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Investigations After Running ANOVA
1. Chapter 6 Results
Results when µ is of Primary Concern- Suppose that 
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(Remark 2.1):      
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Case 2:  
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For n sufficiently large (i.e. the CLT is a good approximation), then:
(Remark 2.1):      
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Results when σ2 is of Primary Concern- Suppose that 
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(Example 2.2):      
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(Theorem 2.3): 
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 (Theorem 2.7):     
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(Theorem 2.7):     
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Case 2:  
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For n sufficiently large (i.e. the CLT is a good approximation), then:
(Example 2.2):     
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2. Results from Chapter 7 Coupled with Those of Chapter 6
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                                          SST                      =       SSE              +          SSTr
                                    (5)
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Case 1. Retain 
[image: image36.wmf]o

H

:        
[image: image37.wmf]1

2

~

/

-

-

=

mn

X

X

X

t

mn

T

s

m

m

)

)

          and          
[image: image38.wmf]2

1

2

2

2

~

)

1

(

1

-

-

=

mn

mn

SST

c

s

s

s

)


We can now conduct hypothesis testing and compute CI estimates related to 
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Case 1. Announce
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. We can the revisit Case 1 above for this subset. This procedure can be carried out repeatedly in order to ultimately identify those groups for which we will retain 
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Simulations for Instigating Type-2 Errors
The announcement of 
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 is termed a Type-1 error. It is also called the false alarm error. Because sounding the alarm must be done with care, the probability, 
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. A key difference between these two types of errors is that, in relation to the Type-1 error, we have an assumed known value for the parameter in question. In the case where 
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 is true, all the ANOVA results says is that the means are not all equal. There is no assumption as to what they are. And so to investigate a Type-2 error we need to specify true value(s) of the parameter(s) in question. 
Suppose that under the truth of 
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. In this hypothesis testing situation one should refer to the Neyman Pearson Lemma, which states that the likelihood ratio is the most powerful test statistic to use. 

                                  http://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma
We will not address this test statistic here. Instead, we will focus on the use of simulations in relation to a chosen value 
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. The value of simulations is that they can not only be useful in computing a Type-2 error, but they can also provide a description of the distribution of the test statistic for the given 
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3. A Matlab Example  (See code for description)
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(b) Unequal Means: [310 300 300]
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Remark. P=”The act of reporting the p-value of the test” is a random variable. In the above right plot there is a ~50% chance that it will be relatively small. But there is also a good chance that it will be huge! Were we to choose 
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, we would have a ~70% chance of a Type-2 error. □

Matlab Code
%PROGRAM NAME: ftest_for_responsetimes
%X=Response time to drug administration
m = 3; %Number of Treatments
n = 30; %Sample size
muX = 300*ones(1,m); %Mean Response time (sec)
%******
muX(1) = 310;  % <- This value can be changed to study Type-2 errors
%******
MuX = kron(muX,ones(n,1));
covX = (30^2)*eye(3); %Covariance matrix
% Data Generation:
nsim = 5000;
F = zeros(nsim,1); PR1 = F;
for k = 1:nsim
X = mvnrnd(muX,covX,n); % Data Matrix
% Elements of F Statistic:
muhatX = mean(X);
MuhatX = kron(muhatX,ones(n,1));
muhat = mean(muhatX);
SSTr = n*sum((muhatX-muhat).^2);
SSE = sum(sum((X-MuhatX).^2));
SST = SSE + SSTr;
F(k) = (SSTr/(m-1))/(SSE/(m*(n-1)));
PR1(k) = 1 - fcdf(F(k),m-1,m*(n-1));
end
[F(1) , PR1(1)]
pause
% END OF SIMULATIONS
[h,b]=hist(F,50);
db = b(2)- b(1);
fhist = h/(nsim*db);
%---------------
figure(1)
bar(b,fhist)
v = 0:.01:max(b);
ftrue = fpdf(v,m-1,m*(n-1));
hold on
plot(v,ftrue,'r','LineWidth',3)
grid
title('Histogram-based & True fpdf')
pause
[h,b]=hist(PR1,50);
db = b(2)- b(1);
PR1hist = h/(nsim*db);
%---------------
figure(2)
bar(b,PR1hist)
v = 0:.01:max(b);
grid
title('Histogram-based Estimated P-Value of the Test')
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