A Primer on 1-D Random Processes [Updated 4/10/14]
1.Introduction

Recall that a random variable, X, is an action. If that action results in a single number, x, then X is a 1-D variable. If the action results in n numbers,
[image: image1.wmf])'

,

,

,

(

2

1

n

x

x

x

K

, then X is an n-D variable
[image: image2.wmf])'

,

,

,

(

2

1

n

X

X

X

K

.

[image: image160.wmf])}

,

(

|

)

(

{

¥

-¥

Î

t

t

X

Example. A thermocouple is used to monitor the temperature of a lake near a nuclear power plant. A 24-hour measurement on 13 August, 2007 is shown below.
[image: image3.emf]0 5 10 15 20 25

76

77

78

79

80

81

82

83

Time (Hrs.)

Temperature (F)

Figure 1. Sampled thermocouple output (oF) at lake location near power plant on 13 August 2007. Sampling interval Δ=0.01 Hrs.

What we have in Figure 1 is data. Specifically, we have 2400 numbers
[image: image4.wmf]24

1

)}

(

{

=

k

k

w

. We have a variety of actions that we can associate these numbers with:

(i) X = The act of measuring temperature at any sample time. This is a 1-D random variable, and we have 2400 measurements of it. From these, we can obtain information about X:
[image: image5.emf]76 77 78 79 80 81 82 83 84

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Temperature, x, (F)

f

X

 (x)

Figure 2. An estimate of
[image: image6.wmf])

(

x

f

X

is shown in the plot. The estimates of
[image: image7.wmf]X

m

and
[image: image8.wmf]X

s

are 80.1 oF and 0.95 oF.

Based on Figure 2, we can claim that
[image: image9.wmf])

95

.

0

,

1

.

80

(

~

2

N

X

.

(ii) Y = The act of measuring temperature at the sample time just after that of X. We now have a 2-D random variable (X,Y). We already know that
[image: image10.wmf])

95

.

0

,

1

.

80

(

~

2

N

X

. If we ignore the relation of Y to X, then marginally, we have
[image: image11.wmf])

95

.

0

,

1

.

80

(

~

2

N

Y

. The point of defining Y is that we desire to know if there is a relationship between successive temperature measurements. A scatter plot for (X, Y) based on the data in Figure 1 is shown below.
[image: image12.emf]76 77 78 79 80 81 82 83

76

77

78

79

80

81

82

83

Temperature (F) at any time k*delta

Temperature at time (k+1)*delta

Figure 3. A scatter plot for (X, Y) based on the data in Figure 1.

There is clear evidence that X and Y have a positive correlation. We estimate that it as
[image: image13.wmf]88

.

0

=

XY

r

)

.
(iii) Let Z = The act of measuring temperature at the sample time just after that of Y. Here again, if we ignore the relation of Z to both X and Y, then
[image: image14.wmf])

95

.

0

,

1

.

80

(

~

2

N

Z

. If we ignore the relation of Z to X, but focus on only its relation to Y, then
[image: image15.wmf]88

.

0

=

YZ

r

. Hence, the point of bringing Z into the picture is that we desire to know about the relation between Z and X. A scatter plot for (X, Y) based on the data in Figure 1 is shown below.

Figure 3. A scatter plot for (X, Z) based on the data in Figure 1.

[image: image16.emf]77 78 79 80 81 82 83

77

78

79

80

81

82

83

Temperature (F) at any time k*delta

Temperature at time (k+2)*delta

There is clear evidence that X and Z have a positive correlation. We estimate that it as
[image: image17.wmf]82

.

0

=

XZ

r

)

.

(iv) Let
[image: image18.wmf]}

}

,

{

|

)

(

{

¥

-¥

Î

D

k

k

W

denote the act of measuring temperature over any infinite collection of sample times. Then at any time kΔ ,the random variable W(kΔ), ignoring all other random variables is simply X in (i). More generally, for any time kΔ ,the random variables
[image: image19.wmf]}

)

)

2

((

,

)

)

1

((

,

)

(

{

D

+

D

+

D

k

W

k

W

k

W

, ignoring all other random variables are exactly the random variables {X, Y, Z}. Were we to continue to define more and more random variables, based on how far apart in time any two measurements are, we would arrive at the random process
[image: image20.wmf]}

}

,

{

|

)

(

{

¥

-¥

Î

D

k

k

W

. This way of defining random variables only in terms of how far apart they are from each other in time, with no concern for the absolute value of time, is tantamount to assuming the following properties of the temperature random process:
(P1) For any sample time kΔ,
[image: image21.wmf])

95

.

0

,

1

.

80

(

~

)

(

2

N

k

W

D

(P2)
[image: image22.wmf])

(

)]

)

((

),

(

[

D

=

D

+

D

n

n

k

W

k

W

Corr

W

r

, where
[image: image23.wmf]82

.

)

2

(

,

88

.

)

1

(

,

1

)

0

(

=

=

=

W

W

W

r

r

r

[image: image161.wmf]}

}

,

{

|

)

(

{

¥

-¥

Î

D

k

k

X

What we see is that:

by defining random variables only in relation to time separation (ignoring absolute time) we have forced the random process
[image: image24.wmf]}

}

,

{

|

)

(

{

¥

-¥

Î

D

k

k

W

to be a wss process!!!
Before we address the validity of this ‘enforcement’, let’s now assume that the temperature process is, indeed, wss. We will now proceed to create a model for this process. This model will be based on the short-delay trend in the values of the autocorrelation function.

Specifically, from the above we have:

(i)
[image: image25.wmf]k

N

k

X

"

D

)

95

.

0

,

1

.

80

(

~

)

(

2

(ii)
[image: image26.wmf]88

.

0

)

(

=

D

=

X

XY

r

r

)

)

 and
[image: image27.wmf]82

.

0

)

2

(

=

D

X

r

)

.
Definition 3. For a wss discrete-time random process,
[image: image28.wmf])}

(

{

D

=

D

k

X

X

k

, the autocorrelation function is defined as

[image: image29.wmf])

(

)

(

m

k

k

X

X

X

E

m

R

+

D

=

.
(1.1)

In relation to the temperature random process, we can define the related process
[image: image30.wmf])}

(

{

D

=

D

k

Y

Y

k

via:

[image: image31.wmf]k

X

k

Y

X

+

=

m

.
(1.2)

From (1.2) it should be clear that
[image: image32.wmf])}

(

{

D

=

D

k

Y

Y

k

 is a zero-mean wss random process. Substituting (1.2) into (1.1) gives:

[image: image33.wmf])

(

)

(

)]

(

)

[(

)

(

)

(

2

2

m

R

Y

Y

E

Y

Y

E

X

X

E

m

R

Y

X

m

k

k

X

m

k

X

k

X

m

k

k

X

+

=

+

=

+

+

=

=

+

+

+

D

m

m

m

m

.
(1.3)
From (1.3) we see that
[image: image34.wmf])

(

m

R

X

is simply a shifted version of
[image: image35.wmf])

(

m

R

Y

. Hence, in order to arrive at a model for
[image: image36.wmf])}

(

{

D

=

D

k

X

X

k

 we will develop a model for
[image: image37.wmf])}

(

{

D

=

D

k

Y

Y

k

, and then simply add
[image: image38.wmf]X

m

 to
[image: image39.wmf]k

Y

 to obtain a model for (1.2). From the above, we have:

 (i)
[image: image40.wmf]k

N

k

Y

"

D

)

95

.

0

,

0

(

~

)

(

2

. In other words:
[image: image41.wmf]9

.

0

9025

.

95

.

)

0

(

2

@

=

=

Y

R

(ii)
[image: image42.wmf]88

.

0

)

(

=

D

Y

r

)

 and
[image: image43.wmf]82

.

0

)

2

(

=

D

X

r

)

.
In other words:
[image: image44.wmf]79

.

)

88

(.

9

.

)

1

(

)

0

(

)

1

(

@

=

=

Y

Y

Y

R

R

r

)

 and
[image: image45.wmf]74

.

)

82

(.

9

.

)

2

(

)

0

(

)

2

(

@

=

=

Y

Y

Y

R

R

r

)

So, let’s try the ‘first order’ linear prediction model:
[image: image46.wmf]1

-

=

k

k

Y

Y

a

)

. Recall, that we obtain the value for the parameter α by solving:
[image: image47.wmf]0

]

)

[(

1

=

-

-

k

k

k

Y

Y

Y

E

)

. Specifically,

[image: image48.wmf])

0

(

)

1

(

)

(

0

]

)

[(

2

1

1

1

Y

Y

k

k

k

k

k

k

R

R

Y

Y

Y

E

Y

Y

Y

E

a

a

-

=

-

=

=

-

-

-

-

)

. Hence,

[image: image49.wmf])

0

(

/

)

1

(

Y

Y

R

R

=

a

.
(1.4)

Furthermore, by defining
[image: image50.wmf]1

-

D

-

=

-

=

k

k

k

k

k

Y

Y

Y

Y

U

a

)

we arrive at the model:
[image: image51.wmf]k

k

k

U

Y

Y

+

=

-

1

a

.
(1.5)

IF in the model (1.5), the error process
[image: image52.wmf]}

{

k

U

 is a white noise process (i.e. the random variables are iid) then the process (1.5) is called an AR(1) process (i.e. an Auto-Regression process of order 1).
The Matlab command xcorr.m is designed to compute
[image: image53.wmf])

(

)]

)

((

),

(

[

D

=

D

+

D

n

n

k

X

k

X

Corr

X

r

. However, it is disappointing that, at this point in time, the above command must be augmented by a host of code to compute
[image: image54.wmf])

(

D

n

X

r

. One must be careful to first subtract the data mean, prior to using the above command. Upon doing this, for the de-meaned data in Figure 1, we obtain the figure below.
[image: image55.emf]0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Integer time k

[image: image56.emf]2340 2360 2380 2400 2420 2440 2460

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Integer time k

Figure 5. Computation of
[image: image57.wmf])

(

D

n

W

r

 obtained using the command xcorr(dw,’coef’) where dw is the de-meaned data in Figure 1.

Notice that
[image: image58.wmf]0

.

1

)

0

(

=

W

r

is placed in the center of the plot. Hence the center time index 2401 is really lag n=0. The plot is symmetric about this point since
[image: image59.wmf])

(

)

(

D

-

=

D

n

n

W

W

r

r

. In the lower (zoomed) plot in Figure 5, we observe the numerical values that we obtained above; namely,
[image: image60.wmf]88

.

0

)

(

=

=

D

XY

W

r

r

 and
[image: image61.wmf]82

.

0

)

2

(

=

=

D

XY

W

r

r

.
 The Matlab code that was actually used to generate the time series in Figure 1 is given in the Appendix.
2. The pth Order Linear Prediction Model

Let
[image: image62.wmf]¥

-¥

=

k

k

X

}

{

 be a wide sense stationary (wss) zero-mean discrete-time random process. Let
[image: image63.wmf]¥

=

+

=

0

)}

(

)

(

{

m

X

m

k

k

m

R

X

X

E

denote the autocorrelation function for this process. We begin this set of notes with the following problem.

The Linear Prediction Problem: In words, the problem here is to predict
[image: image64.wmf]k

X

 from
[image: image65.wmf]p

j

j

k

X

1

}

{

=

-

using the following linear prediction model:

[image: image66.wmf]å

=

-

-

=

p

j

j

k

j

p

p

k

X

a

X

1

,

)

(

)

.
(2.1)

The integer, p, is the number of lags (relative to k) that are to be used to predict Xk. Consequently, (2.1) is called a pth order linear prediction model. The corresponding pth order prediction error is clearly,

[image: image67.wmf])

(

)

(

p

k

p

k

k

V

X

X

D

=

-

)

.
(2.2)

Since Let
[image: image68.wmf]¥

-¥

=

k

k

X

}

{

 is a wss zero-mean random process, so is the error random process
[image: image69.wmf]¥

-¥

=

k

p

k

V

}

{

)

(

. Hence, the mean-squared error (mse) is
[image: image70.wmf]2

2

)

(

]

)

[(

p

p

k

V

E

s

D

=

. We desire to find the prediction coefficients
[image: image71.wmf]p

j

j

p

a

1

,

}

{

=

that will minimize this mse.
Fact 1: The prediction coefficients
[image: image72.wmf]p

j

j

p

a

1

,

}

{

=

that minimize
[image: image73.wmf]2

p

s

, are those that satisfy the following orthogonality conditions:

[image: image74.wmf]0

)

(

)

(

=

-

m

k

p

k

X

V

E

 for
[image: image75.wmf]p

m

,

,

2

,

1

K

=

.
(2.3)

Clearly, (2.3) includes p linear equations in the p unknowns
[image: image76.wmf]p

j

j

p

a

1

,

}

{

=

. To arrive at the explicit set of equations, use (2.1) and (2.2) to express (2.3) as:

[image: image77.wmf]0

)

(

)

(

]

)

[(

)

(

1

,

)

(

)

(

=

-

+

=

-

=

å

=

-

-

p

j

X

j

p

X

m

k

p

k

k

m

k

p

k

m

j

R

a

m

R

X

X

X

E

X

V

E

)

 for
[image: image78.wmf]p

m

,

,

2

,

1

K

=

.
(2.4)

The collection of equations in (2.4) can be written in the following matrix form:

[image: image79.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

)

(

)

2

(

)

1

(

)

0

(

)

2

(

)

1

(

)

2

(

)

0

(

)

1

(

)

1

(

)

1

(

)

0

(

,

2

,

1

,

p

R

R

R

a

a

a

R

p

R

p

R

p

R

R

R

p

R

R

R

X

X

X

p

p

p

p

X

X

X

X

X

X

X

X

X

M

M

L

M

M

M

M

L

L

.
(2.5a)

We will express (2.5a) in the following concise notation:

[image: image80.wmf]p

p

p

r

a

=

Â

-

1

 .
(2.5b)

Hence, the vector of prediction coefficients
[image: image81.wmf]tr

p

p

p

p

p

a

a

a

]

[

,

2

,

1

,

L

=

a

corresponding to the minimum mean-squared error (mmse) pth order linear prediction model of the form (2.1) is:

[image: image82.wmf]p

p

p

r

a

1

1

-

-

Â

=

 .
(2.6a)

The corresponding mse is:

[image: image83.wmf]å

=

+

=

=

-

=

-

=

=

p

j

X

j

p

X

k

p

k

k

p

k

k

p

k

k

k

p

k

p

k

p

j

R

a

R

X

V

E

X

V

E

X

V

E

X

X

V

E

V

E

1

,

)

(

)

(

)

(

)

(

2

)

(

2

)

(

)

0

(

)

(

)

(

)

(

)]

(

[(

]

)

[(

)

)

s

.

Notice that the term
[image: image84.wmf])

(

)

(

k

p

k

X

V

E

)

vanished. This is because the prediction error
[image: image85.wmf])

(

p

k

V

 is uncorrelated with every member of
[image: image86.wmf]p

j

j

k

X

1

}

{

=

-

, and so it is uncorrelated with
[image: image87.wmf]k

X

)

. The above equation can be written in the more concise form:

[image: image88.wmf]p

tr

p

X

p

R

r

a

s

+

=

)

0

(

2

.
(2.6b)

Equations (2.6) represent the solution to the pth order linear prediction problem. The crucial issue that was not addressed is how to select the most appropriate order, p, for a given collection autocorrelations
[image: image89.wmf]M

m

X

m

R

0

)}

(

{

=

. Now if these autocorrelations are known to be exact, then this is not a problem, since we would simply choose
[image: image90.wmf]M

p

=

, as that will result in the smallest possible mse. If the mmse is actually achieved for
[image: image91.wmf]M

p

<

 , then the Mth order coefficient vector is
[image: image92.wmf]]

0

,

,

0

[

K

tr

p

tr

M

a

a

=

. In this idealistic case the random process
[image: image93.wmf]¥

-¥

=

k

k

X

}

{

 is called a pth order autoregressive [AR(p)] process. We state this as

Definition 1. If a wss zero-mean process
[image: image94.wmf]¥

-¥

=

k

k

X

}

{

 can be expressed as
[image: image95.wmf]k

p

j

j

k

j

p

k

V

X

a

X

+

-

=

å

=

-

1

,

, where
[image: image96.wmf]¥

-¥

=

k

k

V

}

{

 is a white noise process, then it is called a pth order autoregressive [AR(p)] process.
Hence, in the case of an AR(p) process, not only does the orthogonality condition hold for
[image: image97.wmf]p

m

,

,

2

,

1

K

=

, it hold for all m>0.
If, indeed, this minimum possible mse can be achieved for a model order
[image: image98.wmf]M

p

<<

, then since
[image: image99.wmf]]

0

,

,

0

[

K

tr

p

tr

M

a

a

=

, the Mth order model collapses to a pth order AR(p) model. Few, if any real-world random processes are truly AR(p) in nature; albeit many can be well-modeled by the same. Recognition of the following fact is central to the use of AR(p) models.

Fact 2. The solution (2.6a) of the equation (2.5a) guarantees that (2.2) will be uncorrelated with the collection
[image: image100.wmf]p

j

j

k

X

1

}

{

=

-

. However, this does not mean that (2.2) is a white noise process. It will be a white noise process if and only if (2.1) is an AR(p) process. When this is not the case, then (2.2) will be a colored noise process; that is, it will retain some of the correlation structure related to (2.1). To capture this structure would require a higher order model.
Another problem is that of not having exact knowledge of
[image: image101.wmf]M

m

X

m

R

0

)}

(

{

=

. Typically, we have data-based estimates
[image: image102.wmf]M

m

X

m

R

0

)}

(

{

=

)

. And so, whereas in the ideal case the last M-p elements of
[image: image103.wmf]]

0

,

,

0

[

K

tr

p

tr

M

a

a

=

 would be exactly zero, in this more common and realistic case they will not. The most common estimator of
[image: image104.wmf])

(

m

R

X

is the following lagged-product estimator:

[image: image105.wmf]å

-

=

+

=

m

n

k

m

k

k

X

X

X

n

m

R

1

1

)

(

)

.
(2.7)

Notice that for m = 0, (2.7) is the average of n products. Hence, if the observation length, n, is large, (2.7) will be a good estimator of
[image: image106.wmf])

0

(

X

R

. At the other extreme, suppose that
[image: image107.wmf]1

-

=

n

m

, which is the largest value of m that can be used in (2.7). In this case,
[image: image108.wmf]n

X

X

X

n

n

R

1

1

)

1

(

=

-

)

. This is not an average at all. It is (1/n) times a single product. As a result,
[image: image109.wmf])

1

(

-

n

R

X

)

will be a very poor estimator of
[image: image110.wmf])

1

(

-

n

R

X

.

We will quantify the quality of the estimator (2.7) in due course. For now, it is enough to recognize that if the estimators (2.7) for
[image: image111.wmf]p

m

,

,

2

,

1

K

=

 are used in (5a), then as p increases for a given data length, n, (a) will include more and more poor estimators of the higher autocorrelation lags. Consequently, the estimator (6a) will become less trustworthy.

It is this trade-off between the desire for a high model order that can better capture the structure of the process, and the increasing uncertainty of the estimator (2.7) at higher lags that has led researchers to propose a wide variety of model order identification schemes. All of these schemes represent an attempt to somehow optimize this trade-off. All of them strive to identify that single ‘best’ model order, p. And so, to this end, (2.6) will be computed for a variety of increasing model orders.

The Levinson Algorithm
Notice that the computations, (2.6), involve taking the inverse of the
[image: image112.wmf]p

p

´

 matrix
[image: image113.wmf]1

-

Â

p

in (2.5b), as defined by (2.5a). Before the advent of high speed computers, computing such an inverse became exponentially more intensive as the order p increased. Today, even for p on the order of 100, such an inverse can be computed in practically no time. The Levinson algorithm was developed in the mid-1960’s as an alternative to having to perform the matrix inversion. Even though current computing power has lessened its value, we include it here for two reasons. First, it can be implemented in a digital signal processing (DSP) chip far more cheaply that the matrix inversion method. Second, we will see that by progressing through the order sequence
[image: image114.wmf]K

,

3

,

2

,

1

=

p

, not only do we arrive at a family of AR models that can be used for cross-validation purposes, but we also arrive at a family of related minimum variance (MV) models that include information about the process not so easily gleaned from the AR models.

To arrive at the Levinson algorithm, we begin with the p orthogonality conditions (2.4), which we give here for convenience:

[image: image115.wmf]0

)

(

)

(

1

,

=

-

+

å

=

p

j

X

j

p

X

m

j

R

a

m

R

 for
[image: image116.wmf]p

m

,

,

2

,

1

K

=

.
(2.8a)

and with the equation following (2.6a), which led to (2.6b):

[image: image117.wmf]å

=

+

=

p

j

X

j

p

X

p

j

R

a

R

1

,

2

)

(

)

0

(

s

.
(2.8b)

Equations (2.8) can be written as:

[image: image118.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

0

0

0

0

1

)

0

(

)

1

(

)

1

(

)

(

)

1

(

)

0

(

)

2

(

)

1

(

)

1

(

)

2

(

)

0

(

)

1

(

)

(

)

1

(

)

1

(

)

0

(

2

,

1

,

1

,

p

p

p

p

p

p

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

a

a

a

R

R

p

R

p

R

R

R

p

R

p

R

p

R

p

R

R

R

p

R

p

R

R

R

s

M

L

L

M

M

M

M

M

L

L

.
(2.9a)

We will now define
[image: image119.wmf]1

0

,

=

p

a

, and subsequently, re-define
[image: image120.wmf]tr

p

p

p

p

p

a

a

a

]

,

,

,

[

,

1

,

0

,

L

=

a

, so that (2.9a) is:

[image: image121.wmf]ú

û

ù

ê

ë

é

=

Â

0

2

r

p

p

p

s

a

.
(2.9b)

The matrix
[image: image122.wmf]p

Â

is not only symmetric, but the kth diagonal contains the single element
[image: image123.wmf])

(

k

R

X

. Such a matrix is called a Toeplitz matrix, and it has the following property:

[image: image124.wmf]ú

ú

û

ù

ê

ê

ë

é

=

Â

2

0

p

p

p

s

a

r

(

 where
[image: image125.wmf]tr

p

p

p

p

p

p

p

a

a

a

a

]

[

0

,

1

,

1

,

,

L

(

-

=

a

.
(2.10)

Now, we also have

[image: image126.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

D

=

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

-

-

-

-

1

2

1

1

,

1

1

,

1

0

0

0

0

1

)

0

(

)

1

(

)

1

(

)

(

)

1

(

)

0

(

)

2

(

)

1

(

)

1

(

)

2

(

)

0

(

)

1

(

)

(

)

1

(

)

1

(

)

0

(

p

p

p

p

p

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

a

a

R

R

p

R

p

R

R

R

p

R

p

R

p

R

p

R

R

R

p

R

p

R

R

R

s

M

L

L

M

M

M

M

M

L

L

(2.11a)

 where
[image: image127.wmf]p

tr

p

tr

X

X

X

tr

p

p

R

p

R

p

R

r

a

a

(

L

]

0

[

)]

0

(

)

1

(

)

(

][

0

[

1

1

1

-

-

-

=

-

=

D

.
(2.11b)

Hence, in compact form, (2.11) becomes:

[image: image128.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

=

ú

û

ù

ê

ë

é

Â

-

-

-

1

2

1

1

0

0

p

p

p

p

v

s

a

.
(2.12a)

Similar to (2.10), we have from (2.12a):

[image: image129.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

=

ú

û

ù

ê

ë

é

Â

-

-

-

2

1

1

1

0

0

p

p

p

p

s

a

v

(

.
(2.12b)

 Claim: We can express
[image: image130.wmf]ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

=

-

-

1

1

0

0

p

p

p

a

g

a

a

(

 for some value of γ.

To prove this claim, we will proceed to assume it is true, and find the appropriate value for γ.

[image: image131.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

D

D

-

=

ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

Â

=

Â

-

-

-

-

-

-

2

1

1

1

2

1

1

1

0

0

0

p

p

p

p

p

p

p

p

p

gs

g

s

a

g

a

a

r

(

.
(2.13)

If we compare it to (2.9b), we see that if we set

[image: image132.wmf]2

1

1

/

-

-

D

=

p

p

s

g

 ;
[image: image133.wmf]ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

=

-

-

1

1

0

0

p

p

p

a

g

a

a

(

 , and
[image: image134.wmf]ú

û

ù

ê

ë

é

D

-

=

ú

û

ù

ê

ë

é

-

-

0

0

1

2

1

2

v

r

p

p

p

g

s

s

then we have exactly (2.9b). And so, the algorithm proceeds as follows:

The Levinson Algorithm:
p=0:
[image: image135.wmf]1

0

=

a

 ;
[image: image136.wmf])

0

(

2

0

X

R

=

s

 ;
[image: image137.wmf])

1

(

0

X

R

=

D

 ;
p=1 :
[image: image138.wmf])

0

(

/

)

1

(

/

2

1

1

X

X

p

p

R

R

=

D

=

-

-

s

g

 ;
[image: image139.wmf]ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

g

g

1

1

0

0

1

1

11

a

 ;
[image: image140.wmf])

0

(

)

0

(

2

1

X

X

R

R

g

s

-

=

 ;

p=2:
[image: image141.wmf]tr

X

X

X

tr

R

R

R

)]

0

(

)

1

(

)

2

(

][

0

[

1

1

a

=

D

;
[image: image142.wmf]2

1

1

/

-

-

D

=

p

p

s

g

 ;
[image: image143.wmf]ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

=

-

-

1

1

0

0

p

p

p

a

g

a

a

(

 ;
[image: image144.wmf]1

2

1

2

-

-

D

-

=

p

p

p

g

s

s

p=3:
[image: image145.wmf]3

2

2

]

0

[

r

a

(

tr

=

D

 ;
[image: image146.wmf]2

1

1

/

-

-

D

=

p

p

s

g

 ;
[image: image147.wmf]ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

=

-

-

1

1

0

0

p

p

p

a

g

a

a

(

 ;
[image: image148.wmf]1

2

1

2

-

-

D

-

=

p

p

p

g

s

s

The sequence of computations continues for as many models as are specified, up to order n-1.
A Matlab Code for the Levinson Algorithm:
% The correlations RX(k) for k = 0: maxorder must be resident as a column vector
E2=[]; %Array of model mse’s
 Alpha=[]; %Array of model parameters. The kth column corresponds to {1 ak1 … akk}
 E2(1)=r(1); % This is actually RX(0), but Matlab doesn’t like the zero index.
 R=r(1:2);
 Alpha(1)=1.0;
 Aall=[Alpha; zeros(maxorder,1)]; % This array will have maxorder +1 rows of models.
 N=1;
 for n=1:maxorder
 R=r(1:n+1);
 rflip=flipud(R);
 Alpha=[Alpha; 0.0];
 del=rflip' * Alpha;
 Alpha=Alpha - (del/E2(N)) * flipud(Alpha);
 E2(N+1) = E2(N) - (del^2)/E2(N);
 N=n+1;
 Aall=[Aall,[Alpha; zeros(maxorder-n,1)]];
 end
Example 1. To test the above algorithm, we consider an AR(1) process, Xk with α = 0.5, and with RX(0)=1. We define pwr = 0:5 and r = (0.5*ones(6,0)).^pwr. This gives the first 6 autocorrelation lags (0:5). The resulting array of model coefficients is:

Aall =

 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 0 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0
The corresponding array of mse’s is:

E2 =

 1.0000 0.7500 0.7500 0.7500 0.7500 0.7500
As expected, all higher order models collapse to the correct AR(1) model. □

Using Simulations to Determine the Minimum Data length, n, for Acceptable Model Estimation
The above example utilized theoretical correlation lags. consequently, all models collapsed to the correct one. Suppose that these lags were, instead, estimated via (7). The question addressed here is:

How large should the data length, n, be, in order to correctly identify the model as an AR(1) model?
As mentioned above, we will pursue a theoretical answer to this question; one that utilizes a fair bit of probability theory. However, in view of the level of computational power presently available, the student can answer this question by performing simulations. Let’s begin by simulating the above AR(1) process for various values of n.

Case 1: n=100 The estimated autocorrelations from ar1sim.m (given below) are:

Trial>> Rhat'

ans = 0.9842 0.4572 0.2514 0.2282 0.2011 0.1703
% PROGRAM NAME: ar1sim.m
a=0.5; varu=1-a^2;
n = 100; ntot = n+500;
u=varu^0.5 *randn(ntot,1);
x=zeros(ntot,1); x(1)=0;
for k = 2:ntot
 x(k) = a*x(k-1) + u(k);
end
x=x(501:ntot);
Rhat = xcorr(x,5,'biased');
Rhat=Rhat(6:11)
Using these in the scar.m program gives:

Aall = 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

 0 -0.4646 -0.4411 -0.4350 -0.4274 -0.4247

 0 0 -0.0505 0.0036 0.0033 0.0075

 0 0 0 -0.1225 -0.0957 -0.0958

 0 0 0 0 -0.0616 -0.0429

 0 0 0 0 0 -0.0436
The array of corresponding mse’s is:

E2 = 0.9842 0.7718 0.7698 0.7583 0.7554 0.7540

We see that the mse decreases monotonically, but that the decrease is minimal beyond order 1. Hence, any model identification scheme would identify 1 as the best order. If we accept that for n=100, the order 1 would be identified, we can then proceed to investigate the uncertainty associated with the estimators of the AR(1) model parameters α and
[image: image149.wmf]2

U

s

. These parameters depend only on
[image: image150.wmf])

0

(

x

R

and
[image: image151.wmf])

1

(

x

R

. Specifically,
[image: image152.wmf])

0

(

/

)

1

(

x

x

R

R

a

-

=

, and
[image: image153.wmf])

1

(

)

0

(

2

x

X

U

R

a

R

+

=

s

. In this particularly simple setting, it is easier to forego the above codes and write a very simple direct one instead. To this end, consider the following code:

% PROGRAM NAME: ar1pdf.m
a=0.5; varu=1-a^2;
n = 100; ntot = n+500;
nsim = 1000;
u=varu^0.5 *randn(ntot,nsim);
x=zeros(ntot,nsim); x(1,:)=zeros(1,nsim);
for k = 2:ntot
 x(k,:) = a*x(k-1,:) + u(k,:);
end
x=x(501:ntot,:);
R0=mean(x.*x);
x0=x(1:n-1,:);
x1=x(2:n,:);
R1=mean(x0.*x1);
ahat = -R1./R0;
varuhat = R0 + ahat.*R1;
figure(1)
hist(ahat,50)
title('Histogram of simulations of ahat for n=100')
pause
figure(2)
hist(varuhat,50)
title('Histogram of simulations of varuhat for n=100')
pause
figure(3)
plot(ahat,varuhat,'*')
title('Scatter Plot of simulations of ahat vs. varuhat for n=100')
[image: image154.emf]-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

0

10

20

30

40

50

60

Histogram of simulations of ahat for n=100

[image: image155.emf]0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0

10

20

30

40

50

60

70

Histogram of simulations of varuhat for n=100

[image: image156.emf]-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Scatter Plot of simulations of ahat vs. varuhat for n=100

Estimating the Autocorrelation Function from the AR(p) model parameters

After obtaining the AR(p) model parameter estimates from the use of the Levinson algorithm in relation to the lagged-product autocorrelation estimates (2.7) up to order p, it is a simple matter to use the model to recursively estimate as many higher order lags as is desired. Specifically,

[image: image157.wmf]å

=

-

-

=

p

j

X

j

p

X

j

m

R

a

m

R

1

,

)

(

)

(

)

 for
[image: image158.wmf]p

m

>

.
(2.14)

The lagged-product autocorrelation estimator (2.7) is limited to
[image: image159.wmf]n

m

<

. Higher lags are implicitly presumed to be zero. This truncation of the higher lags is known as windowing, and has the effect of limiting the spectral resolution (to be discussed presently) to the order of the inverse of the window width. In contrast, (2.14) has no such truncation, as an arbitrary number of larger lags can be recursively computed. For this reason, AR models are also know as high resolution spectral estimators.
Appendix
%PROGRAM NAMES: temp.m
%lake temperature near nuclear plant for 24-hr period
t=0:.01:24-0.01;
nt = length(t); *** simulate a length-n portion of the random process w(k) ***
dw=zeros(1,nt);
a = .9;
u=.19^.5*randn(1,nt); Note that this loop is exactly the model: Y = aX + U
dw(1)=randn(1,1); performed in a recursive fashion.
for k=2:nt
dw(k)=a*dw(k-1)+ u(k);
end
w=80+dw; Note that when simulating a random process with a non-zero
figure(1) mean, the mean is added AFTER the zero-mean process is generated.
plot(t,w)
xlabel('Time (Hrs.)')
ylabel('Temperature (F)')
pause
% Let X = act of measuring Temp at any time
mx = mean(w);
sigx=std(w);
bvec = 76.05:.1:83.5;
h = hist(w,bvec);
fx = (0.1*nt)^-1 *h;
figure(2)
bar(bvec,fx)
xlabel('Temperature, x, (F)')
ylabel('f_X (x)')
pause
% Let Y = act of measuring the next Temp after X
xy = [w(1:nt-1)' , w(2:nt)'];
figure(3)
plot(xy(:,1),xy(:,2),'*')
xlabel('Temperature (F) at any time k*delta')
ylabel('Temperature at time (k+1)*delta')
Rxy = corrcoef(xy);
rxy = Rxy(1,2);
pause
% Let Z = act of measuring the next temp after Y
xz = [w(1:nt-2)' , w(3:nt)'];
figure(4)
plot(xz(:,1),xz(:,2),'*')
xlabel('Temperature (F) at any time k*delta')
ylabel('Temperature at time (k+2)*delta')
Rxz = corrcoef(xz);
rxz = Rxz(1,2);
pause
% Compute the de-meaned autocorreltation function
dw = w - mean(w);
rdw = xcorr(dw,'coef');
figure(5)
plot(rdw,'*')
xlabel('Integer time k')
Definition 1. A continuous random process is a collection of ‘continuous-time’ indexed random variables� EMBED Equation.3 ���. A discrete random process is a collection of ‘discrete-time’ indexed random variables� EMBED Equation.3 ���.

Definition 2. A random process � EMBED Equation.3 ���is said to be wide sense stationary (wss) if the following two conditions hold:

(C1): For any sample time kΔ, � EMBED Equation.3 ��� and (C2): � EMBED Equation.3 ���,

[image: image162.wmf]}

}

,

{

|

)

(

{

¥

-¥

Î

D

k

k

X

[image: image163.wmf]X

k

X

E

m

=

D

)]

(

[

[image: image164.wmf])

(

)]

)

((

),

(

[

D

=

D

+

D

n

n

k

X

k

X

Corr

X

r

_1327044092.unknown

_1447748856.unknown

_1447749617.unknown

_1447750108.unknown

_1447750746.unknown

_1447750988.unknown

_1447751145.unknown

_1447751235.unknown

_1447751045.unknown

_1447750873.unknown

_1447750455.unknown

_1447750525.unknown

_1447750393.unknown

_1447749955.unknown

_1447750050.unknown

_1447750075.unknown

_1447749977.unknown

_1447749788.unknown

_1447749847.unknown

_1447749627.unknown

_1447749199.unknown

_1447749428.unknown

_1447749114.unknown

_1447748948.unknown

_1447749020.unknown

_1327051751.unknown

_1327061441.unknown

_1327062748.unknown

_1327064838.unknown

_1327083108.unknown

_1327083884.unknown

_1357967745.unknown

_1447748408.unknown

_1447748441.unknown

_1327083918.unknown

_1327083960.unknown

_1327083558.unknown

_1327083853.unknown

_1327083481.unknown

_1327075867.unknown

_1327082672.unknown

_1327083081.unknown

_1327077224.unknown

_1327077380.unknown

_1327077145.unknown

_1327075641.unknown

_1327064001.unknown

_1327064260.unknown

_1327064655.unknown

_1327064216.unknown

_1327063407.unknown

_1327063938.unknown

_1327062840.unknown

_1327061913.unknown

_1327062071.unknown

_1327062311.unknown

_1327062626.unknown

_1327061975.unknown

_1327061520.unknown

_1327061536.unknown

_1327061491.unknown

_1327053578.unknown

_1327055339.unknown

_1327056175.unknown

_1327061200.unknown

_1327056597.unknown

_1327056043.unknown

_1327054908.unknown

_1327055131.unknown

_1327054203.unknown

_1327052223.unknown

_1327053059.unknown

_1327053511.unknown

_1327052257.unknown

_1327052019.unknown

_1327052103.unknown

_1327051968.unknown

_1327046084.unknown

_1327046976.unknown

_1327050714.unknown

_1327051076.unknown

_1327051690.unknown

_1327051016.unknown

_1327047564.unknown

_1327047940.unknown

_1327048183.unknown

_1327047731.unknown

_1327047054.unknown

_1327047401.unknown

_1327046793.unknown

_1327046955.unknown

_1327046266.unknown

_1327045070.unknown

_1327045484.unknown

_1327045838.unknown

_1327044868.unknown

_1327044893.unknown

_1327044856.unknown

_1327044131.unknown

_1327044531.unknown

_1290239716.unknown

_1327042562.unknown

_1327043238.unknown

_1327043790.unknown

_1327043991.unknown

_1327043648.unknown

_1327043111.unknown

_1327042797.unknown

_1327042850.unknown

_1290240597.unknown

_1290240893.unknown

_1327042289.unknown

_1290240758.unknown

_1290240372.unknown

_1290240577.unknown

_1290234149.unknown

_1290236429.unknown

_1290237259.unknown

_1290237764.unknown

_1290237954.unknown

_1290237419.unknown

_1290237126.unknown

_1290235253.unknown

_1290236271.unknown

_1290235155.unknown

_1290233580.unknown

_1290233668.unknown

_1290233799.unknown

_1290233642.unknown

_1290230568.unknown

_1290231044.unknown

_1290232615.unknown

_1290230849.unknown

_1290230466.unknown

