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CHAPTER 5                     The Expectation Operator
Definition 5.1 Let 
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(5.1)
The integral (1) is an n-D integral (or sum, if 
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is discrete). It could be argued that (5.1) is the only equation one might need in order to understand anything and everything related to expected values. In this chapter we will attempt to convince the reader that this is the case. 
The standard approach to this topic is to first define the mean of X, then the variance of X, then the absolute moments of X, then the characteristic function for X, etc. Then one proceeds to investigate expected values related to the 2-D random variable (X,Y). Then one extends the approach to expected values related to the n-D random variable, 
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. Then (if the reader is still enrolled in the class () expected values of functions of these random variables are addressed. Often, students become a bit overwhelmed with all the definitions and apparently new concepts. Indeed, all of these concepts are contained in (5.1). To be sure, (5.1) is a ‘dense’ concept. However, if the student can understand this one concept, then he/she will not only feel entirely comfortable with all of the above-mentioned concepts, but the student will be able to recall and expand upon it for years to come. Our approach to engendering a solid understanding of (5.1) will proceed by considering it in the 1-D setting, then the 2-D setting, then the n-D setting.
5.1 Expected Values of Functions of 1-D X

Consider the following examples of the function g(*).
Example 5.1

(i) g(x) = x:       
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.    This is called the mean value for X.
(ii) g(x) = x2 :      
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.   This is called the mean squared value for X.

(iii) g(x) = (x – μX)2 :      
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.    This is called the variance of X.
(iv) g(x) = eiωX :      
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.   This is called the characteristic function for X.

(v)  g(x) = ax2 + bx + c:     
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However, here we can simplify this expression in terms of the above defined parameters:
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Hence, we obtain : 
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The above examples all follow the same procedure; namely, to compute E[g(X)], you simply integrate g(x) against fX(x). To test your level of understanding, see if you can use (1) to prove the following result:
Result 1.         
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Proof:  
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Example 5.2 Suppose that we are given X, with mean μX and standard deviation σX. Let Y = X2. 
(a) Use the concept of equivalent events, to express 
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(5.2)
(b) Use the chain rule for differentiation to express 
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(5.3)
(c) For X ~ Uniform(a,b) where 
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(5.4)
The last equality in (5.4) follows from the fact that, since 
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Numerical Values: Let 
[image: image38.wmf]]

1

,

0

[

=

X

S

. Then 
[image: image39.wmf]]

1

,

0

[

=

Y

S

  and 
[image: image40.wmf]y

y

f

Y

2

1

)

(

=

. To verify that this expression is, indeed, a pdf, we note that


[image: image41.wmf]1

5

.

0

)

(

1

0

5

.

0

1

0

5

.

0

1

0

=

=

=

=

=

-

ò

ò

y

y

Y

y

dy

y

dy

y

f

. This pdf is plotted below, as is a histogram-based estimate of it, based on 105 random numbers.
[image: image42.emf]0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

30

35

40

45

50

y

Plot of f

Y

(y)


[image: image43.emf]0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

Plot of Histogram-Based Estimate of f

Y

(y)

y


(d) Use (5.4) to directly compute μY.
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(e) Use (ii) of Example 5.1 and Result 1 to compute 
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where, from a standard table: 
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Remark. The approach in (e) is far easier, mathematically, than the method in (c)/(d). It takes direct advantage of (5.1), without the need for the pdf  of Y.   □

Example 5.3 Suppose 
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(a) Use the result (v) of Example 5.2 to show that 
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Note: These results hold for any pdf. Nowhere did we use the normality of Z.

(b) Use the concept of equivalent events to express the cdf for X in terms of the cdf for Z.
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Remark. It follows that we can use the N(0,1) cdf to compute probabilities related to X, should we desire. □

Example A1. (added 2/13/14 for Valentine’s Day fun ().

Let 
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It also happens that the Fourier transform of a function of x, call it 
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Hence, we see that 
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Question: So, why is this important?
Answer: It is important because the Fourier transform of a function of x does not require that function to have a model form. If we have a model form for 
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can be found in most tables associated with that model. However, suppose that we do not have a model form for 
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Question: Fair enough. But why, pray tell, would I want 
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Answer: The answers are ‘legion’. But here are two motivational ones:

Answer 1: The structure of 
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[image: image71.wmf])

(

x

f

X

, in the sense that it might admit a better model than that afforded by 
[image: image72.wmf])

(

x

f

X

.

Answer 2: This answer is more mathematical, but also more commonplace. Suppose that X and Y are independent, and that 
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The operation * is called convolution. Clearly, it is an operation that involves computing an integral for each specified value of z ( a lot of work!). However, it turns out that convolution in the x-domain is equivalent to multiplication in the ω-domain: 

                                                        
[image: image78.wmf])

(

)

(

)

(

w

w

w

Y

X

Z

F

F

=

F

.

Hence, a simple alternative to using convolution to get 
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is to take the Fourier transforms of 
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, multiply them, and then take the inverse Fourier transform of that product. The Fourier transform algorithm is common in many data analysis programs, and so the computation requires only four simple commands: (i) the FT of 
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, (iii) multiplication of these FT’s, and (iv) the IFT of this product. 

Example A2. 
Numerical Example coming to a theater near you SOON (
5.2 Expected Values of Functions of 2-D X=(X1, X2)

Consider the following examples of the function g(*):

(i) g(x) = x = (x1,x2): 
[image: image84.wmf])
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In words then, what we mean by the expected value of a vector-valued random variable is the vector of the means.

(ii) g(x) = x1x2 : 
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Definition 5.2 Random variables X1 and X2 are said to be uncorrelated if:  E(X1 X2 )  =  E(X1 )E(X2 ). 
(5.4)

They are said to be independent if: 
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(5.5)

Theorem 5.1 If random variables X1 and X2 are independent, then they are uncorrelated.

Proof:

        
[image: image87.wmf].

)

(

)

(

.

)

(

)

(

)

(

)

(

)

,

(

)

(

1

2

1

1

1

2

2

2

2

1

2

1

2

1

2

1

2

1

)

(

2

1

2

1

1

1

2

2

1

2

1

2

1

2

1

2

definition

by

X

E

X

E

calculus

by

dx

x

f

x

dx

x

f

x

ce

independen

by

dx

dx

x

f

x

f

x

x

dx

dx

x

x

f

x

x

X

X

E

X

X

X

X

X

X

S

X

S

X

S

X

X

S

S

X

X

S

=

=

=

=

ò

ò

ò

ò

ò

ò


Thus, we see that if two random variables are independent, then they are uncorrelated. However, the converse is not necessarily true. Uncorrelatedness only means that they are not related in a linear way. This is important! Many engineers assume that because X and Y are uncorrelated, they have nothing to do with each other (i.e. they are independent).  It may well be that they are, in fact, very related to one another, as is illustrated in the following example.
Example 5.4 Modern warfare in urban areas requires that projectiles fired into those areas be sufficiently accurate to minimize civilian casualties. Consider the act of noting where in a circular target a projectile hits. This can be defined by the 2-D random variable (R, Ф) where R is the radial distance from the center and Ф is the angle relative to the horizontal right-pointing direction. Suppose that R has a pdf that is uniform over the interval [0, ro] and that Ф has a pdf that is uniform over the interval [0, 2π). Thus, the marginal pdf’s are:
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Furthermore, suppose that we can assume that these two random variables are statistically independent. Then the joint pdf for (R , Ф) is:  
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(a) The point of impact of the projectile may be expressed in polar form as 
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    Solution:  Since W=g(R,Ф), where g(r,φ)=reiφ, we have
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(b) The point of impact may also be expressed in Cartesian coordinates; that is: X = Rcos(Ф) and Y = Rsin(Ф). Clearly, X and Y are not independent. In fact,  X2+Y2 = R2. Show that they are, nonetheless, uncorrelated.

     Solution:  We need to show that E(XY) = E(X)E(Y). To this end,
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To compute the value of the rightmost integral, one can use a table of integrals, a good calculator, or the trigonometric identity sin(α+β) = sin(α)cos(β) + cos(α)sin(β). We will use this identity for the case where α = β = φ. Thus, cos(φ)sin(φ)=
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. From this, it can be easily shown that the rightmost integral is zero. Hence, we have shown that X and Y are, indeed, uncorrelated.
Before we leave this example, it might be helpful to simulate projectile hit points. To this end, we will (only for convenience) choose ro = 1. The, to simulate a measurement, r, we use r = rand(1,1). Similarly, to simulate a measurement, φ, we use φ = 2π rand(1,1). Consequently, we now have simulated measurements x=rcos(φ) and y=rsin(φ). The scatter plot below shows 1000 simulations associated with (X, Y).
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Figure 5.1 Simulations of (X, Y) = (Rcos(Ф), Rsin(Ф) ).

Notice that there is no suggestion of a linear relationship between X and Y. In fact, the sample correlation coefficient (computed via corrcoef(x,y) ) is -0.036.  Even so, it is worth repeating: X and Y are not independent. Specifically, since 
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In words, this equation says that the conditional cdf for Y is not equal to the unconditional cdf for Y. Hence, X and Y are not independent.  □
Application to Linear Models- We begin this topic with a method of modeling a quantity, y, as a linear function of a quantity y. This method involves only data. No random variables or related theory is present. 

Linear Prediction via Least Squares: Suppose that we have a data set 
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, and we desire a model to be able to predict a value, y, given a value x. Consider the linear model:
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The goal of the method of least squares is to find the expressions for the unknown parameters m and b, that minimizes the sum of squared errors:
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In this expression the ‘variables’ are m and b. The elements 
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are known data. To find the expressions for m and b that minimize 
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We can simplify the notation by dividing each equation by n. We then have
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From the second equation we have:
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(5.6a)
Substituting this into the first equation gives
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(5.6b)
The connection between least squares and random variables: The LS method that produced the expressions (5.6) is purely numerical. There are no random variables in sight. However, we can relate it to random variables. Specifically, consider the 2-D random variable (X,Y), and let 
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be data collection random variables associated with the generic (X,Y). Then the model of concern is:
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Consistent with this setting, we have: 
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. And so, in this random variable setting equations (5.6) become
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(5.8)
The value of the random variable setting is that it allows one to use tools from this course to evaluate how good the estimators of the parameters m and b are!
Example 5.5 Suppose that you have decided to carry out an analysis of the relationship between vehicle speed and cabin noise level. Specifically, you are interested in being able to predict the cabin noise level from vehicle speed. To this end, you collected 100 samples of speed/noise data. A scatter plot of the data is given below. The least squares prediction line is included.
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Figure 5.2 Scatter plot of speed (mph) versus cabin noise (dBA) for n = 100 measurements. The prediction model is: 
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Now to the crucial question: How good IS the prediction model?
There are two ways to respond to this question. One is to search textbooks for possible formulas related to the uncertainty of the estimators 
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. The other is to run a large number of simulations, assuming that the estimators associated with the model are the true values, and that (X,Y) is a 2-D normal random variable. The former method is far beyond the scope of this course, and would typically require a graduate student level of understanding of probability and statistics. The simulation method is entirely appropriate within the scope of this course. For this reason, we will carry out the simulation method. 

For each of 10,000 simulations, we will use the Matlab command mvnrnd to generate a sample of 100 measurements of (X,Y). This will result in 10,000 measurements of the 2-D random variable 
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and a scatter plot describing their relation to each other are shown below.
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Figure 5.3 The shapes of the pdf’s for 
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and a scatter plot describing their relation to each other.
It should be no surprise that the estimated correlation coefficient between 
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is so large (-0.99). After all, one is derived almost directly from the other. The model (5.7) presumes perfect knowledge of (m,b); whereas, in fact, we use estimators 
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Now, suppose we take a measurement, x. We then have:   
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It follows that:  
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From analysis of the scatter plot of 
[image: image142.wmf])

,

(

X

m

m

)

)

we can deduce that they are uncorrelated. Hence, 
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The simulations gave
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We will presently address the linear prediction problem that was covered as the least squares problem above.. However, as was suggested at the end of that section, we will not use the data-based approach used there. Instead, we will use an approach based on expected values of random variables. To this end, we will require two key properties:
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Property 5.1: E(aX + bY + c) = aE(X) + bE(Y) + c. In words, this property states that E( * ) is a linear operator.

It is very often assumed that E(X+Y) = E(X) + E(Y) only when X and Y are either independent, or at least uncorrelated. Neither assumption is needed! Property 1 states that this is always true. For this reason, we will prove this property. In the proof we will highlight why neither assumption is needed.

Proof: Let aX + bY + c = g(X,Y), and let 
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 denote the joint pdf. Recall, that the marginal pdf’s for X and Y are related to this joint pdf via:

                     
[image: image153.wmf]ò

=

Y

S

Y

X

X

dy

y

x

f

x

f

)

,

(

)

(

)

,

(

     and     
[image: image154.wmf]ò

=

X

S

Y

X

Y

dx

y

x

f

y

f

)

,

(

)

(

)

,

(

.
(5.9a)

Now,
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We can expand (3b) as:
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(5.9c)

In view of (5.9a), we can write (5.9c) as:
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(5.9d)

The final result, (5.9d) is a consequence of the recognition of the marginal pdf’s given in (5.9a). Nowhere did we make the assumption that X and Y were independent. □

Before we give the second major property, we need to recall the definition of the covariance between two random variables.

Definition 5.3 Let X and Y have expected values E(X) = μX and E(Y) = μY, respectively. The covariance between X and Y is defined as: Cov(X,Y) = E[ (X - μX) (Y – μY) ].
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Property 5.2:  Cov(aX+bY+c, W) = aCov(X,W) + bCov(Y,W). [In words, the covariance operator Cov( * , * ) is semi-linear.]
We will now prove this property, thereby highlighting the value of Property 5.1.

Proof: For notational convenience, let V = aX + bY + c. Then, from Property 5.1, we have μV = E(V) =  aμX  + bμY  + c. From Definition 5.3 we have

                                             Cov(V,W) = E[ (V – μV) (W – μW) ] 

                 = E{ [aX + bY + c –( aμX  + bμY  + c)] (W – μW) }      ;(Property 5.1)

                 = E{ [a(X- μX)  + b(Y- μY)] (W – μW) }                        ; (algebra)

                 = E [a(X- μX) (W – μW)   + b(Y- μY)(W – μW) ]             ; (algebra)

                 = a E [(X- μX) (W – μW)]   + b E[(Y- μY)(W – μW) ]      ;(Property 5.1)

                 = a Cov(X , W)    +   b Cov[(Y , W  ).   □                     ;(Definition 5.3)

Remark We could have endeavored to prove a more general version of Property 5.2, namely,
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Property 5.3:     Cov(aX+bY+c, dV+eW+f) = adCov(X,V) + bdCov(Y,V) + aeCov(X,W) + beCov(Y,W).
However, this property is a bit more involved, and is not needed at this time. And so, we chose the simpler Property 5.2. In any case, it is valuable to notice that, here as well, additive constants can be ignored in covariance relations. 

Linear models re-visited in the framework of random variables: We are now in a good position to better understand both linear and nonlinear prediction models. We will begin with the simple situation of the 2-D random variable (X, Y), where we desire a linear prediction model 
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Condition 1: 
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Condition 2: Cov(W,X) = 0 , where 
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is the prediction error.
The first condition demands that the predictor be unbiased. The second condition demands that the model capture all of the correlation between X and Y, so that what remains has no correlation with X. The above two conditions are sufficient to solve for the two model parameters m and b. We will use Property 5.2 in relation to Condition 2 to first find m:

0 = Cov(W,X) = Cov(Y – mX – b, X) = Cov(Y,X) – m Cov(X,X). Hence,
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(5.10a)

We will now use Property 5.1 in relation to Condition 1 to find b:
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Remark. Typically, the means and covariances in (5.10) are typically not known, and must be estimated by sample means and sample covariances. If the data-based sample means and covariances are substituted into (5.10), one finds that equations (5.10) become the Least Squares (LS) estimates of the parameters. In contrast to the use of calculus required in the LS approach, however, the above approach uses the two given conditions and the two given properties.

Before going further, it is appropriate to inquire as to how good of an estimator is 
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where
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and where, from Condition 2,
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Hence, (5.11a) becomes
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(5.12)

We can gain more insight into the expression (5.12) by the following

Definition 5.4 The correlation coefficient between X and Y is defined as
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Hence, (5.12) can be expressed as: 
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Notice also that
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From (5.13) and (5.14), we see that: 
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It is for this reason that 
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Remark The relation (5.15) might appear to be a bit too ‘clean’ to some readers. Is it simply a coincidence that it turned out to be so simple? The answer is no. A careful look at (5.11c) reveals that 
[image: image181.wmf]Y

)

is uncorrelated with W. And so, one might speculate that, since this is the case, then the variance of the sum Y = 
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and of W. In fact, this is the case. And it is of such value that we now state it as a special case of a more general important property.

Property 5.3: Let W = aX + bY + c. Then 
[image: image184.wmf]XY

Y

X

W

ab

b

a

s

s

s

s

2

2

2

2

2

2

+

+

=

.

Once again, to highlight the value of Property 5 .2, we give a proof of this.

Proof:
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Hence,                              
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Special Case 1 (b=0): Var(aX + c) = a2Var(X)
Special Case 2 (σXY = 0): Var(aX + bY) = a2Var(X) + b2Var(Y)

Special Case 3 (a=b=1 & σXY = 0): Var(X + Y) = Var(X) + Var(Y)
Summary This section addressed the 2-D random variable 
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Matlab computations: For an 
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. Hence, only two commands are needed prior to computing the above estimates of m and b.
Matlab Demonstration:
% PROGRAM NAME: Ch5_2Ddata.m
% Demonstrate use of Matlab to simulate data from (X1,X2)
% Demonstrate estimation of Linear Model: X2hat = aX1 + b
%---------------------------------------------------------
% Parameter Values:
muX = [ 5 8]; % means
corr12 = 0.8; % correlation coefficient between X1 & X2
var1 = 4; var2 = 9; % variances
cov12 = corr12*(var1*var2)^.5; % covariance
SIGMA = [var1 cov12 ; cov12 var2]; % covariance matrix
a = SIGMA(1,2)/SIGMA(1,1); % true slope
b = muX(2) - a*muX(1); % true intercept
%--------------------------------------------------------
% Run 1000 Simulations:
X = mvnrnd(muX,SIGMA,1000);
%--------------------------------------------------------
% Estimate slope & intercept
muXhat = mean(X); % estimated means
SIGMAhat = cov(X); % estimated covariance matrix
ahat = SIGMAhat(1,2)/SIGMAhat(1,1); % estimated 
bhat = muXhat(2) - ahat*muXhat(1);
[a ahat ; b bhat]
pause
%--------------------------------------------------------
% Compute & plot model estimate
X2hat = ahat*X(:,1) + bhat; 
figure(1)
plot(X(:,1),X(:,2),'*')
hold on
plot(X(:,1),X2hat,'r','LineWidth',2)
grid
xlabel('x1')
ylabel('x2')
title('[x1,x2] Scatter Plot & Linear Model')
Output:
ans =

    1.2000    1.1988

    2.0000    2.1530
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■

Nonlinear Models

We will finish this section with an example of a nonlinear prediction model.

Example 5.6 Very often, engineers assume that a spring has a linear force-displacement relationship; that is, F = kX. This assumption relies on the assumption that the spring will not be stretched too far (i.e. an amount that is on the order of the total length of the coils, for example). In order to obtain a model for a newly designed spring that can be used over a large range of displacements, 100 springs were selected. Each spring was subjected to a randomly chosen amount of displacement, and the resulting force was recorded. A scatter plot of the results is shown below.
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Figure 5.5a A scatter plot of the force-displacement data for 100 springs.

(a) Consider first the following linear model:  
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The condition (5.16a) results in:               
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(5.17b)
If we assume that we have no prior knowledge of the means, then we must estimate them from the data. We will use the sample means for this purpose. Thus, our estimator of k is:
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(5.17c)

From the given data, we obtain the estimates 
[image: image207.wmf]X

m

)

=2.5075 in. and 
[image: image208.wmf]F

m

)

=33.2589 lbf. Hence, our estimate corresponding to the estimator (10c) is 
[image: image209.wmf]k

)

=13.2638 lbf /in. The model (5.17a) for this estimate of k is shown below.
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Figure 5.5b Plot of the model 
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Remark. We could just as easily restricted our model to the region of the scatter plot that appears to suggest a linear relationship between X and F. At higher spring displacement, x, the linear model underestimates the associated force. Every spring has this property! When the spring coils are stretched further and further, the required force becomes higher and higher in a power-law fashion. The fact is, a spring cannot be stretched any further than the total length of the coils no matter how much force is applied.
(b) We now consider the quadratic model 
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Condition 1 gives:                 
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(5.18a)

Condition 2 gives:                Cov(F,X) = Cov(aY+bX,X) = aCov(X,Y) + bCov(X,X)
(5.18b)

Condition 2 in relation to Y gives:   Cov(F,Y) = Cov(aY+bX,Y) = aCov(Y,Y) + bCov(X,Y)
(5.18c)

Equations (5.18b,c) are 2 equations in the 2 unknowns a and b. They may be expressed in matrix form as
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(5.19)

The solution of (5.19) is:
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(5.20a)

Having (5.18b,c), the solution of (5.18a) is:   
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(5.20b)

The Matlab code that first computes (5.19a) based on estimates of the covariances, and then computes (5.19b) based on estimates of the means results in the following figure. The model is
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(5.21a)

The model used to generate the simulation (see code) is:   
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Clearly, the model does much better than the linear model, and in fact, for n=100 springs it is very accurate. 

Having this nonlinear model allows one to linearized it for specified regions of displacement, if need be.
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       Figure 5.6 Plot of the model 
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.   □
Application of E(*)  to Hypothesis Testing: In many textbooks the topic of hypothesis testing is presented as a specific application of probability and statistics. Here, we will introduce it within the framework of two random variables. Consider random variables X and Y. Here, we will make the following assumption:

                                      The pdf’s 
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The concept of hypothesis testing can be viewed as follows: If we are given a measurement, w, we want to decide whether it relates to X or to Y.
It is reasonable to ask: How can this be? Shouldn’t it be obvious that we performed the action X versus the action Y? The following example may help the reader to appreciate how this can be.

Example 5.7 In monitoring the blood pressure of the heart of a person who has had heart-related surgery, a device is used to continuously monitor systolic blood pressure [http://en.wikipedia.org/wiki/Blood_pressure ]. If a 1-minute average of this pressure goes above a specified level, a warning signal is emitted. Let Z = the act of measuring the 1-minute average systolic pressure at any chosen instant in time. Let X = the act of measuring the 1-minute systolic pressure of the heart in good condition at any instant, and let Y = the act of measuring the 1-minute systolic pressure of the heart in bad condition at any instant. In this setting, we desire to know whether Z = X or Z = Y.
Since the average of a sequence of measurements is being used to make this determination, this suggests that we are, in fact, attempting to determine whether 
[image: image228.wmf]X

Z

m

m

=

 or 
[image: image229.wmf]Y

Z

m

m

=

. There is no explicit assumption concerning the structure of either 
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. In fact, the sample size, n, is sufficiently large such that the Central Limit Theorem (CLT) applies, then these pdf’s will both have a bell-shaped or normal pdf. Since the normal pdf is parameterized by its mean and variance, our determination presumes that the means of these two pdf’s will differ. Since we are using only the average, we will make the following second assumption:
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We will now proceed to consider two special cases. In both cases we will assume that we know the numerical value of the parameter 
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Case 1: Suppose that X and Y both have a normal pdf and that 
[image: image237.wmf]3

=

=

Y

X

s

s

. Furthermore, suppose that 
[image: image238.wmf]125

=

X

m

and that 
[image: image239.wmf]135

=

Y

m

. The two pdf’s are shown below.

[image: image240.emf]110 115 120 125 130 135 140 145 150

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Blood Pressure (x)

f

Z

(x)

PDFs of X and Y


Figure 5.7 pdf’s of X and Y. The dashed line at 130 represents the threshold that will be used to decide whether we think that a given measurement, w, is associated with X or with Y.
Suppose that the threshold level 130 has been chosen as the basis for deciding whether a measurement, w, belongs to X or to Y. We can formalize this decision process as the following hypothesis test:

                                                    Ho: 
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In order do decide whether to announce the null hypothesis, Ho, or the alternative hypothesis, H1, our decision rule is:
If 
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, then announce that we think Ho is the case. If w > 130, then announce that we think H1 is the case. 
There are two types of errors that we can make:
          Type 1 error: We announce H1 when Ho is true.   Type 2 error: We announce Ho when H1 is true.  
We are now in a position to compute the probability of each type of error:

Pr[Type 1 Error}: This type of error is premised on the assumption that Ho is true. Stated another way, it is premised on the fact that we have only the black pdf in Figure 5.7. Now, since the event that we (wrongly) announce that we believe that H1 is true, is the open interval 
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. Graphically, this is simply the area above this interval. Numerically, this probability is computed from Matlab as: Pr = 1 - normcdf(130,125,3);   Pr =     0.0478.
Pr[Type 2 Error]: This error is premised on the fact that H1 is the truth; that is, that we are dealing with the red pdf in Figure 5.7. Since we will wrongly announce that we think H1 is true, in this case, the probability of this error is 
[image: image246.wmf]0478

.

)

130

,

Pr(

]

130

Pr[

=

-¥

=

<

Z

. 
Since, typically, we choose Ho to be the default hypothesis, it follows that the ‘burden of proof’ lies with proving that H1 is true. For this reason, Ho is termed the null hypothesis, and H1 is termed the alternative hypothesis. By announcing that we think H1 is true, we are setting off an ‘alarm’ that signals that the default hypothesis Ho is wrong. For this reason, the Type I error is often called the false alarm error. Consequently, the corresponding probability is called the false alarm probability. 

Case 2: Again, suppose that X and Y both have a normal pdf and that 
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                                                    Ho: 
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There are two ways that we can obtain a threshold, call it zth, such that if a measurement of Z is greater than that value, we will announce H1. The first way is to simply choose it, just as we did in Case 1 above. Were we to choose it to be 130, then we would have the same false alarm probability as we had in that case. Note, however, that we cannot compute a Type 2 error, since we do not know the value of the mean under the hypothesis H1. While this may seem like a detriment, it also allows us to consider a variety of possible numerical values for the mean under this alternative hypothesis. For example, suppose that we want to know our chances of wrongly announcing Ho when the person’s mean blood pressure is very high, say 140. Visually, this amounts to shifting the red pdf in Figure 5.7 to the right by an amount equal to 5. Using this shifted pdf, the Type 2 error is 
[image: image252.wmf]00043

.

)

130

,

Pr(

]

130

Pr[

=

-¥

=

<

Z

. 
The second way to arrive at a threshold is to specify the value of the false alarm probability. Suppose that it is required that a false alarm occurs with probability 0.001; that is, 
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5.3   Expected Values of Functions of n-D X= (X1, X2, …, Xn)tr
We begin this section by considering an n-D random variable 
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Case 1: We desire to estimate 
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In words, (5.22a) states that 
[image: image268.wmf]X

X

=

m

)
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Example 5.10 Wind turbine energy systems use feedback control in an attempt to maintain a constant turbine speed. Any information that can be used in relation to the wind properties can only enhance the performance of this control system. Here, we will estimate the mean wind speed based on n samples of wind speed. Let 
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denote the n-D data collection action associated with measurements spaced T seconds apart. The sampling interval, T, will be chosen to be large enough that the components of 
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Suppose that for n = 25, we obtained a sample mean 
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(a) Give your best ‘guess’ of  the pdf of 
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, including numerical values for all the pdf parameters.
Solution: We know that 
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[NOTE: Here, we have made the assumption that 
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. Clearly, this is not the case. To assume that a random variable is equal to a non-random parameter is to totally ignore the essence of this course. Even so, one could argue: What’s the alternative? It’s better than nothing, right? And I would agree- however, ONLY if one clearly acknowledges the ‘stretch’ of such an assumption. And, by acknowledging it, one is essentially asking for a better alternative. That alternative will be covered in Chapter 6 notes. (]
(b) Suppose that the turbine has a high-speed cut-off clutch that disengages the turbine shaft from the transmission at averaged wind speeds above 20 mph. Use your result in (a) to estimate the probability that the clutch will disengage.

Solution: 
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(c) The goal of this part is to find the smallest sample size, n, such that 
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 by a significant amount (in this case, over one mile per hour) to be small (in this case, no greater than 0.001). 
Why would we want to do this? 
Suppose that the wind speed is 
[image: image292.wmf])

5

.

2

,

19

(

~

=

=

X

X

Normal

X

s

m

. Were we to use as our estimate of 
[image: image293.wmf]X

m

 simply 
[image: image294.wmf]X

X

=

m

)

, then not only would the clutch be (wrongly) disengaged with probability 
[image: image295.wmf]34

.

)

5

.

2

,

19

,

20

(

1

)

20

(

1

]

20

Pr[

@

-

=

-

=

>

normcdf

F

X

X

m

)

 (i.e. 34% of the time), but it would be disengaging/engaging in an erratic manner that could well result in early failure. For this reason, it may be a reasonable cautionary approach to be very confident of the value of 
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Even though our focus is on 
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67.67. Hence, we must have a sample size of at least 68 measurements. 
Remark. In this problem setting we assumed that the time interval, T, between wind measurements was large enough to assume that the data collection random variables are mutually independent. In general, this time interval will be on the order of seconds. Suppose that our assumption holds for T=5 seconds. Then we would need to collect data for almost 4 minutes prior to obtaining a reliable estimate of 
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to be used to decide whether or not to disengage the clutch. During such a long period of time, if indeed the true mean wind speed increased, the higher load on the wind turbine blades and transmission (as well as the electrical load) could result in serious problems. And so, the comfort afforded by statistical reliability afforded by a large sample may be offset by the discomfort caused by the increase in likelihood of a mechanical/electrical failure. The moral of the story? The real world can present far greater problems than those encountered in convenient textbook settings. Nonetheless, the academic setting is needed to begin to appreciate and identify specific assumptions that may not hold in the real world. It is also a logical setting to expand upon. □
5.4      Multiple Linear Regression:    The Equivalence of Least Squares & Covariance
Consider the linear model
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Specifically, we will compare the least squares (LS) solution and the theoretical covariance solution for the model parameters. 
The Least Squares Method: The method of LS typically is framed in relation to data; not random variables. In this framework, the above model becomes:
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Given the data 
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Then the LS solution to (5.4.1) is given by:
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While (5.4.3) has a very compact form, it is arrived at by solving the LS equations, and then rearranging them into matrix form. This process is very computational, and, in this author’s opinion, lacking in insight. In order to begin to gain some insight into (5.4.3), write it as:
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The three individual equations associated with (5.4.4) are:
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In (5.4.5) we have defined terms such as 
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(5.4.6)

The first equation in (5.4.6) is:
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(5.4.7a)

In words, (5.4.7a) shows that the estimator is an unbiased estimator. The second equation in (5.4.6) is:
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Rearranging this equation, we have:
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In view of (5.4.7a), this equation can be simplified to:

                                                   
[image: image331.wmf]Y

1

12

2

2

1

1

s

s

b

s

b

)

)

)

)

)

=

+

.
(5.4.7b)

Carrying out the same steps in relation to the third equation in (5.4.6), we arrive at:
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(5.4.7c)

Equations (5.4.7) can be written as the following two equations:
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(5.4.8a)

and
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The solution to (5.4.8b) is:                    
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(5.4.8c)

Even though this is correct, it is not in a form that is consistent with the general linear model format. To see this, write the prediction model (5.4.1) as:
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Taking the transpose of both sides of (5.4.8c) gives:
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(5.4.8e)
and                                            
[image: image338.wmf][

]

X

μ

A

)

)

)

)

)

)

)

)

)

-

=

ú

û

ù

ê

ë

é

-

=

Y

Y

m

m

m

b

b

m

b

2

1

2

1

0

.
(5.4.8f)

The Random Variable Method: Equations (5.4.8) are exactly the equations that result from the linear model problem, when posed as follows:

Problem Statement- For the 3-D random variable 
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We will require that this model satisfy the conditions

(C1) It should be unbiased:              
[image: image341.wmf])

(

)

(

Y

E

Y

E

=

)

, 
(5.4.10a)

and

(C2) The model error should be uncorrelated with the regression variables. In other words, the model should capture all of the correlation structure between X and Y, so that what remains (i.e. the error  
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Problem Solution- The model parameters 
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and                                        
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Arguments for the Covariance Viewpoint of Linear Regression
1. The problem formulation (5.4.9) and (5.4.10) is constructed and solved via fundamental concepts that are reasonable and prudent. This formulation is unlike the LS formulation, which begins with the concept of minimizing the total squared error, but subsequently involves a sequence of mathematical operations that lead to a solution that affords limited insight into any fundamental concepts. 

2. The mathematics of the random variable formulation  are far less cumbersome than the least squares formulation [c.f. Miller & Miller p. **.] 

3. The covariance method is directly applicable to many types of nonlinear models; in particular, polynomial models.

4. The random variable method can easily accommodate the requirement that the prediction line should go through the origin. This is important in situations wherein it is known from the nature of the problem that if 
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5. Because the model relies on random variables, as opposed to data, the development of simulations can be pursued with more thought and insight. For example, typically, textbooks assume that the data being studied arises from normal distributions. In Miller & Miller, that is why it is termed normal correlation analysis. It may well be that the variables involved are known to be associated with other types of distributions. In such cases, the theory of the model statistics used to assess performance and to carry out hypothesis tests will not, in general, hold. Even so, simulations can be used to obtain their distributional structure. □

Using Matlab to Construct a Linear Model
We will address this in relation to the 3-D random variable, 
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This command will result in 
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. To arrive at the covariance estimates, we use the command:
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This command will result in:              
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In the above matrix, we have defined the sub-matrices: 
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Then (5.4.11b) can be written as:
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Equivalently, we have: 
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Then 
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Example 5.7new A 2-D Prediction Model Example
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% PROGRAM NAME: TwoDmodeldemo.m
A = [ 10 1 ; 5 5];
B = [3 ; 1];
n = 1000;
SigmaXX_true = [1 0 ; 0 1];
MuX_true = [0 ; 20];
X = mvnrnd(MuX_true , SigmaXX_true,n);
SigmaEE_true = eye(2);
MuE_true = [0 ; 0];
E = mvnrnd(MuE_true , SigmaEE_true,n);
Y = zeros(n,2);
for k = 1:n
    Y(k,:) = A*X(k,:)' + B + E(k,:)';
end
nvec = 1:n; nvec = nvec';
figure(1)
XY = [X , Y];%(X,Y) nx4 data array
plot(nvec,XY)
legend('X1','X2','Y1','Y2')
xlabel('Measurement Number')
title('Plots of X & Y')
grid
pause
%================================
CXY = cov(XY)
pause
SigmaYX = CXY(3:4,1:2)
SigmaYX_true = A*SigmaXX
SigmaXX = CXY(1:2,1:2)
SigmaXX_true
pause
Ahat = SigmaYX*SigmaXX^-1
A
pause
MuXY = mean(XY);
MuX = MuXY(1:2)'; 
MuY = MuXY(3:4)'
MuY_true = A*MuX_true + B
pause
Bhat = MuY - Ahat*MuX
B
%=================================
% Compute Yhat:
Yhat = zeros(n,2);
for k = 1:n
    Yhat(k,:) = Ahat*X(k,:)' + Bhat;
end
figure(2)
plot(nvec,Y,'k',nvec,Yhat,'r')
title('Prediction Performance')
grid
%===================================
% Estimate SigmaEE:
Ehat = Y - Yhat;
SigmaEE = cov(Ehat)
SigmaEE_true
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CXY =

    0.9554    0.0111    9.6389    4.8194

    0.0111    0.8993    0.9791    4.5326

    9.6389    0.9791   99.1053   52.9129

    4.8194    4.5326   52.9129   47.5711

SigmaYX =

    9.6389    0.9791

    4.8194    4.5326

SigmaYX_true =

    9.9466    0.5601

    4.7593    4.9401

SigmaXX =

    0.9554    0.0111

    0.0111    0.8993

SigmaXX_true =

     1     0

     0     1

Ahat =

   10.0780    0.9642

    4.9866    4.9785

A =

    10     1

     5     5

MuY =

   23.6286

  101.2963

MuY_true =

    23

   101

Bhat =

    3.7329

    1.4105

B =

     3

     1

SigmaEE =

    1.0206   -0.0273

   -0.0273    0.9732

SigmaEE_true =

     1     0

     0     1

     [image: image366.emf]0 200 400 600 800 1000

-20

0

20

40

60

80

100

120

140

Prediction Performance

 
End of Example.

Example 5.8        Investigation of the Connection Between Gas and Oil Prices
The weekly price of oil and gasoline from January 3, 1997 to October 30, 2009 are shown in Figure 1, below.
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Figure 5.4a. World average price of oil ($/barrel) versus USA nationwide price of gasoline (¢/gallon) for the period January 3, 1997 to October 30, 2009. [ http://tonto.eia.doe.gov/dnav/pet/hist/mg_tt_usw.htm
http://tonto.eia.doe.gov/dnav/pet/hist/wtotworldw.htm ]

Clearly, the prices of gas and oil are tied to one another. Moreover, this relationship is no doubt not a causal one. While an increase in the price of a barrel of oil will likely cause an increase in the price of a gallon of gasoline, it is also likely that an increase in the price of gas could lead oil producers to feel that they should be sharing in the profits. This study is not concerned with directly predicting the price of either gas or oil. It is concerned with changes in these prices. 

Goal of the Investigation
We desire to determine to what extent a change in the weekly price of gas depends on the following variables: (i) the price of gas in the preceding week(s), 

(ii) the price of oil in the preceding and subsequent week(s), 

(iii) the change in the price of gas in the preceding week(s), and 

(iv) the change in the price of oil in the preceding and subsequent week(s). 

In this way, we hope to determine the extent to which causality plays a role in influencing a change in the price of gas. Our investigation will begin by exploring the data sets in Figure 1 in various ways. First, we will look at pair-wise scatter plots within different time intervals. We will then be in a better position to identify the types of correlation models that would be needed to make the above determination. 

Nomenclature
G = Weekly price of gas (adjusted per discussion to follow)

Gmk = Price of gas in the kth preceding week

O = Weekly price of oil

Omk = Price of oil in the kth preceding week

Opk = Price of oil in the kth future week

dG = Change in the price of gas from a given week to the next.

dGmk = Change in the price of gas in the kth preceding week

dO = Change in the weekly price of oil

dOmk = Change in the price of oil in the kth preceding week

dOpk = Change in the price of oil in the kth future week

1. Preliminary Exploratory Data Analysis of Oil and Gas Prices
There are 42 gallons / barrel of crude oil. The conversion to gasoline depends upon several factors -- refining efficiency, product mix desired by the refiner, quality of the crude to name a few. The following sites provide

additional information:
                         http://www.petroleum.org/petrokids/petroperbbl.htm

                         http://www.newton.dep.anl.gov/askasci/gen99/gen99675.htm

The fraction of cost in a gallon of gas that is related the price of the purchased oil is: 
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(5.16)

The line in the plot below has a slope of ~2.7. Hence, it is reasonable to presume that is represents a baseline relationship between the cost of a barrel of oil and the cost of a gallon of gas.
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Figure 5.4b. Plot of oil vs. gas price. The line with slope ~2.6 represents a baseline cost relationship. The different regions indicate regions wherein the price per gallon of gas was offset, reflecting increased profit.

We will now proceed to remove this effect from the gas data. In view of Figure 5.4b, we will take the slope of this base line to be 2.6. From Figure 5.4b we also note that the fixed cost (i.e. y-intercept) is ~
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This line is shown below.
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Figure 5.4c. Plot of oil versus gas price, including the base line (1).
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Figure 5.4d. Plots of oil and adjusted gas prices versus time.

Long term relation between the price of oil and gas-
The horizontal lines in the above adjusted gas price plot suggest mean levels of overhead. They are related to factors such as production cost, equipment and maintenance, wages, and profit. If one presumes that all factors other than profit and salaries have not changed much in cost throughout the time period, then these lines suggest that the latter have doubled at four-year increments, until 2008. We will not pursue this matter further at this point, since our interest is not so much in profit as in what factors influence the weekly change in the price of gas. Even so, the identified 4-year periods are significant in this respect, since it may well be that the factors we are searching for are different in these different periods. For this reason, have numbered the four periods. 
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Figure 5.4e. Segmented gas and oil prices versus time.
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Figure 5.4f. Scatter plots of oil versus gas for the 4 regions.

None of the scatter plots in Figure 5.4f exhibit a simple (i.e. linear) relationship between oil and gas prices. Again, since our interest is in the weekly change in the price of gas we will not pursue a comprehensive development of nonlinear models in relation to these regions. They are, nonetheless telling. Region 3, which corresponds to the years 200r through 2007 is most striking. Specifically, the adjusted gas price ranged between $0.50 and $1.00 when the price of oil was in the range $55-$70/bbl. With the exception of 5-6 data points in Region 4, this range of gas prices is a factor of 2-3 higher than in Region 2, and a factor of2.5-5 greater than in Region 1. It should be remembered that even though the price of oil increased by a factor of 2-3 between Regions 1 and 4, the gas prices are adjusted prices. There is a slight suggestion of similar behavior in Region 4. for oil in the $70-$100 range. However, there is not enough data in this region to give much weight to this behavior. Also, as Americans began to realize that they would need to modify their driving habits in view of the high cost of gas, it is known that they drove less in the period corresponding to Region 4. Whereas in Region 3 one might speculate that they were ‘caught off guard’, in the sense that they were more prone to paying the high price of gas without as much forethought. It is interesting that gas prices have been relatively stable in the range $2.40-$300/gal. range in recent months. Referring to Figure 2, it is this range where the greatest profits were probably reaped. And after the surge to almost $5.00/gal. in some states in 2008, the public would probably take this region to be acceptable. 

Because of the extent of the current price of gas within the Region 3 range, we will develop here a nonlinear model relating oil and (adjusted) gas prices. In Figure 6 we see that in this region the price of gas appears to have a trend that is cubic in nature. Hence, our correlation model is:
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Define the random variables 
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The mmse value of a is given by
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where
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The resulting model includes a = [-14.6912    0.2905   -0.0018] and b = 264.1369. It is shown below. The model does not have the ability to capture the peaked behavior in the center region. It would be necessary to use a more sophisticated model for that purpose. One such model would include a cubic spline with a knot at ~$65/bbl. We will retain the current model, as it captures the general behavior in this region.
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Figure 5.4g. Plot of the model (5.18) with (5.19), against the oil versus (adjusted) gas prices in Region 3.

Weekly relation between the changes in gas and oil prices-
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Figure5.4h.  Scatter plots of various weekly change variables for the entire data set.
From this figure, we see that, with the exception of the graph of dO vs. dG, the slopes of the prediction lines are essentially zero. For this reason, we will focus our attention on the 2-D random variable (dO , dG). For notational convenience, we will denote this as (X,Y). Data plots of (X,Y) are shown below.
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Figure 5.4i. Weekly change in the price of gasoline (top) & oil (bottom) from 1/1997 through 1/2009

Rather than analyzing the above data, we will ‘coarsen’ (or, Bernoulli-ize) the data. Define the following 2-D Bernoulli random variable (U,V):

                                               [U = 1] ~ [|X| > $5.00 ]   & [V = 1] ~ [ |Y| > $0.10 ]
(5.20)

The threshold values in (5.20) reflect the fact that we are only interested in a gas price change of at least $0.10. From (5.16) this translates into an oil price change of ~$5.00.

We made this coarsening for two reasons. First, it demonstrates how our developed theory of Bernoulli random variables can be brought to bear on a problem. Second,  even though we are interested in how a change in the price of oil relates to a change in the price of gas, in this early phase of our investigation we are only interested in coarse changes. In particular, (5.20) implies that we are only interested in a change in the price of gas that exceeds $0.10. A plot of the data associated with U and with V as a function of time is given below
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Figure 54.j. Bernoulli-ized gas (top) and oil (bottom) data.

Recall that a 2-D Bernoulli random variable, (U,V), has a pdf that is completely characterized by three parameters.  From the above figure, the estimated means (or p-values) of (U,V) are:
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As our third parameter, we choose 
[image: image388.wmf]]

1

1

Pr[

1

1

=

Ç

=

=

D

V

U

p

. If we define the Bernoulli random variable 
[image: image389.wmf]UV

W

D

=

, then 
[image: image390.wmf]11

p

p

W

W

º

=

m

. In Matlab this is easily estimated as: mean(u.*v). Our estimate is:

                                                                
[image: image391.wmf]0159

.

0

11

=

=

=

=

w

p

p

W

W

)

)

)

m

.
(5.21b)

Recall that the events 
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 are not independent. Now, recall also, that since these two events are not independent, then the random variables U and V are not independent. This could have been anticipated since from Figure 5.4h the random variables X and Y are not independent. However, if X and Y are dependent, it does not necessailry follow that any Bernoulli-ized versions of them will be independent. For completeness, the four singleton estimated probabilities associated with (U,V) are:
                       
[image: image399.wmf]9332

.

0

;

0095

.

0

;

0413

.

0

;

0159

.

0

00

10

01

11

=

=

=

=

p

p

p

p

)

)

)

)

.
(5.22)

A closer look at region 3 [see Figure 5.4d]-
Certain readers might recall the time period corresponding to region 3 in Figure 5.4d. It was a period when gas prices seemed to be unusually high in relation to the price of oil, as is evidenced in that figure. We will now focus our attention to this region. Specifically, we will consider weeks ~440 though~580. This portion of Figure 5.4j is shown below.
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Figure 5.4k Bernoulli-ized gas (top) and oil (bottom) data for weeks ~440 through ~580.
In this region, the price of oil never changed by over $5. Even so, there were many weeks where the price of gas changed by over $0.10. In this region, one could argue that U is not even random. Hence, it has no effect on V. 

We believe that this finding is significant. It suggests that forces other than the price of oil governed the changes in the price of gas.  Figure 5.4a is repeated below, and includes this noted information. What this figure suggests is that the oil companies decided that the gas price region ($2.50 , $3.00) was the highest range that the public would tolerate, in terms of company profit margins. This would explain why, after the rise to $4.+, the price of gas has settled to this range for the past two years.
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Figure5.4l  Weekly gas and oil prices, with focus on region 3.

We will end this investigation here. Clearly, we could have taken it much further. However, it is hoped that the reader can better appreciate the tools developed in this course in this cursory investigation. □
APPENDIX   Matlab Codes
% PROGRAM NAME spring.m (11/20/08)
% Linear and Nonlinear Spring Models
%====================================
% Generating the displacement/force data
m=1000; n=100;
x = 5*rand(m,n); % Displacement
ftrue= 10*x + x.^2; %True Force Relation
df=0.5*randn(m,n); % Force variability
f = ftrue + df;
%====================================
% Linear Model: Fhat = kX , k = E(F)/E(X)
X = x'; F = f';
mF = mean(F); mX = mean(X);
khat = mF./mX;
figure(1)
db = 0.1;
bvec = 12.85:db:13.75;
H = hist(khat,bvec);
fkhat = (n*db)^-1 * H;
bar(bvec,fkhat)
xlabel('k')
ylabel('f_k_h_a_t(k)')
title('Estimated PDF of f_k_h_a_t(k) for n=100 Springs')
pause
% Use khat from first simulation for model 
x1 = X(:,1);
f1 = F(:,1);
k1 = mean(f1)/mean(x1);
xvec = 0:5/n: 5 - 1/n;
f1hat = k1*xvec;
figure(2)
plot(x1,f1,'*')
hold on
plot(xvec,f1hat,'k','LineWidth',2)
xlabel('Displacement (in.)')
ylabel('Force (lb_f)')
title('Linear Spring model')
pause
%===================================
%Quadratic Model: Fhat = aX + bX^2 + c
% Write as Fhat = aX + bY + c
% The 3 unknowns (a,b,c) are solved via;
% ++++++++++++++++++++++++++
% cov(FX) = a cov(XX) + bccov(XY)
% cov(FY) = a cov(XY) + bcov(YY)
% c = E(F) - aE(X) - bE(X^2)
%+++++++++++++++++++++++++++
y1 = x1.^2;
C = cov([x1 y1 f1]);
Cxy = C(1:2,1:2);
cfxy = [C(1,3);C(2,3)];
ab = Cxy^-1 * cfxy;
ahat = ab(1) 
bhat = ab(2)
chat = mean(f1) - ahat*mean(x1) - bhat*mean(y1)
f1hat = ahat*xvec + bhat*(xvec.^2);
plot(xvec,f1hat ,'r','LineWidth',2)
title('Linear model black) and Nonlinear Model (red)')
hold off
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The joint probability of the square centered at the point (x,y) is 
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However, Notice that when both x and y are close to the point (0,0), then independence does hold.
                .
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