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CHAPTER 6    Point Estimation

6.1 Introduction
Statistics may be defined as the science of using data to better understand specific traits of chosen variables. In Chapters 1 through 5 we have encountered many such traits. For example, in relation to a 2-D random variable 
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Definition 1.1 Let 
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is said to be a point estimator of 
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Remark 1.1 The term ‘point’ refers to the fact that we obtain a single number as an estimate; as opposed to, say, an interval estimate. 
Much of the material in this chapter will refer to material in the course textbook, so that the reader may go to that material for further clarification and examples.

6.2 The Central Limit Theorem (CLT) and Related Topics (mainly Ch.8 of the textbook)
Even though we have discussed the CLT on numerous occasions, because it plays such a central role in point estimation we present it again here.
Theorem 2.1 (Theorem 8.3 of the textbook)  (Central Limit Theorem) Suppose that 
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Remark 2.1 In relation to point estimation of 
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Remark 2.2 The authors state (p.269) that “In practice, this approximation [i.e. that 
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, regardless of the actual shape of the population sampled.” Now, while this is, indeed, a ‘rule of thumb’, that does not mean that it is always justified. There are two key issues that must be reckoned with, as will be illustrated in the following example.

Example 2.1. Suppose that 
[image: image24.wmf])

(

~

}

{

1

X

iid

X

n

k

k

=

with X ~ Bernoulli(p). Then 
[image: image25.wmf]p

X

=

m

and 
[image: image26.wmf]n

p

p

X

/

)

1

(

2

-

=

s

. In fact, 
[image: image27.wmf])

,

(

)

/

1

(

~

p

n

Binomial

n

X

·

. Specifically, 
[image: image28.wmf]n

k

k

X

n

k

x

S

0

}

/

{

=

=

=

. 
Case 1: n = 30 and p = 0.5.Clearly, the shape is that of a bell curve. 
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Figure 2.1  The pdf of 
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Clearly, 
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is a discrete random variable; whereas to claim that 
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is to claim that it is a continuous random variable. To obtain this continuous pdf, it is only necessary to scale Figure 1 to have total area equal to one (i.e. divide each number by 1/30, and use a bar plot instead of a stem plot). The result is given in Figure 2.
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Figure 2.2 Comparison of the staircase pdf and the normal pdf. The lower plot shows the error (green) associated with using the normal pdf to estimate the probability of the double arrow region.
Case 2: n = 30 and p = 0.1.

[image: image35.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

PDF of X ~ (1/n)*binomial(30,0.5)


[image: image36.emf]-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

1

2

3

4

5

6

7

8

Continuous Approximation of X


Figure 2.3 The pdf of 
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The problem here is that by using the normal approximation, we see that 
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We now address some sampling distribution results given in Chapter 8 of the text.
Theorem 2.2 (Theorem 8.8 in the textbook) For 
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Proof: The proof of this theorem relies on two ‘facts’:

(i) For 
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Claim 2.1   For 
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The proof of the claim 
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The proof of the claim 
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Example 2.2  Suppose that 
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Solution: Write 
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Finally, if n is sufficiently large that the CLT holds, then 
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Proof:  
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Theorem 2.3 (Theorem 8.11 of the textbook)  Given 
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Proof: [This is one reason that a proof can be insightful; not simply a mathematical torture (]
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But 
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where the rightmost equality follows from the independence result (not proved).  
Hence, we have shown that       
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Remark 2.3  A comparison of Theorems 2.2 and 2.3 reveals the effect of replacing the mean 
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Theorem 2.4 (Theorem 8.12 in the textbook)  Suppose that 
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This pdf is called the (student) t distribution with v degrees of freedom and is denoted as tv.
From Theorems 2.3 and 2.4 we immediately have

Theorem 2.5 (Theorem 8.13 in the textbook) If 
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Explain: 
Theorem 2.6 (Theorem 8.14 in the textbook) Suppose that 
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As an immediate consequence, we have

Theorem 2.7 (Theorem 8.15 in the textbook) Suppose that 
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Remark 2.4  It should be clear that this statistic plays a major role in determining whether two variances are equal or not.

Q: Suppose that 
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 is large enough to invoke the CLT. How could you use this to arrive at another test statistic for deciding whether two variances are equal? A: Use their DIFFERENCE
6.3 A Summary of Useful Point Estimation Results

The majority of the results of the last section pertained to the parameters 
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[image: image103.wmf])

,

;

(

~

2

X

X

X

x

f

X

s

m

, and that 
[image: image104.wmf]n

k

k

X

1

}

{

=

are iid data collection variables that are to be used to investigate the unknown parameter 
[image: image105.wmf]X

m

. For such an investigation, we will use 
[image: image106.wmf]X

X

=

m

)

.
Case 1: 
[image: image107.wmf])

,

;

(

~

2

X

X

x

N

X

s

m


(Remark 2.1):      
[image: image108.wmf])

1

,

0

(

~

)

/

/(

)

(

N

n

Z

X

X

X

s

m

m

-

=

)

for any n, when 
[image: image109.wmf]2

X

s

is known.
(Theorem 2.5):     
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Case 2:  
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For n sufficiently large (i.e. the CLT is a good approximation), then:
(Remark 2.1):      
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Results when σ2 is of Primary Concern- Suppose that 
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 (Theorem 2.7):     
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(Theorem 2.7):     
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Case 2:  
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For n sufficiently large (i.e. the CLT is a good approximation), then:
(Example 2.2):     
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Application of the above results to (X,Y)-
For a 2-D random variable, 
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The perhaps more interesting situation is where are concerned with either 
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And so, we are now in the setting where we are concerned with 
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We also have 
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This can be written as:
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And so, we are led to ask the 

Question: Suppose that 
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Answer: As noted above, the mean of W is 
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Figure 3.1 Plot of the simulation-based estimate of 
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The Matlab code is given below.

% PROGRAM name: z1z2.m
% This code uses simulations to investigate the pdf of W = Z1*Z2
% where Z1 & Z2 are unit normal r.v.s with cov= r;
nsim = 10000;
r=0.5; 
mu = [0 0]; Sigma = [1 r; r 1];
Z = mvnrnd(mu, Sigma, nsim);
 plot(Z(:,1),Z(:,2),'.');
 pause
 W = Z(:,1).*Z(:,2);
 Wmax = max(W); Wmin=min(W);
 db = (Wmax - Wmin)/50;
 bctr = Wmin + db/2:db:Wmax-db/2;
 fw = hist(W,bctr);
 fw = (nsim*db)^-1 * fw;
 bar(bctr,fw)
 title('Simulation-based pdf for W with r = 0.5')
Conclusion: The simulations revealed a number of interesting things. For one, the mean was 
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. One would have thought that for 10,000 simulations it would have been closer to the true mean 0.5. Also, and not unrelated to this, is the fact that 
[image: image169.wmf])

(

w

f

W

has very long tails. Based on this simple simulation-based analysis, one might be thankful that the mathematical pursuit was not readily undertaken, as it would appear that it will be a formidable undertaking! 
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Computation of fXY(w):
Method 1: Use THEOREM 7.2 on p.248 of the book. [A nice example of its application (]
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Hence, the pdf for 
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We now apply this to: 
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  [see DEFINITION 6.8 on p.220.]
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Hence,
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I will proceed with a possibly useful integral, but this will not, in itself, give a closed form for (***). [Table of Integrals, Series, and Products by Gradshteyn & Ryzhik  p.307 #3.325]
                                                         
[image: image184.wmf]b

a

x

b

x

a

e

a

dx

e

2

0

)

(

2

1

2

2

-

¥

+

-

=

ò

p

.

Method 2 (use characteristic functions):
Assume that X and Y are two independent standard normal random variables and let us compute the characteristic function of XY=W. 
One knows that 
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Hence,
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where (G&R p.419 entry 3.7542) is:
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where 
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is a Bessel function of the third kind, also called a Hankel function.  Yuck!!!
For my own possible benefit: The OP mentions the characteristic function of the product of two independent brownian motions, say the processes (Xt)t and (Yt)t. The above yields the distribution of Z1=X1Y1 and, by homogeneity, of Zt=XtYt which is distributed like tZ1 for every t⩾0. However this does not determine the distribution of the process (Zt)t. For example, to compute the distribution of (Zt,Zs) for 0⩽t⩽s, one could write the increment Zs−Zt as Zs−Zt=Xt(Ys−Yt)+Yt(Xs−Xt)+(Xs−Xt)(Ys−Yt) but the terms Xt(Ys−Yt) and Yt(Xs−Xt) show that Zs−Zt is not independent on Zt and that (Zt)t is probably not Markov. [NOTE: Take X and Y two Gaussian random variables with mean 0 and variance 1. Since they have the same variance, X−Y and X+Y are independent.]□
6.4 Simple Hypothesis Testing
Example 4.1 (Book 8.78 on p.293): A random sample of size 25 from a normal population had mean value 47 and standard deviation 7. If we base our decision on Theorem 2.5 (t-distribution), can we say that this information supports the claim that the population mean is 42?
Solution: While not formally stated as such, this is a problem in hypothesis testing. Specifically,
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The natural rationale for deciding which hypothesis to announce is simple:
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Figure 4.1 A plot of 
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There are a number of ways to proceed from here.

Case 1: Specify the false alarm probability, 
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From the above data, we have 
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Case 2: Use the data to first compute 
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QUESTION: Are we willing to risk announcing 
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 with the probability of being wrong equal to .0017?

ANSWER: If we were willing to risk a 5% false alarm probability, then surely we would risk an even lower probability of being wrong in announcing 
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. Hence, we should announce 
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Comment: In both cases we ended up announcing 
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. So, what does it matter which case we abide by? The answer, with a little thought, should be obvious. In case 1 we are announcing 
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The false alarm probability obtained in case 2 of the above example has a name. It is called the p-value of the test. It is the smallest false alarm probability that we can achieve in using the given data to announce 
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.

As far as the problem goes, as stated in the textbook, we are finished. However, we have ignored the second type of error that we could make; namely, announcing 
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 true, when, in fact, 
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Suppose, for example, that we assume 
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. And so, the question becomes: How does the random variable 
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Figure 4.2 The pdf for 
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Now let’s return to the above two cases.

Case 1 (continued): Our decision rule for announcing 
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 with a 5% false alarm probability relied on the event 
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Hence, if, indeed, the true mean is 
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Case 2 (continued): Our decision rule for announcing 
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 with false alarm probability 0.17%  relied on the event 
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Hence, if, indeed, the true mean is 
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, then under the assumption that the CLT is valid, we have a 92% chance of announcing that 
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using this decision rule.

In conclusion, we see that the smaller that we make the false alarm probability, the greater the type-2 error will be. Taken to the extreme, suppose that no matter what the data says, we will simply not announce 
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. Then, of course our false alarm probability is zero, since we will never sound that alarm. However, by never sounding the alarm, we are guaranteed that with probability one, we will announce 
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 when 
[image: image271.wmf]1

H

 is true.

A reasonable question to ask is: How can one select acceptable false alarm and type-2 error probabilities. One answer is given by the Neymann Pearson Lemma. We will not go into this lemma in these notes. The interested reader might refer to:
                         http://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma    

Finally, we are in a position to return to the problem entailed in (3.1), where we see that we are not subtracting a number (which would merely shift the mean), but we are subtracting a random variable. Hence, one cannot simply say that (3.1) is a mean-shifted 
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 random variable. We will leave it to the interested reader to pursue this further. One simple approach to begin with would use simulations to arrive at the pdf for (3.1). □

Example 4.2 (Problem 8.79 on p.293 of the textbook) A random sample of size n=12 from a normal population has (sample) mean 
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Solution: The statistic to be used is 
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In the event that, indeed, 
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And so now, one needs to decide whether or not one should announce 
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. One the one hand, one could announce 
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 with a reported p-value of 0.10 and let management make the final announcement. On the other hand, if management has, for example, already ‘laid down the rule’ that it will not accept a false alarm probability greater than, say, 0.05, then one should announce 
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. □
We now proceed to some examples concerning tests for an unknown variance.

Example 4.3 (EXAMPLE 13.6 on p.410 of the textbook) Let X denote the thickness of a part used in a semiconductor. Using the iid data collection variables 
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 at a 5% significance level (i.e. a 5% false alarm probability).
Solution: From Theorem 2.3 we have 
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Hence, 
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Now let’s obtain the p-value for this test. If we use 
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Next, suppose that instead of using the sample mean (which is, by the way, not reported) one had used the design mean thickness. Then we have 
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Example 4.4 Suppose that X = The act of recording the number of false statements of a certain news network in any given day. We will assume that X has a Poisson distribution, with mean 
[image: image306.wmf]2

=

X

m

. Let 
[image: image307.wmf]X

iid

X

k

k

~

}

{

5

1

=

be the number of false statements throughout any 5-day work week. In order to determine whether or not the network has decided to increase the number of false statements, we will test
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is the average number of false statements in any given week. We desire a false alarm probability of ~10%.
QUESTION: How should we proceed?
ANSWER: Simulations!

%PROGRAM NAME: avgdefects.m
nsim = 40000;
n = 5;
mu = 2;
x=poissrnd(mu,n,nsim);
muhat = mean(x);
db = 1/n;
bctr = 0:db:5;
fmuhat = nsim^-1 *hist(muhat,bctr);
figure(1)
stem(bctr,fmuhat)
hold on
pause
for m = 1:10
    x=poissrnd(mu,n,nsim);
muhat = mean(x);
db = 1/n;
bctr = 0:db:5;
fmuhat = nsim^-1 *hist(muhat,bctr);
stem(bctr,fmuhat)
end
6.5 Confidence Intervals
The concept of a confidence interval for an unknown parameter, θ, is intimately connected to the concept of simple hypothesis testing. To see this, consider the following example.

Example 5.1 Let X = The act of recording the body temperature of a person who is in deep meditation. We will assume that 
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is known and that as sample size n=25 will be used. The estimator 
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will be used in the investigation. 

Hypothesis Testing:
In the hypothesis testing portion of the investigation we begin by assuming that, under 
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Our decision rule for this test is, in words: If 
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Here, the number 
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In other words, we require a false alarm probability  (or significance level) of size 0.10.
In the last section, we used the standard test statistic: 
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. To convert (5.1) into an event involving this Z, we use the concept of equivalent events:
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From (5.2) we obtain
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Hence, if the magnitude of 
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Now, instead of going through the procedure of using the standard test statistic, Z, let’s use (5.1) more directly. Specifically, 
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Because 
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, from (5.3) we obtain
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Hence, there was no need to use the standard statistic! Furthermore, the threshold (5.5) is in units of oF, making it much more attractive that the dimensionless units of (5.3).
QUESTION: Given that using (5.1) to arrive at (5.5) is much more direct than using (5.2) and (5.3), then why in the world did we not use the more direct method in the last section?

ANSWER: The method used in the last section is a method that has been used for well over 100 years. It was the only method that one could use when only a unit-normal z-table was available. Only in very recent years has statistical software been designed that precludes the use of this table. However, there are random variables other than the normal type for which a standardized table must be used. One example is 
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Confidence Interval Estimation: 
We begin here with the same event that we began hypothesis testing with; namely
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We then form the same probability that we formed in hypothesis testing; namely
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A close inspection of equations (5.1) and (5.6) will reveal a slight difference. Specifically, in (5.1) we have the parameter 
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Finally, using the concept of equivalent events, we have
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Notice that the event A has been manipulated an equivalent event that is 
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It is the interval (5.7) that is called the 90% 2-sided Confidence Interval  (CI) for the unknown mean 
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Remark 5.1 The interval (5.7) is an interval whose endpoints are random variables. In other words, the CI described by (5.7) is a random endpoint interval. It is NOT a numerical interval. Even though (5.7) is a random endpoint interval, the interval width is 0.69; that is, it is not random. 
To complete this example, suppose that after collecting the data, we arrive at 
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A General Procedure for Constructing a CI:
Let 
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Step 3: Use the concept of equivalent events to arrive at an expression of the form:
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The desired CI is then the random endpoint interval 
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The above procedure is now demonstrated in a number of simple examples.

Example 5.2  Arrive at a 98% two-sided CI estimate for 
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Solution: Even though the sample mean 
[image: image376.wmf])

10

/

,

(

~

2

X

X

X

N

s

m

m

)

, we do not have knowledge of 
[image: image377.wmf]X

s

, and so will need to use 
[image: image378.wmf]X

s

)

.Since n=10 is too small to invoke the CLT, we will use the test statistic
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desired CI is the random endpoint interval 
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Example 5.3 In an effort to estimate the variability of the temperature, T, of a pulsar, physicist used n=100 random measurements. The data gave the following statistics: 
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Obtain a 95% 2-sided CI estimate for 
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Solution: We will begin by using the point estimator of 
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Step 1: The most common test statistic in relation to variance is 
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Hence, the 95% 2-sided CI is the random endpoint interval 
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Now, because 
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is an average of iid random variables, and because n=100 would seem to be large enough to invoke the CLT, repeat the above solution with this knowledge.
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And so, from the CLT, we have 
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Step 2: 
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Hence, the desired CI is the random endpoint interval
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And so the CI estimate is: 
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This interval is almost exactly equal to the interval obtained above. (
Example 5.4 Suppose that it is desired to investigate the influence of the addition of background music in drawing customers into your new café during the evening hours. To this end, you will observe pedestrians who walk past your café while no music is playing, and while music is playing. Let X = The act of noting whether a pedestrian enters (1) or doesn’t enter (0) your café when no music is playing. Let Y = The act of noting whether a pedestrian enters (1) or doesn’t enter (0) your café when music is playing. 
Suppose that you obtained the following data-based results: 
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Solution: We will assume that the actions of the pedestrians are mutually independent. Then we have
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Assumption: For a first analysis, we will assume that the CLT holds in relation to both 
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Then 
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where we defined 
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. The standard approach [See Theorem 11.8 on p.365 of the text]  is to use:
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Then 
[image: image424.wmf]064

.

0

=

q

s

)

)

, and so 
[image: image425.wmf])

1

,

0

(

~

064

.

N

Z

·

-

=

q

q

)

, and with 
[image: image426.wmf]645

.

1

95

.

0

]

Pr[

-

=

Þ

=

>

th

th

z

z

Z

.

Hence, we have the following equivalent events:       
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Recall that the smallest possible value for 
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 is -1. Hence, the CI estimate is: [-1 , .05+.105] = [-1 , .155] . 

Conclusion: Were you to repeat this experiment many times, you would expect that 95% of the time, the increase in clientele due to music would be no more that ~15%. 
Investigation of 
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  and its influence on the CI 
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Note: The primary intent of this section is to illustrate that: (i) the CI is a random variable, (i.e. the obtained CI estimate is simply one measurement of this variable), and (ii) the CLT assumption depends upon the size of the events being considered in relation to the size of the increments of the actual sample space for the variable. This section can be skipped with no loss of basic understanding of the above. This material could serve as the basis of a project, as it demonstrates a number of major concepts that could be elaborated upon (e.g. sample spaces, events, estimators, simulation-based pdf’s of more complicated estimators.)
In the above analysis we used estimates of the unknown parameters 
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Figure 5.1 Simulation-based (nsim = 10,000) estimate of 
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In relation to this figure, we have 
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We are now proceed to investigate the random variable that is the upper random endpoint of the CI 
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The simulations that resulted in Figure 5.1 also resulted in Figure 5.2 below.
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Figure 5.2  Simulation-based (nsim = 10,000) estimate of 
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 using a 10-bin scaled histogram.

Now, based on Figure 5.2, one could reasonably argue that the pdf, 
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, has a normal distribution- RIGHT?

Well? Let’s use a 50-bin histogram instead of a 10-bin histogram, and see what we get. We are, after all, using 10,000 simulations. And so we can afford finer resolution. The result is shown in Figure 5.3.
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Figure 5.3  Simulation-based (nsim = 10,000) estimate of 
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 using a 50-bin scaled histogram.

There are two peaks that clearly stand out in relation to an assumed bell curve shape. Furthermore, they real, in the sense that they appear for repeated simulations! 

Conclusion 1: If one is interested in events that are much larger than the bin width resolution, which in Figure 5.3 is ~0.011, then the normal approximation in Figure 5.2 may be acceptable. However, if one is interested in events on the order of 0.011, then Figure 5.3 suggests otherwise. 

The fact of the matter is that 
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The smallest element of 
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The next smallest event is {-0.99}. This event is equivalent to 
[image: image465.wmf]]

99

0

[

100

1

50

2

1

=

Ç

=

=

=

=

å

=

k

k

X

Y

Y

Y

K

.

Clearly, the explicit computation of such equivalent events will become more cumbersome as we proceed. As an alternative to this cumbersome approach, we will, instead, simply use a bin width that is much smaller than 0.01 in computing the estimate of 
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. Using not 50, but 500 bins resulted in Figure 5.4 below.
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Figure 5.4  Simulation-based (nsim = 10,000) estimate of 
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 using a 500-bin scaled histogram. The lower plot includes the zoomed region near 0.08.
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Now that we have an idea as to the structures of the marginal pdf’s 
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, we need to investigate their joint probability structure. To this end, the place to begin is with a scatter plot of 
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. This is shown in Figure 5.6.
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Figure 5.6 A scatter plot of 
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 for nsim =10,000 simulations.

Clearly, Figure 5.6 suggests that 
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is overlaid against the simulation-based pdf in the figure below.
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Figure 5.7 Overlaid plots of the pdf of 
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Comment:   Now, the truth of the matter in the chosen setting (the value of simulations- you know the truth. (!) is that 
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norminv(.05,.15,.07) = 0.035. And so, we actually have a 96.5% CI estimator. While this is only 1.5% larger than a 95% CI, it is an increase in the level of confidence. 

Summary & Conclusion This example to illustrate how one typically accommodates the unknown standard deviation associated with the estimated difference between two proportions. Because this standard deviation is a function of the unknown proportions, one typically uses the numerical estimates of the same to arrive at a numerical value for it. Hence, the estimator of the standard deviation is a random variable. Rather than using a direct mathematical approach to investigating its influence on the CI, it was easier to resort to simulations. In the course of this simulation-based study, it was discovered that the actual pdf of 
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 are correlated; as opposed to the case of normal random variables, where they are independent. For larger event sizes, it was found that the random variable  is well-approximated by a normal pdf. It was also found that it corresponds not to a 95% CI but to a 96.5% CI.  A one-sided CI was chosen simply to illustrate contrast to prior examples that involved 2-sided CI’s. It would be interesting to re-visit this example not only with other types of CI’s but also in relation to hypothesis testing. Finally, to tie this example to hypothesis testing, consider the hypothesis test:
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Furthermore, suppose that we choose a test threshold 
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, the type-2 error is 0.5 (see Figure 5.4).[Note: The Matlab code used in relation to this example is included in the Appendix.] □
6.6 Summary
This chapter is concerned with estimating parameters associated with a random variable. Section 6.2 included a number of random variables associated with this estimation problem. Many of these random variables (in this context they are also commonly referred to as statistics) relied on the CLT. Section 6.3 addressed some commonly estimated parameters and the probabilistic structure of the corresponding estimators. The results in sections 6.2 and 6.3 were brought to bear on the topics of hypothesis testing and confidence interval estimation in sections 6.4 and 6.5, respectively. In both topics the distribution of the estimator plays the central role. The only real difference between the two topics is that in confidence interval estimation the parameter of interest is unknown, whereas in hypothesis testing it is known under H0.
Appendix                    Matlab code used in relation to Example 5.4
%PROGRAM NAME: example54.m
px=0.13; nx = 100;
py=0.18; ny = 50;
nsim = 10000;
x = ceil(rand(nx,nsim) - (1-px));
y = ceil(rand(ny,nsim) - (1-py));
mx = mean(x);
my = mean(y);
thetahat = my - mx;
%vx = nx^-1 *mx.*(1-mx);
%vy = ny^-1 *my.*(1-my);
vx = var(x)/nx; 
vy = var(y)/ny;
vth = vx + vy;
sth = vth.^0.5;
msth = mean(sth)
ssth = std(sth)
vsth = ssth^2;
figure(1)
db = (.09 - .03)/50;
bvec = .03+db/2 : db : .09-db/2;
fsth = (nsim*db)^-1 *hist(sth,bvec);
bar(bvec,fsth)
title('Simulation-Based Estimate of the pdf of std(thetahat)')
grid
pause
figure(2)
db = (.3 +.25)/500;
bvec = -.25+db/2 : db : .3-db/2;
fth = (nsim*db)^-1 *hist(thetahat,bvec);
bar(bvec,fth)
title('Simulation-Based Estimate of the pdf of thetahat')
grid
mthetahat = mean(thetahat)
sthetahat = std(thetahat)
vthetahat = sthetahat^2
varthetahat = px*(1-px)/nx + py*(1-py)/ny
pause
figure(3)
plot(thetahat,sth,'*')
title('Scatter Plot of thetahat vs std(thetahat)')
grid
pause
%Compute mean and std dev of CI
cmat = cov(thetahat,sth);
cov_th_sth = cmat(1,2)
mCI = mthetahat + 1.645*msth
vCI = vthetahat+1.645^2*vsth + 2*1.645*cov_th_sth;
sCI = vCI^.5
pause
xx = -.1:.0001:.4;
fn = normpdf(xx,mCI,sCI);
CIsim = thetahat +1.645*sth;
db = (.4+.1)/50;
bvec = -.1+db/2:db:.4-db/2;
fCIsim = (db*nsim)^-1 *hist(CIsim,bvec);
figure(4)
bar(bvec,fCIsim)
hold on
plot(xx,fn,'r','LineWidth',2)
grid
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