10 
#define MAX_ATT            10   
#define MAX_DATA           20    
#define TTL                50   // max number of hops for packet to propagate 
 
// Tiny Diffution Definitions 
 
#define ORIGINAL 0;           // indicates original data or interest 
#define CHACHED  1;           // indicates cached interest 
#define FORWARDED  2;         // indicates forwarded data or interest 
 
 
// Packet Type Definitions 
 
#define INTEREST 1 
#define DATA     2 
 
// Operator Definitions        0 - 200  
 
#define IS     1 
#define EQ 2 
#define NE 3 
#define GT 4 
#define GE 5 
#define LT 6 
#define LE 7 
#define EQ_ANY  8 
 
 
 
 
 
 
 
 
 
// APPLICATION TYPE     TYPE_ID  0 - 49 
//---------- -------------------------- 
#define  NULL_SENSOR      0 
#define  Temperature        1 



#define  Humidity           2 
#define  Pressure           3 
#define  Leaf_Wetness       4 
#define  PAR                5 
#define  UV                 6 
#define  Solar_Radiation    7 
#define  Rain_Level         8 
#define  Eye_LeveL_Light    9 
#define  Wind_Speed         10 
#define  Wind_Direction     11 
#define  Soil_Moisture      12 
#define  Temperature_Probe  13 
#define  BatteryVoltage     14 
 
 
// KEYS MAPPING         50 - 200 
 
#define APP             50   
#define TEMP   51     
#define HUMIDITY        52   
#define INSTANCE        53 
#define X               54 
#define Y               55 
#define Z               55 
#define INTENSITY       56 
#define CONFIDENCE      57 
#define TIME            58 
#define INTERVAL        59 
#define VELOCITY        60 
#define DIRECTION       61 
#define PRESSURE        62 
#define UV              63 
#define RADIATION       64 
 
// Filter Definitions         200 - 250 
 


