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CHAPTER 8                  Conditional Expectation & Prediction
8.1 Introduction
We have already discussed the importance of being able to predict the probability of the conditional event 
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, we showed that the predictor that achieves the minimum mean-squared error (mmse) must satisfy the ‘othogonality’ condition: 
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For certain types of nonlinear models (e.g. polynomials), we showed how (1.1) relates to the solution for the model parameters. In this chapter we return to this prediction problem, but in more generality, and with more relevance to the situation wherein we have discrete random variables. In particular, we will address the predictor that is, by far, the most popular predictor; namely the conditional expected value of Y given X.
8.2 The Conditional Expected Value Predictor
Given a 2-D random variable (X,Y), recall that the conditional pdf of Y given X=x is:
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(2.1)
The corresponding conditional expected value of Y given X=x is defined as:
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(2.2a)
Notice that (2a) is a non-random function of x. For notational convenience, denote (2a) as 
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(2.2b)

We are now in a position to define 
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Notice that (2.3) is a function of the random variable X; not the value x. Hence, (2.3) is a random variable. In fact, it is a very important random variable, in the following sense.

Theorem 2.1  Let h(X) be a prediction model for Y, and define the mean squared prediction error:
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Then (4) is minimized for 
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Proof:
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. By linearity of E(*), this is:
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(2.5)

We will now show that the middle term in (5) equals zero. To this end, write


[image: image13.wmf]]}

|

)

)

(

)

(

)(

)

(

[(

{

)]

)

(

)

(

)(

)

(

[(

x

X

X

h

X

X

Y

E

E

X

X

X

Y

E

Y

X

=

-

-

=

-

-

j

j

j

j

. The only term in the conditional expected value 
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that depends on Y is Y, itself. This is important, because in the definition (2a) the integral is over the sample space for Y. Hence, anything that does not depend on Y can be brought outside of the integral, which then equals one in such cases. Therefore, we have
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(2.6)

The last equality in (2.6) follows from the definition (2.2b). In view of (2.6), (2.5) becomes
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. Clearly, the predictor h(X) that minimizes this is 
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Example 2.1 Suppose that (X,Y) has a joint normal pdf. From Theorem 6.9 (p.221), the conditional expected value of Y given X=x is 
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(2.7)

Now, recall that we showed in class, for any (X,Y) the best unbiased linear prediction model is:
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With minimal manipulation, it should be clear that (2.7) and (2.8) are identical. [See Example 3.6 for a more detailed development.] Hence, we have the following remarkable result: 
Result 2.1  For (X,Y) jointly normal, the best linear prediction model for Y is the best among all prediction models. □
8.3 The Conditional Expected Value in the Case of Discrete Random Variables

There is a subtle distinction between (2.7) and (2.8); namely, that whereas (2.7) is a number, (2.8) is a random variable. In the jargon of estimation theory, (2.7) is an estimate of Y, whereas (2.8) is an estimator of Y. We began in chapters 1 and 2 with addressing the distinction between a number, x, and the action, X, that it resulted from. Throughout the semester we continued to emphasize the importance of this distinction. In this chapter, this distinction is of paramount importance in order to understand the quantities 
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 such as those illustrated in (2.7) and (2.8). In this section we will use Bernoulli random variables, both to contribute to a basic understanding of this distinction and to demonstrate the (in)appropriateness of using 
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Example 3.1  Suppose that (X,Y) has a joint Bernoulli pdf. Then
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In particular,
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and
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Now, if we simply replace x with X in (3.1), we obtain
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This expression makes no sense. On the other hand, write:
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(3.2)

Here, 
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 is the indicator function of the random variable X  (i.e. it is, indeed, a function of X, and not x): it equals one when X=k, and equals zero otherwise. Let’s take a moment to study the random variable 
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Then the expected value of W is:
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From (3.3) we see that 
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is an unbiased predictor of Y. This should be no surprise since it is, after all, the conditional mean of Y. Let’s now proceed to compute the variance of 
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Hence, 
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Before we go any further with this case, the following very important comment is in order.

Important Comment 3.1:  Recall that both X and Y are Bernoulli random variables. Recall also, that the problem at hand is to predict a value for Y, given the event 
[image: image45.wmf]]

[

x

X

=

. If we use as our predictor 
[image: image46.wmf])

(

)

|

(

X

X

Y

E

W

Y

Y

j

D

=

=

=

)

 then in the case of the event 
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, and in the case of the event 
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. Notice that in either case our predictions are not elements of the sample space for Y, which is 
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. Imagine you are asked “Given a person’s right eye is blue (=1 versus brown=0), what is your prediction as to the color of the left eye?” If you are using the ‘best’ predictor (in terms of minimum mean squared error), then your answer will not be 0, nor will it be 1. It will be a number between 0 and 1. For example, suppose you computed it that number to be, say, 0.98. What kind of response do you think that you would get? What does this number mean? Does it mean that the left eye will be 98% blue and 2% brown? If you gave that explanation, then a best case scenario would be a room full of laughter. A worst case response would not be nearly so pleasant. 
And so, in the case of predicting one Bernoulli random variable, given the value of another Bernoulli random variable, the mmse predictor 
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is a ridiculous predictor that makes no sense! In fact, in any situation where the sample spaces for X and Y are both discrete, this predictor is equally ridiculous. We will end this important comment with the following 

THOUGHT QUESTION: Given that 
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 is an inappropriate predictor in the case of discrete random variables, then how can it be used to arrive at an appropriate predictor?

ANSWER: The answer to this question is simple! Rather than announcing the predictor value, say, 
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, we will, instead, announce the event 
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We now consider two extreme cases in relation to this 2-D Bernoulli random variable (X,Y).
Case 1: ρ=0. In this case 
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Case 2: ρ=1. In this case 
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From Theorem 1 above we know that (3.2) is the best estimator of Y in relation to mean squared error. Hence, we are led to ask what this error is. 
                
[image: image68.wmf]]

)

(

[

)]

(

[

2

)

(

}

)]

(

{[

2

2

2

X

E

X

Y

E

Y

E

X

Y

E

mse

j

j

j

j

+

-

=

-

=

D

.
(3.6)
The first term on the right side of the equality in (3.6) is
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Hence, (3.6) becomes
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Since 
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Continuing the above two cases in relation to (3.8), we have

Case 1: ρ=0. In this case 
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Case 2: ρ=1. In this case 
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Notice that in the last example the ‘worst case’ was
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And so, in what real sense is 
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 the best predictor? Well, if one were presented with a large collection of 2-D Bernoulli random variables, then on the average, giving the ridiculous answer 
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 would result in the smallest mean-squared prediction error. [At which point, I, for one, would say: So what! It’s a ridiculous predictor.]

We now present two practical examples where the predictor described in the above ANSWER makes perfect sense.

Example 3.2 Suppose that to determine whether a person has cancer, two tests are performed. The result of each test can be either negative (0) or positive (1). Suppose that, based on a large data base, the 2-D Bernoulli random variable (X,Y) has the following joint probabilities: 
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. After the first test has been performed, the patient often would like feedback regarding the probabilities associated with the next test, yet to be performed. In this setting, the sample space for the optimal predictor is:
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Hence, if the first test is negative, then the physician should tell the patient that the second test has a probability of 2/92 of being positive. If the first test is positive, then the patient should be told that the probability that the second test will be positive is ¾. However, sometimes it may be in the patient’s best interest to not give such quantitative feedback. In this situation, if the first test is negative, the patient could simply be told not to worry (yet). Whereas, if the first test is positive, then the patient could be told that, while it is more likely the second test will be positive than negative, there is still a significant chance that it will be negative- and so, again- don’t worry too much (yet). □

Example 3.3 Consider a survey where each respondent is asked two questions. The set of possible responses for each question is {1, 2, 3, 4, 5 }. Let the 2-D random variable (X, Y) correspond to recording the responses of the two questions. It is desired to determine how well the answer to the second question can be predicted from the answer to the first. 
One of the investigators proposes using a linear model:  
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. Since no element in this sample space is in 
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, the investigator decides to “round-down”. However, that poses a problem; namely that 3 is not in this modified space. He then decides to “round up”. But that entails the same problem; namely that 1 is not in the space. Finally, he decides to simply map the 5 numbers in 
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directly to the 5 numbers in 
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. While this resolves the above type of problem, it begs the question: How well-justified is the model, after all?
The approach of this investigator is an all too common one. And the ad hoc manner in which issues such as those above are resolved can lead others to question the value of the model, and can also lead to poor performance. A more rigorous approach is the optimal approach; namely to use the conditional expected value of Y given X. However, there is a price; and it is that one needs to have enough data for reliable estimates of the joint probabilities. Denote these joint probabilities as 
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(3.9a)
Finally, the best predictor is:
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(3.9b)

As was the case in Example 3.2, we need to define what we mean by the quantity 
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(3.9c)

Hence, the meaning of (3.9b) is
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(3.9d)

Suppose, for example, that we want to predict Y based on the event [X=3]. Then (17d) becomes
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(3.10)
A FUN QUESTION: What is the sample space for (3.9d)?

To finish this example, let’s consider a predictor, 
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whose sample space is the same as that of Y; namely, {1,2,3,4,5}.
From (3.10) we clearly have
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(3.11)
Hence, in the case where we have the event 
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. As mentioned above, one should take caution in using this estimator due to the fact that there may be more than one (essential) maximum. 
It should be clear that the mmse predictor (3.10) will almost never include prediction values consistent with SY. A more appropriate predictor would be the one that uses (3.11) to arrive at a predictor that is consistent with SY. Even then, expanding on that predictor, one could choose to be more specific; e.g. to say: “ You will have [Y=1] with probability 
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Having said that, then one might say “Why don’t you just tell me the value of Y that has the highest probability given X=3?” My answer would be in the form of a question: “Wouldn’t you want to know if two different values of Y have very similar probabilities, given X=3?”  □

Before we proceed to address 
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 in the context of continuous random variable such as that of Example 1.1, it is appropriate to pause here, and respond to the following concern one might well have:

“So… OK. You’re telling me that for discrete random variables the mmse predictor 
[image: image120.wmf])

|

(

X

Y

E

 is not a good idea, right? But then, how do I use the (x,y) data that I will get to arrive at the predictor that you are arguing is better?”
ANSWER: We would use the (x,y) data to obtain estimates of all of the conditional probabilities.
Comment 3.2: The above answer highlights the fact that we must estimate all of the conditional probabilities. The number of conditional probabilities is the same as the number of joint probabilities. Hence, in this example we would need to estimate a total of 25 joint probabilities. To obtain reliable estimates of so many unknown parameters would require a suitably large amount of data; as oppose to estimating only a couple of parameters, such as the mean and variance. As with the point estimation of any unknown parameter, it would behoove one to consider the associated estimator in relation to things like confidence interval estimation and hypothesis testing. In relation to hypothesis testing, an obvious test might be one that considers whether two unknown conditional probabilities are in fact equal, versus one being larger than the other. □
Example 3.4 Consider an experiment that involves repeated rolling of a fair die. Let X=The act of recording the first roll number such that we roll a ‘6’, and let Y=The act of recording the number of rolls associated with a ‘1’ prior to the first roll that we have a ‘6’. The problem is to obtain the form of the best unbiased predictor: 
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Solution: We will begin by obtaining the expression for 
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. In words, we now have the situation where we first roll a ‘6’ on the xth roll. Define the x-D random variable 
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And so, we obtain                                
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(3.12)
Now, we could stop here. But let’s instead explore some of the properties of this best predictor, (3.12). In this way, we can bring a variety of major concepts to bear on a better understanding of it.

(a) What is the sample space for X=The act of recording the first roll number such that we roll a ‘6’?
Answer: 
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(b) What is the pdf for X?

Answer: 
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(c) What are the mean and variance of X? [Hint: Does the pdf have a name?]
Answer:  X ~ nbino(k=1 , p=1/6). And so, from
 http://en.wikipedia.org/wiki/Negative_binomial_distribution 

or

http://mathworld.wolfram.com/NegativeBinomialDistribution.html 
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Now it is easy ( to obtain a complete description of the structure of (3.12):
(d) What is the sample space for 
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Answer: 
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(e) What is the pdf for 
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Answer: 
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(f) What are the mean and variance of 
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(g) Use Matlab to obtain a plot of 
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(h) Even though 
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 is the best unbiased predictor of Y in the sense that it achieves the mmse, why is this an ‘undesirable’ predictor?

Answer: It is undesirable because it predicts values that are not in SY .

(i) How might you arrive at a more ‘desirable’ predictor (i.e. one whose sample space is consistent with that of Y)?    [Hint: What is 
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Answer: Use the relative values of 
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to choose the y-value have the largest probability for a given value x. [Note: If you haven’t figured it out, this estimator is the maximum likelihood estimator! (]
To further investigate the answer to (i) consider the following Matlab code that yields a sequence of plots of the pdf of 
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~ binomial(x-1,p=0.2):

%PROGRAM NAME: ch8ex3_4.m
% This code uses the conditional pdf of Y|X=x 
% ~ Bino(x-1, 0.2) to obtain an alternative estimator
% of Y=The # of 1's before X=xth roll of a die for a 6.
xmax = 50;
x = 1:xmax;
p = 0.2;
pygx = zeros(1,xmax);
pygx(1)=1; % Pr[Y=0 | X=1]
for x = 2:xmax
    xm1 = x-1;
    xm1vec = 0:xm1;
    fxm1vec = binopdf(xm1vec,xm1,p);
    stem(xm1vec,fxm1vec)
    grid
    xm1
    pause
end
We will now run this code. After each plot, the code is paused so that we can investigate the probability structure of 
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. In particular, identify the highest probability value of this random variable. Perhaps the plots will lead you to construct an alternative estimator 
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The last example addressed the tossing of a die. It is a classic type of example that is found in many textbooks on probability and statistics. It is also the type of example that can be viewed as quite uninteresting to many students. It is, however, readily couched in relation to many more interesting problems. Consider the following example.

Example 3.5 Suppose that a certain vehicle design includes 6 types of potential malfunctions, with severity ratings of 1 (very minor) to 6 (very major). In this context then, the last example is concerned with predicting the number of very minor malfunctions that could precede the occurrence of the first very major malfunction. Now let’s add an element of reality. Suppose that the probability of a malfunction is inversely proportional to its severity level. At this point we will assume that malfunctions that occur over time are mutually independent (not all that realistic, in general- but it’s easier to deal with at this point). What we now have are independent, but non-identical Bernoulli random variables. Hence, the pdf of 
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. Even so, at this point in the course the student should not be intimidated by the lack of a ‘convenient’ pdf. Clearly, the process of arriving at the predictor (3.11) will be more involved. But the payoff might well be worth the effort. For example, suppose that the very minor malfunction as probability 0.95, while the very major malfunction as probability 0.01. For the moment let’s ignore the other levels of malfunctions. Furthermore, let’s assume that the cost associated with a very minor malfunction is, say, $100, while that associated with a major malfunction is, say, $10,000. Then of interest in this problem setting is to predict the cost of vehicle upkeep prior to a first major cost. This author feels that many companies would be very interested in being able to predict such costs. □
We now proceed to elaborate upon Example 3.2. 
Example 3.6 Let 
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. Then the joint pdf is given by (see p.220):
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Integrating (3.13) over the interval 
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for y (resp. x ) gives (see p.220-221):
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(3.14)

The conditional pdf of Y given X=x for continuous random variables X and Y is 
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Hence, from (3.13) and (3.14) we obtain (see Theorem 6.9 on p. 221):
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(3.15)

From (3.15) we have
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Recalling that 
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. These are exactly the model parameters we obtained for the best linear unbiased predictor of X given X, regardless of the underlying pdf’s. Hence, we can conclude that in the case of jointly normal random variables, the best linear predictor of Y using X is the best among all unbiased predictors. [Ah!! If only everything in life was normal (! ]
Notice also that, given knowledge that X=x, the random variable 
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Example 3.7  Let 
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be a ‘time’-indexed collection of random variables (i.e. a random process), and suppose that this collection adheres to the following conditions:

(C1): For any index, k, 
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(C2): For any index, k, 
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(C3): for any indices, j,k, 
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 (i.e. the covariance depends only on how far apart the indices are).

A random process that adheres to the above conditions is said to be a wide sense stationary (wss) process.

Now, suppose that the process has 
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 and adheres to the following recursion:
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(3.16)

where the random variables 
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also satisfies the above conditions, and is therefore also a wss process. However, because 
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In view of (3.16), the pdf of the conditional expected value of Xk+1 given 
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(3.17)

However, multiplying both sides of (3.16) by Xk-1 and taking expected values of both sides gives
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[Note that since 
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is a white noise process, the random variable Uk is independent of Xk-1 since the latter depends only on 
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Specifically, from (3.17) and (3.18) we see that the random variable 
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Since 
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In words then, we see that the predictor of Xk+1 which is 
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has variance that is exactly the variance of the prediction ‘error’: 
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. Furthermore, no predictor can do better than this because. Why? Well, the predictor is 
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 is, after all, the best predictor. Viewed another way, because of the fact that 
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is a white noise process,  it is totally random, or equivalently, totally unpredictable.  □
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