6.4

Lecture 6        RE-VISITING SOME EXAMPLES TO DATE
Much of our discussion to date has involved ‘variables’; namely, response variables, experimental variables, control variables, blocking variables, extraneous variables, etc. These variables were addressed in the context of the design of experiments (e.g. full and partial factorial designs). Recall that the designer, by definition, is allowed to select the levels of experimental variables. Hence, one could argue that, to the designer, there is nothing random about the level that an object being tested has. However, others may not have that knowledge. And so, to them, since the level of the object is unknown, it can take on any one of the number of specified levels. To them, the experimental variable becomes a discrete random variable, whose sample space is the set of all possible levels.
Before we proceed to revisit some examples, it is necessary to discuss the subsets of a sample space.

Definition  6.1 Let X be a random variable with a sample space SX. Let A be any (measurable) subset of SX. Then A is an event. Furthermore, the collection (or set) of all the (measurable) subsets of SX is called the field of events, and it is denoted as 
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6.1 Examples of Data Used to Study X
A 1-D random variable, X, has two types of information that can be sued to study it; namely, probability and moments. A collection of N measurements associated with the response variable are taken. Then, typically, estimates of this information are computed. For example, a histogram provides estimates of the probability that a measurement of that variable will fall into one of a number of specified bins. In addition, one often computes estimates of the first two moments of X; namely, the mean and variance of X. We will presently address the mathematical notions of probability and moments. For now, we assume that the reader has been exposed to estimates, such as a histogram, the sample mean (or, average), and the sample variance (or, its square root; namely, the sample standard deviation). 
The key point in all of the examples in this section is that they represent attempts to gain some general understanding of the response variable (which, when measured, is X). Even though the information computed from the data is quantitative, the interest is not on how accurate this quantitative information is. For example, if the sample mean is found to be 4.23, then this number is assumed to be an acceptable estimate of the true mean of X.
Example 6.1 Suppose that X has the sample space SX={0,1}. Then the subset {0} of SX is an event. In words, it is “the event that X equals 1”. Similarly, the subset {1} is, in words, “the event that X equals 1”. Now, in set theory there are two axioms that hold (by definition). First, any set is a subset of itself. Second, the empty set (denoted 
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) is a subset of any set. It follows that the field of events for X is 
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QUTESTION: How would you describe the subsets SX and 
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 in words?

ANSWER: SX : “                                                     “ and 
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: “                                                                        “ □
Example 6.2 Let 
[image: image6.wmf])

,

(

2

1

X

X

X

=

be a 2-D random variable with 
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. The subset {(0,0)} is, in words, “the event that X1 equals zero and X2 equals zero. The field of events for X is: 
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{ {00}, {10}, {01}, {11}, {00,10}, {00,01},{00,11},{10,01},{10,11},

                                 {01,11}, {00,10,01} , {00,10,11}, {00,01,11} , {10,01,11} , 
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QUESTION: What is the subset of SX that, in words, is “the event that X1 equals one.”
ANSWER: ________________________________________________________
QUESTION: What is the subset of SX that, in words, is “the event that X2 equals one.”

ANSWER: ________________________________________________________
QUESTION: What is the subset of SX that, in words, is “the event that X1 equals one and X2 equals one.”

ANSWER: ________________________________________________________
QUESTION: What is the subset of SX that, in words, is “the event that X1 equals one or X2 equals one.”

ANSWER: ________________________________________________________      □
It is important to note that the four singleton sets {(0,0)}, {(1,0)}, {(0,1)} and {(1,1)} have no elements in common with one another. Since they are each a 1-element set, to say that two of them have an element in common would be to say that they each have one and the same element. While the ordered pairs (0,0) and (0,1) do, indeed, have the same first coordinate, their second coordinates are different. As shown in Figure 3, they are two distinctly separate points in the plane. Thus, the intersection of the sets {(0,0)} and {(0,1)} is the empty set. 

A second point to note is that any element (i.e. set) in the collection (2.3) can be expressed as a union of two or more of these disjoint singleton sets. For example,

                                    {(0,0), (1,1) } = {(0,0)} 
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{(1,1)}.

Example 6.3 Let’s revisit the gear runout problem. Recall, that in this problem the issue related to how a gear is placed in the furnace. Let X denote the act of measuring the runout of any gear. The runout measurements in Table 1.1 (p. 3) are integer-valued. Hence, X is a discrete random variable. Furthermore, since they range between 5 and 36 (0.0001 inches), a reasonable guess for the sample space for X might be the set SX={0,1,…,50}. In the absence of knowledge of how the gear was placed in the furnace, we have a second random variable, call it W. If we map a laid position to ‘0’, and a hung position to ‘1’, then the sample space for W is SW={0,1}. Thus, associated with any gear, we have a 2-dimensional (i.e. 2-D) random variable (W,X), whose sample space is 
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. The total number of ordered pairs in this set is 
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To see how the lack of knowledge of how a gear is positioned comes into play, consider first the situation of the designer who knows how it was placed. For the designer, the placement is not a random variable, but rather a primary experimental variable. And so, for the designer, the only random variable is X. Now, consider the event that “measured runout exceeds 20”. In words, this event may seem to be unambiguous. However, until one also specifies the sample space, it is ambiguous. 
In the case of SX={0,1,…,50}, this event is {0, 1, …, 20}.

In the case of 
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, it is 
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Example 6.4 Recall (p.10) that the weights of 200 pellets ranged between 3.7 grams and 7.2 grams, with measurement resolution 0.1 grams. Let X denote “the act of weighing a pellet”. Then a reasonable sample space for X might be SX = {3.0, 2.1, … , 8.0}. However, one might choose to ‘plead ignorance’, and specify it as SX={0, 0.1, … , ∞}. On p.12 the authors note a number of variables that may play a role in determining pellet weight. These include:
Die Volume: low volume versus high volume.

Material Flow: current method versus manual filling

Mixture Type: no binding agent versus with binder
Now, even though the state of each of these variables is known to the person running the factorial experiment, what about others who are not privy to such knowledge? To them, each of these three variables is a random variable. In fact, all three are of the simplest type of random variable; namely a random variable that can take on only one of two possible values. Let’s use the symbols V, F, and T to describe the above three random variables, respectively. In relation to V, let’s map “low volume” to zero, and “high volume” to one. Then SV={0, 1}. For F, map “current method” to zero, and manual filling” to one. Then SF = {0,1}. Finally, if we map “no binding agent” to zero, and “with binder” to one, we have ST = {0, 1}.
QUESTION: What is the event “measure weight is in conformity (i.e. in the interval [6.2, 7.0] ) in relation to the experimenter, and to the person who is not privy to the conditions under which the weight of a pellet is measured?
ANSWER: For the experimenter, SX = _________________________________________________

For the ‘ignorant’, SX = _____________________________________________________________    □

In-Class Problem 6.1 Suppose that a 
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factorial study is to be conducted in relation to a response variable. Call the response variable Y. Assign names to the experimental variables, when viewed as random variables, and then discuss their sample spaces.

_________________________________________________________________________________

_________________________________________________________________________________ □

6.2 When Data is Used to Study the Accuracy of Estimated Information Related to X
In this section we return to each of the above examples, but with interest in the accuracy of computed information related to X.
Example 6.1 (continued) Suppose that the random variable X relates to whether or not a manufactured part is within specifications. Specifically, let the event that it is found to be within spec. be zero, and the event that it is out of spec. be one. Now, suppose that the study of X involved selecting 20 parts and measuring whether or not they are in spec. From these data we can estimate the probability of the event that “the measurement of any part”(i.e. X) will be out of spec. Label this probability by p. To estimate p, we simply divide the sum of our measurements by 20. Now, suppose that we obtained the value 0.023. If we accept this as an accurate estimate of p, then we are done. However, if costly decisions must be made, then one should not be inclined to simply ‘believe’. After all, had 200 parts been measured, would not the estimate of p been more accurate? Of course! One could argue that it would not have been much better, but arguments without support are speculations. And making costly decisions based on speculation should be avoided when possible. 
OK. So, our interest now is on the accuracy of the estimate of p. To address this, we need to ask: Just how, exactly, was this estimate arrived at? The answer is: first, 20 parts were selected and measured, and second, their average was computed. In mathematical notation, the data collection action is 
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; that is, the “act of measuring the kth part and recording a zero or a one” is denoted Xk. Then, our estimate of p was computed by taking the average:
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The question of how accurate or trustworthy is the number 0.023 is ill-phrased. The number 0.023 is just a number. The proper question is: How good of an estimator of p is 
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The answer to this question is: It depends! That is to say, under certain assumptions about the 
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it may be good, while under others it may be horrible. 

QUESTION: What are some assumptions under which (1) would be a horrible estimator of p?

ANSWER: __________________________________________________________________





















_1222711106.unknown

_1282544483.unknown

_1282601420.unknown

_1282628058.unknown

_1282628382.unknown

_1282603337.unknown

_1282627898.unknown

_1282544573.unknown

_1282544005.unknown

_1282544113.unknown

_1282542508.unknown

_1282543512.unknown

_1222712018.unknown

_1282542356.unknown

_1222707090.unknown

_1222710932.unknown

_1222710959.unknown

_1222706768.unknown

