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Chapter 2                            Actions
2.1     INTRODUCTION
There’s an old saying: “Ya don’t get somethin’ from nothin’!”  In relation to a number, this saying can be interpreted to mean:

                      For every number that ever was, is, or shall be, there is an action that produced it.

Numbers do not spontaneously pop out of the ether. A number is the outcome of an action. Moreover, the action carried out in order to produce a number can entail operations such as (i) running a computer algorithm, (ii) using a sensor to measure a quantity, or (iii) using a person to record a quantity.

As simple as this idea is in concept, it seems that when mathematical symbols are used many students forget the concept and become intimidated by the symbols. Now, it is not the case that the symbols are, themselves, intimidating. For example, one can let the symbol x denote a number, and most students would not balk at it, nor even at the number x2. However, if the symbol β is used, not only is it foreign (actually, it’s Greek); it’s intimidating. Our symbol notation for an action that, when performed, results in a number, say x, is simple. We will denote an action that produces a number that we symbolize as x by the symbol X. Hence, for example, if we denote an ordered pair of numbers as
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. If we denote a number as y, then we will denote the action that produced it as Y. 
Again, as simple as this notation may seem, it can cause no end of confusion and frustration throughout the rest of this course if one is not careful to distinguish between a lower case x (a number) and an upper case X (an action that produced the number). If one can manage to distinguish them, then notationally, it is a simple as replacing every lower case symbol for any of the numbers discussed in Chapter 1 by its upper case version. To be more specific, we review some of the examples given in that Chapter.
Example 1.1 (continued) 

Scenario #1: In this scenario we are given only the data in Table 1, with no other information whatsoever. In this case we have a 38-tuple: 
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and a 39-tuple
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, where xk corresponds to the kth runout measurement of a laid gear, and where yk corresponds to the kth runout measurement of a hung gear. The actions that needed to be performed to obtain these ordered sets of numbers are 
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. What exactly is Xk? 
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the act of measuring the runout of the kth gear of the gears laid flat in the furnace.
and
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the act of measuring the runout of the kth gear of the gears hanged in the furnace. □

It really is that simple. To emphasize this, we re-visit 
Example 1.4 (continued). A survey sample revealed that out of a sample of 30 persons, only 5 expressed a desire to have access to in-flight internet. If a respondent did not have interest, a zero was recorded, and if the respondent had an interest, a one was recorded. The responses, as they were recorded, are shown in Table 2 of the example as given originally.

(d)      Arrive at an expression for the action that produced the reported average.
Solution: We will denote the 30 actions as 
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 where Xk = the act of recording the kth subject’s answer. Then the ‘averaging’ action that produced the reported average becomes   
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(e)  In the same survey, the persons were asked how much they would be willing to pay for in-flight internet access. The average response to this question was $2.25. Repeat part (a) in relation to this number.

Solution: We will denote the 30 actions as 
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 where Yk = the act of recording the kth subject’s answer.  Then the ‘averaging’ action that produced the reported average becomes   
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(f) In relation to each of (d) and (e), identify the set of possible values that the kth action could have resulted in. If there is not sufficient information to identify either set, explain why.

Solution: Clearly, in relation to (d) we have SX = {0, 1}. Since we were not given any information regarding what choices the survey participants were given, we cannot know for certain what the set of possible values is for SY.  □

In parts (d) and (e) everything should have been completely obvious. You replace the lower case symbol by its upper case, and then proceed to explain, in words, what that action is. In part (e) we saw that the collection (or set) of possible measurements is exactly the collection of possible measurements that could result from the associated actions. To some, this might seem like ‘beating a dead horse’ (another old saying). But what was also done in (e) was to establish the symbolic notation for a quantity related to an action, X, that describes the results that could possibly result from it. This quantity is called the sample space for X. Specifically, we replaced the symbol S1, where the subscript ‘1’ referred to the the ‘laid flat’ condition, by the symbol ‘X’ that refers to an action. But there is more. Specifically, there is no action X. There is the ordered collection of actions
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, but none of these has the symbol X. Were we to have been more rigorous in relation to the desired set, we would have expressed it as 
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for each and every value of k. But since for each k we have one and the same set, we created a ‘generic’ action X = the act of recording the answer from a person. The reader should realize by now that notation is important. Here, we have another case in point. It is of sufficient importance to warrant a definition.
Definition 2.1 For a given ordered collection of actions, 
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 where Xk = the act of taking the kth measurement of a quantity associated with an entity, let X = the act of measuring that quantity in relation to any arbitrarily chosen such entity. Then X is said to be the generic action associated with the actions
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Very often the purpose in collecting measurements from a chosen sample of objects is to be able to infer information related to any such object. In Example 1.1, for example, the purpose of the study was gather information about a sample of 38 gears in order to infer information about the runout of any gear laid flat in the furnace. In view of the above definition, the act of measuring the runout of any gear laid flat in the furnace is the generic action associated with the 38 measurement actions conducted in relation to the selected gears. 
2.2 TYPES OF ACTIONS
The types of actions we will be concerned with are best described by an example.

Example 2.1 In relation to part (g) of Example 1.5, which is repeated here for convenience:
Give the expression for the average volume computed in (f), based on the measurements described in (b).

Solution: From (e) we have:  
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.     □

(a) Define the 2-D generic measurement action related to the study.
Solution: This action is (L,D) where, for any chosen rod:

L= the act of measuring the length of the rod

D= the act of measuring the diameter of the rod.
(b) Define the generic action that relies on the actions in (a) to obtain the number vavg:
Solution:    
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(c) Define the measurement actions associated with the 50 measurements of length and diameter.
Solution: These are 
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 where Lk = the act of measuring the length of the kth rod, and 
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 where Dk = the act of measuring the diameter of the kth rod.
(d) Define the action that when performed results in the number vavg :
 Solution:   
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(e) The expressions in (b) and (d) are composite actions in that that they include both measurement actions and purely computational actions. Describe, in words, the actions of each type that are involved in the expression in (d).
Solution: The measurement actions were defined in (c). The computational actions related to the expression include multiplication and addition. □
In this example we defined the following types of actions:

(i) A measurement action that, when performed, results in a measurement,

(ii) A computational action associated with mathematical computations in related to measurements,

and 

(iii) A composite action, which includes both measurement and computational actions.
Actions we will be concerned with can also be grouped in another way. To this end, we offer a second definition.

Definition 2.2 An action is said to be predictable, if one can predict its result before performing it.
Computational actions that operate on numbers are predictable. For example, the action 
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is a predictable action, since the symbol x denotes a number. On the other hand, suppose that X is a measurement action that, when performed, results in the number x. Clearly, X is not a predictable action. For, if one could predict the result of measuring prior to taking the measurement, there would be no need to take it. Actions that are not predictable will play the foremost role throughout this course. For this reason, and in an ongoing effort to introduce the reader to the abundance of jargon related to this topic in a somewhat natural manner, we give the following definition.

Definition 2.3 An action that results in a number (or, ordered collection thereof) that is not predictable is called a random variable.
Consequently, every measurement action is a random variable. Any composite action, since it includes measurement actions, is also a random variable. Examples of both of these types of random variables were contained in the above example. This entire book is centered on random variables. But the reader should never lose sight of the meaning of the term random variable. For, as vague and intimidating as it can be (and often is), it is nothing more than either (i) the act of measuring a quantity, or (ii) a function of such measurement actions. 

A complete and unambiguous definition of a random variable necessitates specification of two important items; namely (i) the set of possible values that can result when this action is performed, and (ii) a description of the probability of all of the subsets of this set. We will address item (ii) in detail in the next chapter. Here, we will restrict our attention to (i) and the collection of all measurable subsets of this set. We have already presented the concept (i). It is, simply, the set of all the possible values that a given action can result in. And so here, we will once again introduce jargon for this set.

Definition 2.4 The set of all measurable values that a random variable, X, can yield is called the sample space for X, and is denoted by the symbol SX. 

In too many textbooks on the subject, the importance of the sample space is down-played. In fact, it is directly related to how the measurement is taken. Stated another way, it captures the resolution of the measurement device. To illustrate this, consider the numbers in the table of Example 1.1. 

Example 2.3 In relation to Example 1.1 

(a) Define the random variable that resulted in the first runout number x1 = 5, associated with the first laid gear.

Solution: X1 = the act of measuring the runout of the first laid gear.

(b) Give the sample space for the random variable in (a).

Solution: We will plead ignorance as to what the possible range of runout values is. All we know is that runout cannot be negative. Furthermore, from the data in the table we can deduce that it is measured to the nearest integer value (of 0.001”). Hence, we will assume that the sample space is 
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(c) Define the random variable that resulted in the 38 numbers of the top row in the Table of Example 1.1, and give its sample space.
Solution: Let
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, where Xk = the act of measuring the runout of the kth  laid gear. Then 
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[Note: We used the symbol 
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to denote the 38-tuple action. It would have been nicer to simply use the symbol X. However, in view of Definition 2.1, that symbol has already been claimed. It symbolizes the act of measuring the runout of any laid gear.]
(d) Suppose that we are interested in the maximum runout associated with the 38 laid gears. Define the appropriate random variable, and give its sample space.
Solution: Let 
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(e) Suppose that we are interested in the average runout of the laid gears. Define the appropriate random variable, and give its sample space.

Solution: Let
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. Now, the sample space for 
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 is a bit tricky. But let’s give it a try. First, consider the sample space for the random variable that is
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. The smallest value that V can take on is zero. Moreover, this happens if and only if every measured runout is zero. The next smallest value is one. This happens if and only if exactly all but one of the 38 measurements is zero, and the remaining measurement is one. The next smallest value of V is two. And this can happen in two different ways. First, there can be 36 zeroes and two 1’s. Second, there can be 37 zeros and one 2. Hopefully, the reader can see from this reasoning that the sample space for the sum, V, is
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. And so, since 
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. □
Part (e) of the above example highlights the fact that the sample space for the average is a set of numbers that are equally spaced, beginning at zero, and incrementing by 1/38. This sample space does not include all possible numbers greater than or equal to zero. Nonetheless, in many textbooks one will find examples and problems such as the following:

Example 2.4 Consider the textbook statement: “Let X denote the voltage across a resistor, and suppose that the sample space for X is the entire real line; that is, the continuous interval
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(a) Explain what the implications of this assumed sample space are.
Answer: Simply, it implies that the voltage sensor has infinite resolution. No sensor has infinite resolution. Voltage sensors, in particular, typically have readout capability to a finite number of decimal places. 

(b) Suppose that a voltage meter is used, and that it has a readout format:  
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where each x is an integer of the set {0, 1, … , 9}. Give the sample space associated with the act of measuring voltage with this meter.
Solution: 
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(c) The sample spaces in (a) and (b) are dramatically different. Even so, very often one will assume that the voltmeter used in (b) has the sample space given in (a). Under what conditions, if any, is there justification for this assumption?
Answer: The justification relies on the notion of probability in relation to the various subsets of the sample space in (b), and to the subsets we are interested in. This is a necessarily vague answer, since we have yet to address the notion of probability in any depth. Even so, we will try here, in the context of two possible scenarios:
Scenario #1: Suppose that we are interested in voltage intervals that are large in comparison to the sensor resolution. Because I am lazy, I used Matlab to arrive at the number of numbers in the sample space in (b). Specifically, I used the commands:

Trial>> x=-99.99:.01:99.99;

Trial>> length(x)

ans =  19999

And so, the sample space in (b) includes 19,999 numbers. Now, suppose that each number has the same probability. Since the probability must add up to 1.0, it follows that each singleton subset (i.e. a subset of the sample space that includes only one number) has probability 1/99,999. Now, since we are interested in the probability of subsets that span a range of values that is large compared to 00.01, we can presume that the sample space is the continuous one in (a) and that the probability density is distributed uniformly over the entire interval. We will get essentially the same probability using the latter as we would get using the former for such ‘large’ subsets of the sample space in (b). Consider the voltage interval [0, 5). The width of this interval is 5, which is 500 times the resolution 0.01. The subset of the sample space in (b) that lies in this interval is {.00, .01, … , 4.99}. Since there are 500 numbers in this set, and each has the same probability 1/19,999, the probability of this set is: 
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. If we assume the sensor has infinite resolution and that probability is distributed uniformly over the sample space in (a), then, the probability of the interval [0, 5) is exactly 0.0250. Basically, the interval is large enough that we can ignore the finite sensor resolution and simply assume it has infinite resolution. 
Scenario #2: Suppose that we are interested in the probability of very small intervals; intervals on the order of the meter resolution of 00.01. For example, suppose that we are interested in the probability of the interval (0.005, 0.007). The meter doesn’t have this level of resolution, and so it is not capable of producing any number in this interval. Hence, the probability of this interval is zero. However, if we assume that the meter has infinite resolution, then the probability is: (.007 - .005) / 200 = 10-5. One could argue that this number is negligible, and can be approximated by zero. That argument would fail in the case where this interval corresponds to a ‘catastrophic’ event. Imagine the difference between stating that the probability of a person in New York City being a terrorist is zero, versus that it is one in 100,000. Since there are about 10 million people in the city, the one answer says none are terrorists, while the other says there may be ~ 100 terrorists!   □
The reader should not be discouraged if the probability elements of the last example didn’t make sense. We will spend an entire chapter on the elements of probability in relation to a random variable. The key thing to get out of the last example is that the samples space for a random variable plays a major role in defining it. To add emphasis to this point, we will consider another example; one that is a major source of confusion of what a random variable is.
Example 2.5 This author has posed the following questions to both students and faculty whose area of interest in probability and statistics. 

Question: Is the height of a student enrolled in the university a random variable?
The vast majority of students and even some faculty answered: Yes
The question that this example addresses is: Why are they wrong?
Answer: They are wrong in two respects. First, the height of a student is an attribute of that student. It is not an action. Hence, by definition, the height of a student is not a random variable. Now, suppose we let the symbol X denote the act of measuring the height of a student. While this is an action, it is highly ambiguous; that is, it could be one of many actions. This is due to the fact that there are many ways of measuring height. Let’s consider some:

Method #1: The height is measured by an observer, and recorded as one of the following: small (1), medium (2), large (3). Hence, the sample space for this random variable is {1, 2, 3}. 

Method #2: The height is measured with a tape measure, and recorded to the nearest inch. Having no idea what the range of student heights might be, but knowing that negative height is meaningless, (I’m feeling really lazy today!), I will specify the sample space to be {1, 2, … , ∞}. If one had prior knowledge that there has never been a student whose height is less than 3 ft. nor greater than 9 ft. then one could specify the sample space to be {24, 25, … , 108}. In either case, it is much different than the sample space associated with Method #1. Even the units are different.  □
Now, in relation to the above example, and why this author claims they are wrong, one could argue (and many have!) that it was implied that the height was to be measured, and that how it is to be measured would be fore-known. If we accept those implications, then- no, they are not wrong. However, what is assumed by one person might not be assumed by another. It is best to place all the ‘cards on the table’. (Yup! Another old saying.) To appreciate what can evolve if one does not, consider yet another example.

Example 2.6 Let X denote the act of measuring the torque applied to secure a lug nut on the wheel of a car. Furthermore, suppose that the sample space for X is continuous, and is
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. Now, the mean (or expected) value for X has a specific mathematical meaning. However, it entails probability- which we have yet to delve into to any significant degree. And so, for now, let’s further assume that we will secure 100,000 lug nuts in the course of, say, a year. For now, let’s define the mean value of X to be the average tightening torque associated with those 100,000 nuts. Then this will be a number. Furthermore, it will not be subject to any randomness. It will simply be what it will be. Now, suppose that we desire to use a sample of 100 measurements to try to estimate that number. Let’s give that number the symbol µ.   We will perform the composite action: 
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 to denote this action. Even though we don’t know the value of µ (if we did, there would be no need to go through all the work of collecting data and using it to estimate µ), we do know that it is a number that we could get, were we to measure every single torque value of the entire population of 100,000 tightening actions. 
A common question that is asked would be something like: What is the probability that µ falls inside of the specified torque interval, say, (a, b)? 

QUESTION: What is wrong with this question?

ANSWER: Since µ is a number, and the endpoints of the specified interval are also numbers, it is a fact that either µ is inside the interval or it isn’t. That fact is independent of whether or not you know the value of µ.  Probability has no place here. 

Since 
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is a composite action, it is a random variable. And probability is a property of random variables; not of numbers. So, the more appropriate question to ask (and one that we will spend a good deal of time on later in the course) is: What is the probability that 
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 is within, say, 
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of the unknown number
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? 
One might well ask: But since we don’t know the value of
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, how can we compute this probability? That is a very valid question. What we will see is that, even though 
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 is unknown, if we can reasonably presume that the random variable 
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 has a certain probability structure (e.g. a bell-shaped, or normal structure), then we can nonetheless compute the probability in question.    □
2.3   EVENTS
Most college students know what an event is; at least grammatically. However, in the realm of probability and statistics it has a precise mathematical meaning. This is best appreciated by considering the following example.

Example 2.7 Let X = the act of recording whether a subject (1) strongly disagrees, (2) disagrees, (3) is neutral, (4) agrees, or (5) strongly agrees with California’s 2009 Proposition 8 (banning gay marriage). This is a well-defined random variable, and its sample space is SX = {1, 2, 3, 4, 5}. Describe the following events in relation to this sample space:

(a)   The event that the subject gives an answer:      The subject must give an answer. And that answer can be either ‘1’, or ‘2’, or …, or ‘5’. And so, this event is exactly the set SX.
(b)  The event that the subject strongly agrees:   This is the set {5}.
(c)   The event that the person does not strongly agree:   This is the set {1, 2, 3, 4}.
(d)   The event that the subject is, at the very least, not opposed to the proposition:   This is the set {3, 4, 5}.
(e)   The event that the subject both agrees and disagrees with the proposition:  This is not a possibility. Hence, as a set, it is the empty set, which we will denote by the symbol ⱷ   □
From the above example the reader should be able to see that, in relation to a random variable, X with sample space SX, an event is simply a subset of SX. This point, while simple, cannot be emphasized enough. A major source of confusion in an introductory course in probability and statistics is the inability to translate an event stated in words into an event that is a set. Another thing that was illustrated in the above example is the following point:

 Any question that one can pose in relation to a random variable has, as its answer, a unique subset of its sample space. 

Part (e) of the example highlighted this point. It posed the following question: What is the event that a subject both agrees and disagrees? This nonsensical question has, as its answer, the empty set. The reader should read the above point carefully. For it states that for any posed question there is one and only one subset of the sample space that corresponds to it.
It is this author’s belief that it is not probability, but rather a lack of understanding of events that causes the greatest confusion (and pain) to students embarking on an introductory course in this area. The following example might expose the reasons for this.

Example 2.8 Suppose that in Example 2.7 each subject is also asked the question: Do you currently live in California? The assumed possible answers will be (0) no or (1) yes. Let Y = the act of recording the answer to this question. Then clearly SY = {0, 1}. 

(a) Give the sample space for the random variable (X, Y).

       Solution: Since this is an ordered pair action, the elements of its sample space must be ordered pairs. Specifically:
                           S(X,Y) = { (1,0),(2,0),(3,0),(4,0),(5,0),(1,1),(2,1),(3,1),(4,1),(5,1)  }.

(b) In relation to the 1-D (i.e. 1-dimensional) action X  by itself (i.e. ignoring anything and everything to do with Y) give the subset of the appropriate sample space that, in words, is the event that the subject strongly disagrees.
Solution: The sample space for X is SX = {1, 2, 3, 4, 5}. The subset of this set that corresponds to the stated event is simply {1}. 
(c) In relation to the 2-D (X,Y), give the subset of the appropriate sample space that, in words, is the event that the subject strongly disagrees.
Solution: The sample space for (X,Y) is given in (a), and the subset that set which corresponds to the stated event is the set {(1, 0) , (1,1)}.   □
(d) Notice that these sets given in parts (b) and (c) of this example are dramatically different. The set {1} includes only a single number, while the set {(1, 0),(1,1)} includes two ordered pairs of numbers. Even so, they both correspond to one and the same grammatical event. The standard notation for this event is: [Y = 1]. The square brackets [ ] are to be read as: ‘the event that’. What is inside them, here Y = 1, is to be read as ‘Y equals one’. Since the notation [Y = 1] can be used to denote either of the two sets, how do you know which set is being referred to?
Answer:  Without also knowing whether we are addressing X by itself or the 2-D random variable (X,Y), there is no way to know.
(e) In relation to the action Y and the action (X,Y) give the subset of the appropriate sample space that, in words, is the event that the subject lives in California.

 Solution: In relation to Y this event is {1}. In relation to (X,Y) it is { (1,1),(2,1),(3,1),(4,1),(5,1) }.

(f) Give the event that the subject lives in California and is opposed to the proposition.

Solution: This event is { (1,1),(1,2) }, which, in words, is the event that the subject is strongly opposed AND lives in California = { (1,1) }  OR is opposed AND lives in California = { (2,1) }. The OR operation is a union operation. The union of two sets is a set that contains all the elements they have in common, as well as elements in each set that are not common to the other. Mathematically, the union operation is given the symbol
[image: image50.wmf]È

. Hence, mathematically, we have
                                                { (1,1) } 
[image: image51.wmf]È

 { (2,1) }   =   { (1,1) , (2,1) }.

(g) Suppose that we now restrict our attention to only the responses of the subject who live in California. Give the subset of S(X,Y) that corresponds to this ‘condition’.

             Solution: This is the set { (1,1), (2,1),(3,1),(4,1),(5,1) }, which is exactly the event given in (c).   □
If the reader has understood the above example, then he/she understands two very important concepts related to a random variable (X, Y). What remains is to introduce the jargon associated with these concepts, and hope that those readers retain that understanding. For, it is very often the jargon that causes confusion, not the concepts.

The first concept is that of what we will call a marginal event in relation to (X, Y). In part (c) of the example, the event described in words made no mention of the random variable Y. It only concerned X. This is said to be a marginal event in relation to X. In other words, we specify something in relation to X, but allow Y to have any value in SY. Similarly, in part (e) we have a marginal event in relation to Y. The second concept is that of a conditional event. Such an event was considered in part (g) of the example. What we concluded in that part was that a conditional event is exactly the same as the associated joint event wherein that condition was enforced. We now proceed to formally define these and other types of events.

2.4   FORMALZING THE NOTATION AND TERMINOLOGY OF EVENTS
Notation is much more important than some would like to believe. Consider part (d) of Example 2.8. While the notation [Y=1] is standard notation in practically every textbook on the subject, it is this author’s opinion that it is a major source of confusion to many students. As noted in part (d), without know the context within which it is being used, it is, in a word, ambiguous. The author would much prefer to not use such notation, and continue to use set notation, which is totally unambiguous. However, it is in the interest of any student who might use the course material at a later date to understand the standard notation. For, it is the notation that others will almost invariably be using (whether they understand it or not). For this reason, in this section we will use it.
Recall that, in relation to a random variable, X, with sample space SX, an event is simply a subset of SX. Here, we will assume that X is an n-D random variable; that is, 
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. Hence, SX is included in an n-dimensional hypercube.  Consider an event, A (i.e. a subset of this hypercube). The set A, being a subset of SX, includes elements of the form
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Definition 2.5 Consider the n-D random variable
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. The sample space SX is then n-dimensional and is embedded in
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 denotes the real axis, or, in other words, the interval
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(a) Any 1-D event 
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. This n-D event is called a marginal event in relation to Xk. Both sets may be denoted as
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(b) For any chosen
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is called a cumulative event, and is denoted as
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(c) For any chosen
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(d) For any chosen sets 
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is called the joint event in relation to A and B and is denoted as
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(e) If we restrict our attention to a chosen event
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It should be noted that there are two types of definitions entailed in Definition 2.5. One is in relation to terminology, and the other is in relation to symbolic notation for events (i.e. sets). Again, this author would prefer to forego both the terminology and the symbols, since they require the reader to be ‘in the know’. Whereas, the set notation we have developed up to this point used a bare minimum of terminology and symbols. But as stated above, it is in the best interest of the student to learn both the terminology and the symbols, since they are used so universally. In many ways, learning the basics of probability and statistics is more about learning a foreign language than it is about concepts. If the student can accept this, then he/she can better ‘re-calibrate’ his/her thinking accordingly. 

Example 2.9 The use of unmanned aerial vehicles (UAV’s) for both military and national surveillance is increasing at an exponential rate. In this example we will consider the use of a UAV to monitor the speed of vehicles along a stretch of interstate highway. Consider the following random variables:
X= the act of measuring the speed of a targeted vehicle, with 
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T=the act of recording the time at which the speed is measured, with 
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L=the recorded ambient light level, with 
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In relation to the 3-tuple random variable (X,T,L):

(a) Give the set-theoretic description of the marginal event
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(b) Give the standard symbolic notation for the set 
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Ans. 
[image: image86.wmf]]

420

400

75

65

[

£

£

Ç

<

<

L

X


(c) Give both the standard notation and the set-theoretic notation for the event in (b), conditioned on the event: 
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(d) Describe in words the event in (c), and discuss its potential significance.
Ans. In words, the event may be stated as: Given that the speed is recorded between the hours of 6-7pm, we are interested in the event that it is between 65 and 75 mph and that the lighting is between 400 and 420 lux. The potential significance of this event might be that we are concerned with whether or not traffic speed during evening rush hour is within 
[image: image89.wmf]5
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mph of a posted 70 mph speed limit. [Typical lux values at sunrise and sunset are ~400 lux.]   □
Once again we see, in this example, that the joint event in (b) is identical to the conditional event in (c). So, why do we have two different terms the same event? It is because of the meaning of the term ‘conditioned’ with respect to a given event. Definition 2.5(e) may be viewed as a restriction of the original sample space to a smaller ‘restricted’ sample space. In Definition 2.5(a) there is no restriction. The joint event is taken to be a subset of the original sample space. Basically, as was stated previously in lay terms: When attention is restricted to a specified subset of an original sample space, then one can simply ignore anything and everything that is not in that restricted or conditioned set. The concept of conditioning is important in relation to prediction. If I have a measurement of a random variable, say, X, I would like to use that to predict what the value of the random variable, say, Y, is.
Having defined and illustrated various types of events, we conclude this section with the following definitions.

Definition 2.6 Let the event B denote any imposed condition [as per Definition 2.5 (e)] associated with a random variable X having sample space SX. Then we will refer to B as a restricted sample space where X is restricted by the condition B.
Definition 2.7 Let X be a random variable with sample space SX. The collection of all measurable subsets of SX is called the field of events related to X. This collection (which is a collection-or set- of sets) is denoted as
[image: image90.wmf]X
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We have discussed the collection of all the possible subsets of a set informally on a number of occasions. And so, Definition 2.7 is simply a formalization of this term. Note that in this definition we have the word ‘measurable’ instead of the word ‘possible’. This was done mainly to stimulate readers who might have an interest in the more mathematical elements of set theory. For the purposes of this course, one can assume that the collection of all possible sets is the same as the collection of all measurable sets. 

As was previously stated, any question that one could pose in relation to a random variable X corresponds to a unique subset of SX. In the jargon of Definition 2.6, that question is an element of
[image: image91.wmf]X
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Problems

Problem 1. In this problem, we re-visit Example 1.3 in relation to the terminology and notation of this chapter.

 Entry into a given program of study requires that the entrant take 3 examinations. On each examination the score is either fail (0) or pass (1). 

(a) Describe the random variable, call it X, associated with an individual who would take the exams.

(b) Consider the event that the individual fails the first exam. Give the standard notation (i.e [***] ) for this event, call it A. Also give the set-theoretic description of this event.

(c) Suppose that the individual decides to not take the remaining exams. Give the set-theoretic description of A.
(d) Let Y denote the act of recording the number of exams the individual passes. Describe Y as a function of X, and give its sample space.

(e) Give the standard notation for the event that the individual passes two exams. Call this event B.

(f) Give the set-theoretic descriptions for the event in (e), both in relation to the sample space for Y and the sample space for X.
(g) In relation to SX give both the standard and the set-theoretic description of the event
[image: image92.wmf]B
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, where A is as given in (b). Also, describe it in lay terms.

(h) Describe the restricted sample space that corresponds to the given condition in (h). Also, comment on how it relates to the set in (b).
(i) Given that the individual fails the first exam, describe in both standard and set-theoretic notation the event that he/she passes the next two exams.
Problem 2. In order to determine if a certain site is suitable for constructing a high rise building, the firmness of the ground must be studied. To this end, core samples from 10 randomly selected locations will be taken. For each sample, the compression strength will be measured on a scale of 1( very low) to 5 (very high) will be recorded. 
(a) Define the random variable associated with the sampling procedure.
(b) One important property of the ground is that the mean compression strength should be acceptable. Give a composite random variable that can be used to estimate the mean strength. 
(c) A second important property of the ground is that the compression strength should not vary too much throughout the designated area. Give a composite random variable that can be used to estimate the amount of variability in compression strength. [Note: In general, a random variable is not completely well-defined until its sample space is given. In this part you may ignore the sample space, since it gets a bit ‘nasty’!]
Problem 3. A first step in determining the potential of a heart-related disease is to take the person’s pulse. This has traditionally been done by placing a finger in the artery of the person’s wrist, and counting the number of beats while looking at the second-hand on a clock. The number of counted beats over a specified period of time is recorded. Then, the number of beats per minute is estimated by multiplying that number by the number of periods that correspond to one minute. In actuality, the amount of time between successive beats is not constant. In this problem we will assume, for simplicity, that it is constant. 
(a) Let X = the act of recording the number of beats over a 5-second time interval, and suppose that the sample space for X is SX = 3, 4, 5, 6, 7, 8, 9, 10}. Give the expression for the composite random variable, call it Y, that is, in words, the act of noting the heart rate in beats per minute (bpm). 
(b) Suppose that the actual heart rate is 70 bpm, and that the clock is started when the first beat is counted. Give the standard and set-theoretic descriptions of the corresponding event in relation to Y.
(c) Suppose that the person making the count becomes momentarily distracted, and uses a 6-second count, thinking that it was a 5-second count. Repeat (b) for this situation.
(d) Suppose that the person making the count becomes momentarily distracted, and uses a 5.5-second count, thinking that it was a 5-second count. Repeat (b) for this situation.
(e) Let T = the act of (somehow) measuring the actual time interval, and suppose that the sample space for T is 
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 seconds. Find the events related to T that correspond to the events (i) [Y = 48] , (ii) [Y=60] , (iii) [Y=72] , and (iv) [Y=84] where Y=the act of computing the bpm.
Problem 4. A 20-question True/False exam has 220 = 1,048,576 possibilities. Let Xk denote the act of answering the kth question. 

(a) Give a numerical sample space for Xk.

(b) Give a symbolic representation for the sample space for 
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(c) Give the subset of the sample space in (b) that corresponds to the “event that the student answers FALSE to questions 1 and 2, and TRUE to questions 3 and 4.

Problem 5. . Define the action X1 to be “the act of recording whether an order is ready for on-time shipping, and let its sample space be SX1={0,1} where the subset {0} signifies that it IS ready, and the subset {1} signifies that it is NOT ready. Similarly,   define the action X2 to be “the act of recording whether an order is delivered on time, and let its sample space be SX2={{0,1} where the subset {0} signifies that it IS delivered on time, and the subset {1} signifies that it is NOT delivered on time.  
(a) Suppose that it is not possible to have an order delivered on time if it is not ready for on-time shipping. Give the sample space for X= (X1, X2).
(b) From the set in (a) identify the subset, A, that, in words, is “the event that an order is ready for on-time shipping”. Also, identify the subset, B, that, in words, is “the event that an order is ready for on-time shipping and will be delivered on time”.
 Problem 6. An electronic game contains three components arranged in the series-parallel circuit shown in the figure 

below. At any given time, each component may or may not be operative. The game will operate only if there is a continuous circuit from P to Q. Let A be the event that the game will operate; let B be the event that the game will operate when component x is not operative; and let C be the event that the game will operate when component y is not operative. Use the notation in which (0,0,1), for example, denotes that component z is operative but components x and y are not.
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(a) It should be clear that the set {(0,0,1)} is an event involving the 3-tuple random variable (X,Y,Z). Define each of these three random variables. [Note: The definition of a random variable is not complete if its sample space is not given.] Then give the sample space for (X,Y,Z). Finally, describe the set {(0,0,1)} using the standard notation for events associated with random variables.
(b) For each of the events, A, B, and C defined above, give their set-theoretic and standard descriptions.
(c) Two events are said to be mutually exclusive if their intersection is the empty set. Determine which pairs of events involving A, B, and C, are mutually exclusive.
Problem 7. A main element of the internal combustion engine is the piston. It is the force on the face of the piston caused by a combustion event that pushes it inward in order to apply a torque to the crankshaft. A well-machined piston/cylinder will achieve the optimal clearance; that is, a clearance that is small enough to not allow too much gas to escape through it (and reduce the force on the piston), but large enough to allow the piston to slide along the cylinder relatively freely. Machining quality control mandates that from time to time a random sample of pistons and cylinders are selected and their diameters are measured. Suppose that your task is to randomly select a 4-cylinder engine and disassemble it in order to ‘mic out’ (i.e. measure at the micro-inch scale) each of the four piston/cylinder pairs. You will record any measurement to the nearest 100 micro-inches.
(a) Let the act of measuring the kth piston diameter be denoted as Pk and the act of measuring the kth cylinder diameter be denoted as Ck. Denote the generic 2-D random variable associated with this quality control study as (P,C). Describe in words each component of this 2-D random variable.
(b) One thing you can do with the data you will obtain is to limit your attention to only a study of the random variable P. Specifically, you can estimate the mean (call it 
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 ) associated with P. Give the mathematical expressions for the estimators (i.e. composite actions) of these two parameters. Let these estimators be denoted as
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(c) Repeat (b) for the random variable C.
(d) Let the act of estimating the clearance of any piston/cylinder pair be defined as
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(e) Rather than using the approach in (d), you can define the random variable 
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to directly formulate an estimator of 
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(f) Show that your two estimators of 
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obtained in (d) and (e) are identical.
NOTE: In this problem we have introduced the concept and notation associated with an estimator of a parameter. Specifically, a parameter is an unknown non-random quantity, and an estimator of it is a function of a collection of random variables. Notationally, the parameter 
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Problem 8. In part (f) of Example 2.8 we used the term AND as an operation on two sets. In general, for a random variable, (X,Y) with sample space 
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 , which we read as and, is an operation related to two sets. Specifically, it is the collection of elements that the two sets have in common. It is called the intersection operation. The astute reader might rightfully ask: But the set 
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is just a single set. How does this set relate to an intersection of two sets?
The purpose of this problem is to give the reader a chance to answer this question.

(a) Give the set-theoretic expression for the event 
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(b) Give the set-theoretic expression for the event 
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(c) Answer the question posed by the astute reader.
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