2.6

Lecture 2.   (Chapter 2: DATA COLLECTION)

MOTIVATION

Let’s review the beginning of Lecture 1 for a moment. Recall that, according to the authors: “The goal of engineering statistics is to provide the concepts and methods needed by an engineer who faces a problem for which his or her background does not serve as a completely adequate guide.” They also gave
Definition 1. Engineering statistics is the study of how best to (i) collect data, (ii) summarize or describe the data, and (iii) draw formal inferences and practical conclusions based on the summary.

According to this definition then, engineering statistics is a “How to do it” field of study. Based on the format of our book, and practically every text on the subject, this is accurate. What is absent is “Why do I want to DO IT?” Statistics emphasizes collecting and summarizing data. Having done this, the practitioner is then led to draw inferences or conclusions. This is ‘putting the cart before the horse’, so to speak. Without a clear and well-defined motive for the data collection analysis, the practitioner is not well-guided in the constructing it. More importantly, the student who is taking a first course in statistics may well become overwhelmed by the large number of not so well-connected topics presented in a way that has the appearance of learning a foreign language. I have travelled many parts of the world. And whenever a person asks me what I teach, and when I respond “Statistics”, the overwhelming response is something like “Ugh! Statistics. Worst course I ever had. We did lots of number-crunching, but I didn’t learn a thing.” 

It is my belief that the source of this distaste with the subject is the putting of the cart before the horse. To illustrate this, let’s return to the gear heat-treating example. In that example, “ Some engineers believe that there is less warpage if they are laid flat .” While perhaps accurate, this is a vague statement. Does that belief hold for each and every gear? Most engineers would respond something like “No. I just feel that, overall, the warpage is less.” “Ah! Now we’re getting somewhere. What do you mean by ‘overall’? Do you mean that to be ‘on the average’? Or do you mean it as a probability; that is, the probability of any randomly chosen gear having warpage greater than a chosen amount (e.g. the spec.) is lower if the gear is lad flat? What exactly DO you mean?” “Um. I guess I mean that, on the average, laid gears are better than hung ones.” OK then! Now it is easy to translate this belief into the following clear conjecture:

Conjecture: The mean value of the warpage measured in any gear laid flat is less than the mean value of the warpage of any gear that is hung.

Now the direction to be pursued in testing this conjecture is straightforward. Let the measurement of warpage in any gear laid flat be denoted by X, and that of any gear hung be denoted by Y. Let the mean values of these two variables be denoted by μX and μY, respectively. In order to decide whether or not to accept the conjecture that 
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, we will need to estimate each of these means. How to do this? Any introductory book on statistics has the same answer: You estimate the mean of a random variable by simply averaging a suitable number of measurements. Having been guided by one such book, you then say  “Oh. I guess that means I will have to measure the warpage of n laid and n hung gears. Now, how should I take those measurements? Should I do all the laid gears first? Should I do a laid one and a hung one at the same time so as to alleviate the issue of oven temperature fluctuations? Should I have the measurements done twice, by two different technicians, or by the same technician on two different days? Etc” 

So many questions can arise at that point. And they have their answers in ours, as well as other books in statistics. For simplicity, suppose that you decide that you will simply repeat the action of placing a laid and a hung gear in the furnace, and then measuring the warpage of each 39 times over. The action associated with the kth set of gears will be denoted by 
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. And so, the 78 numbers you get will correspond to the 78 actions 
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. After you perform these data collection actions, you will then perform the computational actions of computing the averages that were, in fact, computed by the engineers conducting the study as discussed in the book:
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Of course, the numbers you get are not the true mean values. They are estimates of them. And so, it will be very unlikely that they will be exactly the same number. If the estimated mean for X is greater than that for Y, then stop there, since remember, you are trying to decide whether the true mean for X is less than the true mean for Y. If the sample mean for X is greater than that for Y, clearly that conjecture is not supported. The more interesting case is when the sample mean for X is less than that for Y. Now, suppose that your sample means for X and Y turned out to be, say, 5.32 and 5.34, respectively. Would you really be willing to ‘put your neck on the line’ and announce that the true mean for laid gears is less than that for hung gears? These are, after all, estimates, and the limited sample size will certainly have something to do with how accurate they are. So, the reasonable engineer might say “OK. If the sample mean for X is significantly less than that for Y, only then will I risk announcing that I think the conjecture is correct.” As for the choice of the ‘threshold’? That will depend not only on the sample size, but also on how much of a risk taker you are. Suppose, for example, that if this conjecture is accepted, the modifications taken to implement laid gears will cost a significant amount of money. What if you are wrong? ( [Yes, it could be time to take early, early retirement.] And so, you want the probability of this announcement being wrong to be very small. This brings us to the topic of hypothesis testing, which deals specifically with choosing the sample size and the false alarm probability. We will cover that topic, but not now. For now, it suffices to summarize the difference between collecting and exploring the data with no firm goal in mind, and clearly identifying the problem first.

SUMMARY: Collecting and exploring the data led the engineers to quantitative results; in fact, results very similar to ours. The only difference is that they computed a confidence interval for the difference of the means, while we would conduct a hypothesis test to govern our decision. The key difference between the approach presented in the book and ours is that we designed our strategy prior to collecting any data. It may be that they also did, but if they did then it should have been emphasized. By clearly defining the problem first, we developed a procedure (involving random variables) that would allow us to quantitatively support/ reject the conjecture, but would also allow us to specify an appropriate sample size. The approach to doing this will comprise an important topic of the course.  □

2.1.1 Measurement

In this section the authors discuss some basic elements, such as the advantage of taking direct measurements of the variable of interest. The discussion here will be on how measurement is one of the most fundamentally important concepts of the course. To measure is to use some type of device to record a property of an entity. However, to measure without giving the details is incomplete. 

In-Class Problem 2.1 Give examples of how one might measure the roughness of a surface. In particular, give the set of possible values that the particular act of measuring can yield.
a) A person could slide his/her hand across the surface and record 1=smooth, 2=rough. Here, X is the act of sliding the hand across the surface and entering a rating of it. The set or collection of possible measurable values of X is 
[image: image6.wmf]X

S

D

=

}

2

,

1

{


b) A roughness instrument could be used to measure surface height to the nearest micron at M chosen locations. Here the action is 
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, and the corresponding set of measurable values of X is 
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c) In relation to b), it is often the case that the surface roughness is measured only in terms of the average of the M individual measurements. In this case, the action includes not only them  data collection actions in b), but also the averaging action 
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. The set of measurable values of 
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NOTATION: The above example introduced various notations that will be used throughout the course.

I. An upper case letter (e.g. X, Y, 
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) corresponds to an action, while the corresponding lower case (e.g. x, y, 
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) denotes a numerical value obtained by the action.

II. A collection or set of objects, say, a, b, c, is denoted by {a, b, c}. An ordered M-tuple of objects is denoted by (a, b, c).
III. The set of all measurable values of an action X is denoted by SX.

IV. The symbol 
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is to be read as ‘contained in’ or ‘is an element of’. The symbol | is to be read as ‘such that’. The symbol 
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denotes a defined equality (as opposed to an equality resulting from mathematical relations).

We are now in a position to define the most fundamental entity of the course.

In-Class Definition 2.1 A random variable is an action that can result in more than one possible numerical value. It is not completely defined until/unless it is unambiguously described and its sample space is given.
The fact that a random variable necessitates an unambiguous description of the action and specification of a corresponding sample space was illustrated in the above example. The act of measuring the roughness of a surface must be accompanied by a clear description of how the measurement will be made. There are many ways to measure the height of the surface at a given location. Each way corresponds to a different random variable. In addition to describing the action, it is necessary to give the corresponding sample space. The following example illustrates the need for a clear description of the action and for the specification of the sample space.
In-Class Example 2.2 It is important to keep an eye on the oil pressure gauge while driving a car, since a significant drop in pressure can cause severe damage to the engine. There are three commonly used types of gauges: analog (i.e. a needle), digital, and a red light (often called an ‘idiot’ light by mechanics). Hence, the act of measuring the engine’s oil pressure is not well-defined until the measurement device is specified. Furthermore, even if the device is specified, the method of how it is used to record a number often needs to be described. This need does not exist for a digital gauge, but it does exist for the needle gauge. Even though the needle rotates continuously, the human eye has limited motion detection ability. A trained race driver may be able to detect a 3o change in angle, while a typical driver might not take notice of any change less than 10o.
QUESTION: Is gear runout a random variable? If not, make it one.
ANSWER: ________________________________________________________________________
The idea of a random variable as an action is not common. Often engineers and statisticians speak of a random variable as a property of an object. Previously discussed examples include gear runout, oil pressure, and pellet conformity, to name a few. The fact is, these are, indeed, traits of objects, and while they may be unknown, they are not random. Hopefully, the following in-class participation demonstration will help to reinforce this point.

In-Class Participation Demonstration A micrometer calipers will be passed around the class, along with a wooden dowel. In the hands of each student, the act of measuring the diameter of the dowel diameter at an arbitrary location is a random variable. Hence, even though there is only one calipers, there are 36 random variables, since there are 36 students. Each of you should take 5 measurements along the length of the dowel. Now we pose a fundamentally important question: 
QUESTION: Let X denote the act of you measuring the diameter of the dowel at an arbitrary location. Do you now have 5 measurements of X, or, because you preformed 5 actions, do you have a 5-dimensional random variable 
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ANSWER: This question is so important that it will be answered here, rather than leaving this space blank and having you insert the answer later. The answer is: IT DEPENDS! To be specific, suppose that your primary interest is in gaining a general understanding of the variability of the dowel diameter, and you are not interested in questioning the accuracy of your numerical information. For example, my measurements were: (0.178, 0.174, 0.180, 0.178, 0.180). Hence, my estimate of the true (and unknown) mean of X is 
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. If I am willing to accept this as sufficiently accurate, then my job is finished. However, if I am to also consider the accuracy of my estimate of the mean, then I need to address the action that gave it. And that action cannot be expressed in terms of only X. It necessitates recognition of six actions: the 5 data collection actions
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, and the averaging action 
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. To emphasize this, I took another 5 measurements, and got (0.182, 0.179, 0.180, 0.175, 0.178). This resulted in a second measurement of 
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, namely, 0.1788. This number may or may not be viewed as close to 0.1780, depending on what is acceptable to you.  □
The above demonstration is rife with important concepts. Some of these are now stated.

Some Concepts Illustrated by the In-Class Participation Demonstration:

(C1) There is really no need for the deeper elements of probability and statistics if one only wants to collect data, and compute quantities from it. Non-statisticians do this every day. The real value of this topic is when one also is interested in the accuracy of the computed quantities.

(C2) A given set of n measurements related to a property of an object may be viewed in many ways. At one extreme, it can be viewed as n measurements of a scalar random variable, say, X. The other extreme is to view it as one measurement of an n-dimensional random variable, say, 
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. A third way might be to rearrange it into ordered pairs. In the case of the data (0.182, 0.179, 0.180, 0.175, 0.178), we could formulate { (0.182, 0.179) (0.179, 0.180) (0.180, 0.175) (0.175, 0.178) }. Notice that the way the data has been paired, it now corresponds to the 2-D random variable 
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, where, marginally, both X1 and X2 are no different than the 1-D random variable, X. After all, when viewed individually each of them is the act of measuring the diameter at any location. It is their relation to each other that is now of interest. Now, X1 is the act of measuring the diameter at any location, while X2 is the act of taking the very next measurement. This viewpoint can be especially valuable in taking arrays of space/time measurements, as will be discussed presently.
(C3) There is a difference between the numbers 0.178 and 0.1780. The former indicates a resolution of 0.001, and the latter to a resolution of 0.0001. Notice that while the random variable X is discrete, in the sense that its sample space is 
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. While still discrete, this latter sample space is, in a sense, more continuous than that of X. In fact, as the number 
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will become ‘dense’; that is, it will look like a continuum for almost all practical purposes. 
(C4) You might have noticed (I did) that since the wooden dowel is relatively soft, your measurements were influenced by how much force you sued to clamp down on the dowel. A second influence could be where you placed the dowel along the jaws of the calipers. The point here is that if you develop your awareness of the many subtleties related to taking measurements, you might be able to discover that what generally would be considered random, can be made to be much less random by attending to more careful control of such influences.
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