7.6

Lecture 7        RE-RE-VISITING SOME EXAMPLES TO DATE
7.1 Motivation

In the last lecture we addressed a given data set, 
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., in relation to a random variable X. The main intent there was to investigate X, itself. Typical tools for that purpose include estimation of the histogram, mean and variance (or its square root, the standard deviation). Having computed such quantities, we then proceeded to draw conclusions. End of story? It would seem from the frame of examples in the book that, yes, the end objective had been achieved. However, as previously mentioned, if the numerical result obtained are liable to result in costly decisions, then it is appropriate and essential that one have confidence in those results. 
One example in the book that did, in fact, provide such confidence, was the gear heat treating Example 1 in Chapter 1. On p.4 the following assessment of how accurate the result obtained were are given:
1. One can be roughly 90% sure that the difference in long-run mean runouts … is in the range [3.2,7.4].

2. One can be roughly 95% sure that 95% of laid gear runouts that might be measured in the future (under conditions like those of the study) would fall in the range [3.0 , 22.2].

3. One can be roughly 95% sure that 95% of the hung gear runouts that might be measured in the future (under conditions like those of the study) would fall in the range [0.8 , 35.0].
How were these ranges arrived at? More fundamentally, what are they saying in relation to the random variables X=”the act of measuring the runout of a laid gear”, and Y=”the act of measuring the runout of a hung gear”? In  1. the claim is in relation to the difference between the mean of X and that of Y. In keeping with the spirit of the book, then mean of a random variable has not been defined to the present. We will define it here, in order to emphasize what is really going on in 1-3 above. 

Definition  7.1 Let X be a random variable with a sample space SX. Let A be any measurable subset of SX. Then the probability density function (pdf), 
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. The expected value (or, mean) of X, μX, is defined as 
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It often happens that the pdf, 
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, is not known. A histogram represents an attempt to characterize it. Similarly, a major task in statistics is to estimate the unknown mean, , μX. The sample mean (or average) represents an attempt to estimate it. 
Since the true means, 
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are not known, 1. above is providing a 90% confidence interval for the unknown difference
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. We now proceed to discuss how the data was viewed in order to arrive at uncertainty information such as items 1.-3. given above.
7.2 Uncertainty in Estimates Unknown Parameters
Example 6.1 Re-visited. Suppose that X has the sample space SX={0,1}. Since there are only two numbers in this sample space, the pdf for X consists of two probabilities; namely Pr[X=0] and Pr[X=1]. Denote the latter probability by p. Then is should be clear that the former is 1-p, since X can be only 0 or 1. Since the sample space is discrete, the expression for 
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given as an integral in definition 7.1 becomes a sum. Specifically,
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Hence, to estimate the mean is to estimate p = Pr[X=1]. 
QUESTION: If you were given measurements 
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of a random variable, X that can either be zero or one, how would you use these measurements to estimate p?

ANSWER: I would estimate p by counting the number of 1’s and dividing that number by n.
The above answer describes an action, which, in addition to the data collection actions 
[image: image12.wmf]n

k

k

X

1

}

{

=

, is mathematically expressed as 
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(7.1)
In summary, in order to study the uncertainty of our estimate of the mean, p, of X, we needed to view the measurements 
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 not as repeated measurements of X, but as measurements corresponding to the actions 
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. Same data- just two different viewpoints for two different purposes □
Example 6.3 Re-visited Let’s re-revisit the gear runout problem; this time in the context of the 3 pieces of information given on p. and listed above in 7.1 of this lecture. As discussed, that information focused the unknown true means of the random variables (the act of measuring) the runout of any laid gear, call it X, and any hung gear, call it Y. Hence, using the notation of Definition 7.1, the interest was in μX and μY. For this purpose the measurements 
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 are not viewed as measurements of X and Y, but rather, they are viewed as measurements of 
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. Subsequently, the following computational actions are used to arrive at the given sample means:
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(7.2)

The quantities in (7.2) are random variables. In particular, they are estimators of μX and μY. The numbers obtained by performing those actions were
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The numbers associated with the expressions in (7.2) were 12.6 (x 10-4 in.) and 17.9 (x 10-4 in.), respectively. As opposed to the actions in 7.2, the expressions in 7.3 are numbers. As such, they are not estimators, but rather, are estimates. 
A POINT OF NOTATION: Even though the terms 
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 are used in both (7.2) and (7.3), they take on different meanings in these two equations. In the former they are actions, while in the latter they are numbers. This is, in my opinion, poor and confusing notation. However, it is notation that is used in practically every text book and publication on the subject. The argument is that it should be clear from the usage as to whether one is speaking of the estimator or an estimate of the non-hatted unknown parameters. PLEASE- do not underestimate the potential confusion that can result if you fail to understand the distinction between an action (upper case symbol) and a number of measurement resulting from that action (lower case variable).
Now, how exactly does the focus on (7.2) allow one to arrive at uncertainty information of the type given on p.4 and in items 1.-3. above? There are two assumptions related to  
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 that were made. Whether the engineers made them consciously, or simply grabbed formulas out of a book is unknown. The fact is, the formulas they used are based on the following assumptions:

Assumption (A1): Each of  
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 has the same pdf as X, and each of the  
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has the same pdf as Y.

Assumption (A2): The  
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 are mutually independent of one another, and all of the elements in 
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Again, as mentioned above Definition 7.1, the topics of the pdf and statistical independence have not been properly introduced to you yet. Even so, I believe that with a little thought, most students can appreciate them prior to a formal introduction. Recall, the histogram is an attempt to characterize the pdf of a random variable; even if the person constructing it is not aware of that. The notion of independence has a very intuitively simple definition:

Definition 7.2 Two random variables, say, X and Y, are (statistically) independent if a measurement of one of them does nothing to improve the predictability of a measured value of the other. (In even simpler terms, one could say that X and Y are independent if they have nothing whatsoever to do with each other.). 
Now, with this awareness of these requisite assumptions that are associated with the viewpoint that the data is not associated with X and Y, but rather with 
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 in the context of 7.3, we are in a position to assess the validity of these assumptions.
QUESTION: Is assumption (A1) reasonable? If you believe it is, justify your reasoning. Then, suggest production scenarios where (A1) might not be reasonable. 

ANSWER: ____________________________________________________________________

                 _____________________________________________________________________

QUESTION: Is assumption (A2) reasonable? Then, suggest production scenarios where (A1) might not be reasonable. 

ANSWER: ____________________________________________________________________

                  _____________________________________________________________________ □
Example 6.4 Re-visited. We now re-revisit the pelletizing example. For convenience, recall once again the goal of this problem:

Goal: To determine the extent to which any of the factors, die volume, material flow, and mixture type influence the weight of pellets; in particular, whether they will not conform to specifications.
The key word here is influence. In what way? The obvious type of influence, and the one most often assumed, is in relation to the mean of X, 
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. More specifically, since we are considering 3 factors that might influence this parameter, then we can be more direct by noting that for each level of a given factor, the unknown mean, 
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, might change. So, for example, in relation to die volume (D), having levels D1 and D2, we can phrase the above goal more clearly:

Goal: To determine whether 
[image: image38.wmf]1

|

D

X

m

is less than, equal to, or greater than 
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To make this determination, we must clearly obtain estimates of these two unknown means. To this end, we will use estimators:
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(7.4)
On first glance, the notation in (7.4) might seem foreign, or even intimidating. The numbers 
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are simply the number of pellets to be measured under conditions D1 and D2, respectively. Similarly, the random variables 
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 are simply the acts of measuring the weights of the kth pellet of each batch under the two conditions. An alternative and simpler notation would have been to define the random variables X and Y to denote (the act of measuring) the weight of any pellet under conditions D1 and D2, respectively. Let the number of pellets to be tested under conditions D1 and D2 be m and n, respectively. Then (7.4) becomes
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QUESTION: Why might the notation (7.4) be preferable to the simpler notation (7.5)?

ANSWER: _____________________________________________________________
7.3 LECTURE SUMMARY

A main point of this lecture was to convey the many different and creative ways in which given data can be viewed by you. This is not a typical component of a first course in statistics for engineers. However, this will likely be the only course you will have on this subject. Nonetheless, this subject can be invaluable to you throughout your career. A second main point was to give you some direction in designing an experiment that will provide the best chance of solving a problem that you pose.
In relation to given data, the ideas behind this lecture can be summarized as follows:

Data is data. Even though there are underlying variables associated with it (e.g. response, experimental, control, blocking, etc.) there are a variety of problems one can look at that go well beyond those basic variables. Let’s highlight this with a generic example.
Example 7.1 You have a time (or space) indexed paired data set, call it 
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. The basic variables associated with this data is (X,Y). Problems of  interest may include the following:

Problem 1. Investigate the statistical properties of X . Typical properties of X include its mean value, 
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, its standard deviation, 
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, and its probability description, 
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. These unknown quantities can be estimated from the data 
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via the sample mean, the sample standard deviation, and the histogram, respectively.
Problem 2. Investigate the statistical properties of Y . Typical properties of Y include its mean value, 
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, its standard deviation, 
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via the sample mean, the sample standard deviation, and the histogram, respectively.

Problem 3. Investigate the joint properties of X and Y. Typical properties of (X,Y) include their level of correlation, 
[image: image55.wmf]XY

r

and their joint probability description. These can be estimated from the data it 
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 via the sample correlation coefficient, and the 2-D histogram, respectively.

Problem 4. Investigate the mean of X. An estimate of 
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 was computed in Problem 1, but there was no interest there in investigating
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, itself. Problem 1 resulted in only one estimate of 
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. To conduct any reasonable investigation will require many estimates of 
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 one will need a number of sets of measurements of X. Hence, in this problem setting, the given data 
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 is only the first of such a collection. Therefore, now re-label this data set as 
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. If a total of m such data sets will be collected, call the jth set 
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. Each data set is the result of the act X = ( X1…, Xn). This data collection action is followed by the computational action 
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. This combined action was performed only once in Problem 1. Now, with m data sets, we can perform it m times. The numbers we get can then be used to investigate the statistical properties of this combined action; in exactly the same manner that the data in Problem 1 was used to investigate the statistical properties of X.
Problem 5. Investigate the mean of Y. Simply replace each x and X in Problem 4 by y and Y.
Problem 6. Investigate the covariance σXY. This parameter is typically estimated by performing the action
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The action (7.6) was performed only one time in Problem 3. To pursue this investigation will typically entail performing it m times. The numbers we get can then be used to investigate the statistical properties of this action (7.6); in exactly the same manner that the data in Problem 1 was used to investigate the statistical properties of X.

Problem 7. Investigate the statistical relationship between any measurement of X and the next measurement of it. Here, we will let the random variable X be the act of measuring the variable X at discrete time, k. We will let the random variable Y be the act of measuring the variable X at related time k+1. Our measurements of the 2-D random variable (X,Y) associated with the x-data is then 
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. With this data set of ordered pairs, we proceed exactly as we did in Problem 3. The difference is that here, the Y-variable has been redefined to be a subsequent measurement of X.
Problem 8. Investigate the potential to predict any next measurement of X from current measurements of X and Y. Restrict the investigation to linear prediction models
QUESTION: How would you proceed?

ANSWER: 

Step 1:_Define the 3 R.V.s        ___________________________________________________

Step 2:_Define the linear model          ______________________________________________

Step 3: _Arrange the data to the format of Step 1     ___________________________________
Step 4: Estimate the model parameters from the data arrangement in Step 3: ________________

Step 5: Use the data to evaluate how well the model performs: ___________________________
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