
1

Extending TinyDB: Creating Custom
Aggregates

Eugene Shvets
Version 1.0 May 23, 2003

Overview..1
TinyDB aggregation framework ...2

Aggregate interface..4
Writing Custom Aggregate Components ...5
Wiring new components ..8
Writing client-side code..8

Adding argument to catalog ...8
Reading Results...9
Writing a custom reader ...10
Passing the Arguments..11

Appendixes..13
Appendix A – Aggregate interface source code...13
Appendix B – AvgM.nc source code ..14

Overview
In a sensor network setting, individual sensor readings are of little value. Often,

users are interested in summary information over the whole (or a region of) network. To

this end, TinyDB provides a variety of built-in aggregates, including familiar SQL

aggregates like MIN, SUM, and COUNT. In addition, the system can be easily extended

with new user-defined aggregates. This document describes how to accomplish this

task.

Creating and adding custom TinyDB aggregates is straightforward, requiring the

following steps in the TinyDB application which runs on the motes:

• You must write a component where the implementation of your aggregate resides

(see “Writing custom aggregate components”).

• Then, this component must be wired into the system (see “Wiring your component”

section).

2

• Rebuild TinyDB

The, you must enable your PC client to use your newly created aggregate (Here, we are

assuming that you are using Java-based GUI client included in TinyDB distribution).

There are two steps in this process:

• You need to add an entry in the system catalog describing your aggregate. . For

details, refer to “Writing client-side code” section.

• Possibly, you will also need to write and register a new reader class that will be

responsible for extracting your aggregation results from raw data coming from the

networkSee the “Writing a Custom Reader” section.

TinyDB aggregation framework

The following discussion gives a brief overview of TinyDB aggregation framework

(see figure below). Knowledge of it is not necessary for creating custom aggregates, but

can prove useful for understanding the requirements custom aggregates must meet.

When writing your own aggregate, you only need to worry about the rightmost part of

the diagram below, namely implementing Aggregate interface and registering new

aggregate in AggOperatorConf.nc.

3

Aggregate
SumM.nc

Aggregate
CountM.nc

Aggregate
AvgM.nc

AggregateUseM.nc

stateSize(ID, ...)

merge(ID, ...)

update(ID, ...)

hasData(ID,...)

finalize(ID,...)

init(ID, ...)

getProperties(ID)

AggregateUse
Operator

AggOperator.nc

AggOperatorConf.nc

TinyDB Aggregation Framework

Internally, aggregates are handled by TinyDB component AggOperator.nc, which

delegates specific aggregation-related tasks to another component, AggregateUseM.nc.

These tasks are described by the functions in the Aggregate and AggregateUse

interfaces. All aggregate components (such as SumM.nc or CountM.nc) must

implement Aggregate interface, described in the next section. AggregateUse is

identical to Aggregate, except each function takes an additional argument, ID, used to

route calls to the appropriate aggregate component. Each aggregate registered with the

system has a unique aggregate ID (see Wiring New Components section for information

on how the IDs are assigned). AggOperator.nc passes the ID to AggregateUseM, which

routes the call to the component with that ID. The wiring between AggregateUseM and

aggregate components is established in AggOperatorConf.nc and is described below.

AggregateUseM can use up to 256 aggregates, which sets the limit on the number of

different aggregates available to TinyDB. This number, however, is sufficient for all

practical purposes.

4

Aggregate interface

As mentioned above, all TinyDB aggregates are nesC components that implement

the Aggregate interface (found in tos/lib/TinyDB/Aggregates/Aggregate.nc),

illustrated in Appendix A. This interface provides the necessary methods for

AggregateUseM component to control an aggregate throughout its lifetime. This lifetime

proceeds as follows:

1. Memory to hold aggregate’s state is allocated by the system. The function stateSize

is called exactly once to determine the size of the state; it returns the size in bytes.

Note that in the current TinyDB implementation, the maximal state size is limited to

approximately 30 bytes. This is because we transmit the state as a part of the 40

byte message payload (10 bytes of which are used for TinyDB internal headers.)

2. TinyDB calls initializer init, which sets initial state of the aggregate. In addition, in the

beginning of every epoch, the system calls initializer again to give the aggregate the

opportunity for per-epoch initialization (this is necessary for many temporal

aggregates). These two situations are distinguished by isFirstTime argument. If it’s

true, the call is first-in-lifetime initialization, otherwise it’s the beginning-of-epoch

initialization.

3. When local sensor readings arrive, the update function is called with the current

aggregate state and the sensor reading as arguments. This function updates

aggregate state with the reading.

4. When a partial aggregation result from another sensor comes in, the merge function

is called with two aggregate states as arguments. Its task is to update the node’s

aggregate state with the data from another node.

5. In the end of each epoch, function hasData is called. It should return true if the

aggregate state is ready to be forwarded up the routing tree to the parent. This is not

always true; for example, temporal aggregates with window size of 2 will have

results only every two epochs (this means that aggregate state for temporal

aggregates probably needs to keep track of current epoch).

6. When the final aggregate value is ready to be delivered, finalizer (finalize) might be

called at a root mote. Its task is to compute the final result of the aggregation from

the provided aggregate state. Note that the result and state are not the same. For

5

example, for AVERAGE aggregate, the state is a <total, count> pair and the result is

(total / count). Note that current TinyDB implementation doesn’t call finalize, to avoid

a CPU bottleneck at the root. However, this is an implementation detail, and it will

change in future versions of the code.

Note that TinyDB keeps aggregate state as a part of query state, passing the state

as an argument to many functions in Aggregate interface. Since the aggregate

components are stateless, they can be reused as each query can have more than one

aggregate of the same kind.

Also note that creators of the aggregate components need not take any actions to

provide GROUP BY support. All custom aggregates enjoy full GROUP BY support

provided by TinyDB.

Finally, the interface contains a command we haven’t yet mentioned, getProperties.

This command describes the aggregate according to the taxonomy given in the TAG

paper. TinyDB uses getProperties to optimize routing of the results. If you are unsure

what to do, return zero in this function – this will guarantee correct behavior.

Writing Custom Aggregate Components

In this section, we’ll walk through built-in AVERAGE aggregate that calculates an

average of sensor readings. It’s implemented in AvgM.nc component (the convention for

naming components is the aggregate name, followed by a capital “M” for “module”). You

can refer to code in Appendix B. To begin with, we must declare that our new module

implements Aggregate interface:

module AvgM {
provides {

interface Aggregate;
}

}

Now we need to decide how we will represent the aggregate state. We need to keep

track of two things: the running total and the count of readings. Let’s say we choose to

represent both total and count as 16 bit integers (ignoring a possibility of overflow):

typedef struct {

6

int16_t sum;
uint16_t count;//unsigned since count can only be nonnegative

} AverageData;

Normally state representation such as AverageData is declared in the corresponding

component as a private data structure. However, in case state representation is shared

between different aggregates, it can be placed in Aggregates.h file, which is included

on top of AvgM.nc. You can find AverageData and some other useful examples in

Aggregates.h.

We are ready to implement stateSize – it simply returns the size of our state

representation:

command short Aggregate.stateSize(ParamList *params, ParamVals *paramValues) {
return sizeof(AverageData);

}

Note that in general state size depends on the arguments passed to the aggregate

from the client side, though we don’t need these arguments for AVERAGE. These

arguments are passed to each function in the interface as a pointer to a ParamVals

structure, which contains a pointer to parameter data (defined in

tos/interfaces/Params.h), and a pointer to ParamList structure containing the type of

each parameter.

To initialize the aggregate state, we set both sum and count to zero:

command result_t Aggregate.init(char *data, ParamList *params, ParamVals *paramValues, bool
isFirstTime) {

AverageData *mydata = (AverageData *)data;

mydata->sum = 0;
mydata->count = 0;

return SUCCESS;
}

Note how we cast generic char pointer to the appropriate data structure – this is safe

since TinyDB calls stateSize to allocate memory of the appropriate size.

The merge function simply adds the other mote’s total and count to our state:

command result_t Aggregate.merge(char *destdata, char *mergedata, ParamList *params,
ParamVals *paramValues) {

AverageData *dest = (AverageData *)destdata;
AverageData *merge = (AverageData *)mergedata;

7

dest->sum += merge->sum;
dest->count += merge->count;

return SUCCESS;
}

The first argument to merge is our state, and the second is the other mote’s state.

Update is similar:

command result_t Aggregate.update(char *destdata, char* value, ParamList *params, ParamVals
*paramValues) {

AverageData *dest = (AverageData *)destdata;
int16_t val = *(int16_t *)value;

dest->sum += val;
dest->count++;

return SUCCESS;
}

We increment count by one, since we just got one more reading. Currently, all sensor

readings in TinyDB are of type int16_t, hence we cast generic char pointing to the

sensor reading to int16_t value.

Since AVERAGE is not a temporal aggregate, we have result at the end of each

epoch. Thus, hasData always returns true:

command bool Aggregate.hasData(char *data, ParamList *params, ParamVals *paramValues) {
return TRUE;

}

Finally, finalize function divides the total by count (if count is not zero), and writes

the result into the provided buffer:

command TinyDBError Aggregate.finalize(char *data, char *result_buf, ParamList *params,
ParamVals *paramValues) {

AverageData *mydata = (AverageData *)data;

*(int16_t *)result_buf = (mydata->count == 0 ? 0 : mydata->sum / mydata->count);

return err_NoError;
}

Since we are not delving into optimization details here, we’ll provide the default

implementation for aggregateProperties():

command AggregateProperties Aggregate.getProperties() { return 0; }

8

Wiring new components

Now that we’ve written AvgM component implementing AVERAGE aggregate, we

need to wire it into the system. This wiring is done in AggOperatorConf.nc

configuration, found in tos/lib/TinyDB. We need to pick an ID for AVERAGE aggregate

and wire Aggregate interface with this ID in AggregateUseM to the implementation of

Aggregate interface provided by AvgM component. The wiring looks like this:

AvgM.Aggregate <– AggregateUseM.Agg[kAVG];

Note that kAVG is the ID of the AVERAGE aggregate and is defined in Aggregates.h,

which lists IDs for all built-in aggregates. You should put ID’s for your custom

components there to avoid accidentally using a built-in ID. Once TinyDB is rebuilt, we

can move on to enabling the TinyDB java client to use our new aggregate!

Writing client-side code

The TinyDB PC interface needs to know about your new aggregate, so it can parse

a query using the aggregate, set up the arguments, and read and display the answer.

Most of this work is declarative, and if you’re lucky you won’t have to do any

programming at all.

Adding argument to catalog
First, you need to add some metadata about your aggregate to the TinyDB catalog. To

do so, you need to edit file catalog.xml, found in tools/java/net/tinyos/tinydb. You

have to add an <aggregate> tag to the <aggregates> section. For example, for our

newly defined AVERAGE aggregate, we add following tag:

<aggregate>
 <name>AVG</name>
 <id>5</id>
 <temporal>false</temporal>
 <readerClass>net.tinyos.tinydb.AverageReader</readerClass>
</aggregate>

9

Name is the string by which you will invoke the aggregate in your queries, for

example, “select AVG(light)” (lowercase “avg” will do too, but “synonyms” like

“AVERAGE” will not). Specifying the correct id is critical – it should match the ID you

used to wire the aggregate in AggOpeartorConf.nc. Temporal tells whether the

aggregate is temporal, and should be either “false” or “true”. The last tag in the

declaration above, readerClass, specifies a java class that’s responsible for reading

and displaying results in the GUI. If omitted, it defaults to net.tinyos.tinydb.IntReader.

Please refer to “Reading Results” section below for details.

There are also two other tags that are omitted in the declaration above. First, argcount

(argument count) is the number of constant arguments the aggregate takes (more in

“Passing the Arguments” section). For example, argcount for SUM(nodeid) equals 0,

and argcount for WINAVG(2,1,light) equals 2. If this tag is not specified, it is assumed to

be 0. Second, validatorClass names a java class that validates input arguments given

to the aggregate. If omitted, it defaults to a built-in class that always validates

successfully class specified in defaultValidatorClass tag. For more details, see

Passing and Accessing Arguments section

Reading Results
Some aggregates return a single integer as their result, while others return

considerably more complex data. This necessitates an extensible framework in which

raw results from the network can be read and displayed by the GUI. So called “readers”

provide such a framework. As noted above, readerClass tag in the catalog description

specifies the reader used for the corresponding aggregate. If your aggregate’s state (not

the finalization result!) is a single integer (as is the case for MIN, MAX, COUNT, SUM,

their windowing counterparts, and some other built-in aggregates), you can omit

readerClass from your catalog declaration and use the default

net.tinyos.tinydb.IntReader. Of course, a reader for averaging aggregates (AVG and

WINAVG) is also included, but we’ll steps through the process of writing it for

completeness.

10

Writing a custom reader
All readers must implement the AggregateResultsReader interface (see

net.tinyos.tinydb.AggregateResultsReader). The sequence of calls during a reader’s

lifetime is as follows:

1. Reader is instantiated by calling the no-argument constructor.

2. When results arrive, read is called with the byte array from query result as the

payload. Read converts raw byte data from this array to internal state of the

reader.

3. When newer results for the same query arrive, the state of one reader is copied

into another by calling copyResultState.

4. When results are ready to be output, finalizeValue is called.

5. Finally getValue should return the final output of the aggregate as a String.

To make this description concrete, we’ll discuss how to implement a reader for the

AVERAGE aggregate (see net.tinyos.inydb.AverageReader for the complete listing).

Note that the results we get back come from AvgM.nc aggregate component, and recall

how AvgM represents its state:

typedef struct {
int16_t sum;
uint16_t count;

} AverageData;

We know that the result will contain two 2-byte numbers. We choose to represent

the reader’s state similarly, adding another field to represent final value of the

aggregation:

class AverageData {
int sum = 0;
int count = 0;
int value = 0;

}

Now we’re ready to take on read:

public void read(byte[] data) {
myState = new AverageData();
myState.sum = ByteOps.makeInt(data[0], data[1]); //make a 2-byte int out of two bytes
myState.count = ByteOps.makeInt(data[2], data[3]);//same as above

}

11

Finalize and getValue are also straightforward:

public void finalizeValue() {
if (myState.count != 0) myState.value = myState.sum / myState.count;

}
public String getValue() {

if (myState.count != 0) return Integer.toString(myState.value);
else return "";

}

Finally, copyResultState needs to copy our reader’s state into another reader (of the

same type):

public void copyResultState(AggregateResultsReader reader) {
if (! (reader instanceof AverageReader)) throw new IllegalArgumentException("Wrong type

reader");

AverageReader ar = (AverageReader)reader;
ar.myState.sum = myState.sum;
ar.myState.count = myState.count;
ar.myState.value = myState.value;

}

This our implementation of the AggregateResultsReader interface!

After restarting the GUI, our new aggregate should be fully usable. Note that no

recompilation is necessary (of course, it is necessary to compile the reader file first).

Passing and accessing arguments
Many aggregates accept several arguments. For example, all windowing aggregates

need a window size and slide distance. Currently, arguments are limited to integer

constants. On TinyDB side, total size of all arguments is limited to 4 bytes, which we

found sufficient for a wide range of built-in aggregates.

Users do not need to write any argument passing code on the Java side. However,

you might want to validate arguments when the query is parsed. You specify the class

used to validate the arguments in <validatorClass> sub-tag of <aggregate> tag. By

default, DefaultArgumentValidator is used. This class always validates successfully. A

custom validator must implement the AggregateArgumentValidator interface. This is

easy, since the interface consists of a single method. For example,

WindowingArgumentValidator is used to validate arguments for all windowing

aggregates, and shown in Appendix C.

12

Of course, aggregates that accept arguments will need to access them. Windowing

aggregates, such as WinMinM.nc, provide a good example of how to access

arguments. In addition, you will find a number of convenience functions and

declarations for accessing the arguments defined in Aggregates.h.

13

Appendixes

Appendix A – Aggregate interface source code
interface Aggregate {

 /**
 * Updates local partial state with another partial state
 */
 command result_t merge(char *destdata, char *mergedata, ParamList *params, ParamVals *paramValues);

 /**
 * Updates local state with a sensor reading
 */
 command result_t update(char *dest, char* value, ParamList *params, ParamVals *paramValues);

 /**
 * Initializer
 * Called in the beginning of each epoch
 * @param isFirstTime true if this is the very first call for this aggregate
 */
 command result_t init(char *data, ParamList *params, ParamVals *paramValues, bool isFirstTime);

 /**
 * Finalizer
 */
 command TinyDBError finalize(char *data, char *result_buf, ParamList *params, ParamVals *paramValues);

 /**
 * Returns the size of aggregate's state, in bytes
 */
 command uint16_t stateSize(ParamList *params, ParamVals *paramValues);

 /**
 * Called each epoch, returns true if aggregate has data to send out
 */
 command bool hasData(char *data, ParamList *params, ParamVals *paramValues);

 /**
 * Returns aggregate properties, such as monotonic, etc
 */
 command AggregateProperties getProperties();
}

14

Appendix B – AvgM.nc source code
includes Aggregates;

module AvgM {
provides { interface Aggregate; }

}

implementation {

command result_t Aggregate.merge(char *destdata, char *mergedata, ParamList *params, ParamVals
*paramValues) {

AverageData *dest = (AverageData *)destdata;
AverageData *merge = (AverageData *)mergedata;

dest->sum += merge->sum;
dest->count += merge->count;

return SUCCESS;
}

command result_t Aggregate.update(char *destdata, char* value, ParamList *params, ParamVals
*paramValues) {

AverageData *dest = (AverageData *)destdata;
int16_t val = *(int16_t *)value;

dest->sum += val;
dest->count++;

return SUCCESS;
}

command result_t Aggregate.init(char *data, ParamList *params, ParamVals *paramValues, bool
isFirstTime){

AverageData *mydata = (AverageData *)data;

mydata->sum = 0;
mydata->count = 0;

return SUCCESS;
}

command uint16_t Aggregate.stateSize(ParamList *params, ParamVals *paramValues) {
return sizeof(AverageData);

}

command bool Aggregate.hasData(char *data, ParamList *params, ParamVals *paramValues) {
return TRUE;

}

command TinyDBError Aggregate.finalize(char *data, char *result_buf, ParamList *params,
ParamVals *paramValues) {

AverageData *mydata = (AverageData *)data;

*(int16_t *)result_buf = (mydata->count == 0 ? 0 : mydata->sum / mydata->count);

return err_NoError;
}

15

command AggregateProperties Aggregate.getProperties() {
return 0;

}
}

