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Multiple Linear Regression: The Equivalence of Least Squares & Covariance
In these notes we will address the linear model
                                                 
[image: image52.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

2

2

1

2

2

1

12

1

12

2

1

Y

Y

Y

Y

Y

s

s

s

s

s

s

s

s

s

)

)

)

)

)

)

)

)

)


(1.0)
Specifically, we will compare the least squares (LS) solution and the theoretical covariance solution for the model parameters. The method of LS typically is framed in relation to data; not random variables. In this framework, the above model becomes:
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(1.1)

Given the data 
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Then the LS solution to (1b) is given by:

                                                  
[image: image7.wmf]Y

X

X

X

B

'

'

1

)

(

-

=

.
(1.2)

While (2) has a very compact form, it is arrived at by solving the LS equations, and then rearranging them into matrix form. This process is very computational, and, in this author’s opinion, lacking in insight. In order to begin to gain some insight into (1.2), write it as:

                                                   
[image: image8.wmf]Y

X

B

X

X

'

'

=

)

(

.
(1.3)
The three individual equations associated with (1.3) are:
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(1.4)
In (1.4) we have defined terms such as 
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. To relate this term to the 2-D random variable 
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. Using this notation, then (1.4) may be written as:
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(1.5)

The first equation in (1.5) is:
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(1.6a)

In words, (1.6a) shows that the estimator is an unbiased estimator. The second equation in (1.5) is:
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Rearranging this equation, we have:
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In view of (1.6a), this equation, in turn, becomes:
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(1.6b)

Carrying out the same steps in relation to the third equation in (1.5), we arrive at:
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(1.6c)

Hence, (1.5) can be written as the following two equations:
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(1.7a)

and
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(1.7b)

Equations (1.7) are exactly the equations that result from the linear model problem, when posed as follows:
For the 3-D random variable 
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We will require that this model satisfy the conditions

(C1) It should be unbiased:              
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and

(C2) The model error should be uncorrelated with the regression variables. In other words, the model should capture all of the correlation structure between X and Y, so that what remains (i.e. the error  
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then the model parameters 
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(1.8e)

Arguments for the Covariance Viewpoint of Linear Regression
1. The problem formulation (1.8) is constructed and solved via fundamental concepts that are reasonable and prudent. This formulation is unlike the LS formulation, which begins with the concept of minimizing the total squared error, but subsequently involves a sequence of mathematical operations that lead to a solution that affords limited insight into any fundamental concepts. 
2. The mathematics of the formulation (1.8) are far less cumbersome than those involved in arriving at (1.2) {c.f. Miller & Miller p. **.] 
3. The covariance method is directly applicable to many types of nonlinear models; in particular, polynomial models.
4. The covariance method can easily accommodate the requirement that the prediction line should go through the origin. This is important in situations wherein it is known from the nature of the problem that if 
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5. Because the model relies on random variables, as opposed to data, the development of simulations can be pursued with more thought and insight. For example, typically, textbooks assume that the data being studied arises from normal distributions. In Miller & Miller, that is why it is termed normal correlation analysis. It may well be that the variables involved are known to be associated with other types of distributions. In such cases, the theory of the model statistics used to assess performance and to carry out hypothesis tests will not, in general, hold. Even so, simulations can be used to obtain their distributional structure. □
Using Matlab to Construct a Linear Model
We will address this in relation to the 3-D random variable, 
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This command will result in 
[image: image39.wmf])

,

,

(

2

1

Y

m

m

m

)

)

)

. To arrive at the covariance estimates, we use the command:
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This command will result in
Let the 
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Then (1.8e) can be written as:
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The Matlab command for obtaining 
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 is  c12 = c12y(1:2,1:2), and the command for 
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