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                                    Biochar Water Retention Random Variables
                                                                From P. Sherman 4/20/15 in relation to STAT447 Project Ideas
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Figure 1. Moisture content for biochar (blue) and the control (green).
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The random variables 
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are indexed in time. Hence, the collections 
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 are called random processes. Equation (1) also includes other random variables. 
One is 
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is also a random process. In fact, it is a Bernoulli random process that describes the dynamics of when significant rainfall occurs. With this, it follows that the random variable (1) is conditioned on the event 
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The random process 
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, which might be loosely termed the ‘noise’ process, is also conditioned on this event. It is needed to capture the uncertainty of the model random process 
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. This process is called a deterministic random process. This is because, given the event 
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, the process is deterministic. This assumes that the time constant, τ, is the same for any episode. Under this assumption, then τ is is an unknow parameter that one would certainly want to estimate. 
The random variable 
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It needs to be emphasized that the above random variable setting applies to each of 
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 (control). Hence, this is a rich setting for a STAT447 project. Perhaps the most interesting focus of such an investigation (given that this is a course project, and not a dissertation :) might be one that focusses on the unknown parameters 
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From  http://en.wikipedia.org/wiki/Exponential_distribution :
Not to be confused with the exponential family of probability distributions.
In probability theory and statistics, the exponential distribution (a.k.a. negative exponential distribution) is the probability distribution that describes the time between events in a Poisson process, i.e. a process in which events occur continuously and independently at a constant average rate. It is a particular case of gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson processes, it is found in various other contexts.
 2. A Closer Look at the Process 
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The model 
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is the moisture content associated with an initial condition that is caused by rainfall. While this is in some ways a reasonable model, the fact is that the rainfall extends over a period of time. Hence, it is actuall an input that results in the output 
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(2.1)

where 
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is the input rainfall level and 
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is the resulting moisture content. To solve (2.1) we first take its Laplace transform, giving
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Solving (2.2) for 
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(2.3)

In any table of Laplace transform pairs, you will find the pair: 
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From (2.4) it follows that the righmost term in (2.3) has the equivalent time domain form:
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(2.5)
The time domain equivalent of the left term on the right side of (2.3) is given be the convolution integral
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(2.6)

To those with little or no experience with Laplace transforms, (2.6) may be a tad intimidating.  However, if we assume that 
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 has a suitably simple form, then it will soon hopefully become less so. The advantage of using Laplace transforms is highlighted in (2.6). Specifically, the intimidating convolution integral is equivalent to simple multiplication of Laplace transforms. The Laplace term 
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Suppose that 
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is simply a short duration of constant rainfall of a given rate 
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. Then we have the following Laplace transform pair:
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(2.7)

The function 
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 in (2.7) is called the unit step function. The Laplace transform of 
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Example 1 Assume that the moisture time constant is 
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   The model transfer function is: 
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The rainfall input is:                                          
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Figure 2. Moisture response to uniform rainfall over 
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From this figure, we see that the model (2.1) is reasonably good at capturing the dynamics in Figure 1. The influence of longer rainfall duration is evident, and is quantifiable. Such a model could serve as the basis of a ‘truth model’ to achieve simulations that are similar to the data shown in Figure 1.

Matlab Code
%PROGRAM NAME: moisture.m
tau=50; a=1/tau; b=0.1;   %Model parameters
rbar=10; delt=20; %Rainfall parameters
%-----------------
s=tf('s');
G=b/(s+a); %Model transfer function
dt=.01; tmax=300;
tvec=0:dt:tmax-dt;tvec=tvec'; %Time array
ntmax=tmax/dt;
ndelt=delt/dt;
% FORCED RESPONSE:
r=zeros(1,ntmax);
r(1:ndelt)=rbar*ones(1,ndelt); 
figure(1)
plot(tvec,r/rbar,'k','LineWidth',2)
hold on
xr=lsim(G,r,tvec);
plot(tvec,xr,'LineWidth',2)
%INITIAL CONDITION RESPONSE:
x0=1.0;
xic=x0*exp(-a*tvec);
hold on
plot(tvec,xic,'g','LineWidth',2)
x=xr+xic;
plot(tvec,x,'r','LineWidth',2)
legend('rain','forced','initial condition','total')
xlabel('Time (min)')
ylabel('Moisture (units)')
title(['Moisture Response to i.c. + Rain w duration ',num2str(delt),'min.'])
grid
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(2)
is the solution to the differential equation model

Let Δ denote the time-domain sampling interval. [In the case of the above data, Δ=30 minutes.] Then
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For notational convenience, write (2) as:
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