19.14

Lecture 19                 2-D Random Variables
We begin by recalling:
Definition 18.1 Let 
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The integral (1) is an n-D integral (or sum, if 
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is discrete). It could be argued that (1) is the only equation one might need in order to understand anything and everything related to expected values. In this lecture we will attempt to convince the reader that this is the case. 
The standard approach to this topic is to first define the mean of X, then the variance of X, then the absolute moments of X, then the characteristic function for X, etc. Then one proceeds to investigate expected values related to the 2-D random variable (X,Y). Then one extends the approach to expected values related to the n-D random variable, 
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. Then (if the reader is still enrolled in the class () expected values of functions of these random variables are addressed. Often, students become a bit overwhelmed with all the definitions and apparently new concepts. Indeed, all of these concepts are contained in (1). To be sure, (1) is a ‘dense’ concept. However, if the student can understand this one concept, then he/she will not only feel entirely comfortable with all of the above-mentioned concepts, but the student will be able to recall and expand upon it for years to come. Our approach to engendering a solid understanding of (1) will proceed by considering it in the 1-D setting, then the 2-D setting, then the n-D setting.
19.1 Expected Values of Functions of 2-D X=(X1, X2)
Consider the following examples of the function g(*):

(i) g(x) = x = (x1,x2): 
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In words then, what we mean by the expected value of a vector-valued random variable is the vector of the means.
(ii) g(x) = x1x2 : 
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Definition 19.1 Random variables X1 and X2 are said to be uncorrelated if 
                                      E(X1 X2 )  =  E(X1 )E(X2 ). 
(1)

They are said to be independent if
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(2)

In-Class Problem 19.1 Prove that if random variables X1 and X2 are independent, then they are uncorrelated.

Proof:
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Thus, we see that if two random variables are independent, then they are uncorrelated. However, the converse is not necessarily true. Uncorrelatedness only means that they are not related in a linear way. This is important! Many engineers assume that because X and Y are uncorrelated, they have nothing to do with each other (i.e. they are independent).  It may well be that they are, in fact, very related to one another, as is illustrated in the following example.
Example 19.1 Modern warfare in urban areas requires that projectiles fired into those areas be sufficiently accurate to minimize civilian casualties. Consider the act of noting where in a circular target a projectile hits. This can be defined by the 2-D random variable (R, Ф) where R is the radial distance from the center and Ф is the angle relative to the horizontal right-pointing direction. Suppose that R has a pdf that is uniform over the interval [0, ro] and that Ф has a pdf that is uniform over the interval [0, 2π). Thus, the marginal pdf’s are:
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Furthermore, suppose that we can assume that these two random variables are statistically independent. Then the joint pdf for (R , Ф) is:
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(a) The point of impact of the projectile may be expressed in polar form as
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    Solution:  Since W=g(R,Ф), where g(r,φ)=reiφ, we have
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(b) The point of impact may also be expressed in Cartesian coordinates; that is:

      X = Rcos(Ф) and Y = Rsin(Ф). Clearly, X and Y are not independent. In fact, 

      X2+Y2 = R2. Show that they are, nonetheless, uncorrelated.

     Solution:  We need to show that E(XY) = E(X)E(Y). To this end,
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To compute the value of the rightmost integral, one can use a table of integrals, a good calculator, or the trigonometric identity sin(α+β) = sin(α)cos(β) + cos(α)sin(β)

We will use this identity for the case where α = β = φ. Thus, cos(φ)sin(φ)=
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From this, it can be easily shown that the rightmost integral is zero. Hence, we have shown that X and Y are, indeed, uncorrelated.
Before we leave this example, it might be helpful to simulate projectile hit points. To this end, we will (only for convenience) choose ro = 1. The, to simulate a measurement, r, we use r = rand(1,1). Similarly, to simulate a measurement, φ, we use φ = 2π rand(1,1). Consequently, we now have simulated measurements x=rcos(φ) and y=rsin(φ). The scatter plot below shows 1000 simulations associated with (X, Y).
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Figure 19.1 Simulations of (X, Y) = (Rcos(Ф), Rsin(Ф) ).

Notice that there is no suggestion of a linear relationship between X and Y. In fact, the sample correlation coefficient (computed via corrcoef(x,y) ) is -0.036.   □
We will presently address the linear prediction problem that was covered in Chapter 4 of the text. However, we will not use the data-based approach used there. Instead, we will use an approach based on expected values of random variables. To this end, we will require two key properties:

Property 1: E(aX + bY + c) = aE(X) + bE(Y) + c. In words, this property states that E( * ) is a linear operator.

It is very often assumed that E(X+Y) = E(X) + E(Y) only when X and Y are either independent, or at least uncorrelated. Neither assumption is needed! Property 1 states that this is always true. For this reason, we will prove this property. In the proof we will highlight why neither assumption is needed.

Proof: Let aX + bY + c = g(X,Y), and let 
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 denote the joint pdf. Recall, that the marginal pdf’s for X and Y are related to this joint pdf via:
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Now,
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We can expand (3b) as:
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In view of (3a), we can write (3c) as:
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(3d)

The final result, (3d) is a consequence of the recognition of the marginal pdf’s given in (3a). Nowhere did we make the assumption that X and Y were independent. □
Before we give the second major property, we need to define the covariance between two random variables.

Definition 19.2 Let X and Y have expected values E(X) = μX and E(Y) = μY, respectively. The covariance between X and Y is

                      Cov(X,Y) = E[ (X - μX) (Y – μY) ].
Property 2:  Cov(aX+bY+c, W) = aCov(X,W) + bCov(Y,W). In word, the covariance operator Cov( * , * ) is semi-linear.
We will now prove this property, thereby highlighting the value of Property 1.

Proof: For notational convenience, let V = aX + bY + c. Then, from Property 1, we have μV = E(V) =  aμX  + bμY  + c. From Definition 19.2 we have
Cov(V,W) = E[ (V – μV) (W – μW) ] 

                 = E{ [aX + bY + c –( aμX  + bμY  + c)] (W – μW) }      ;(Property 1)
                 = E{ [a(X- μX)  + b(Y- μY)] (W – μW) }                        ; (algebra)

                 = E [a(X- μX) (W – μW)   + b(Y- μY)(W – μW) ]             ; (algebra)

                 = a E [(X- μX) (W – μW)]   + b E[(Y- μY)(W – μW) ]      ;(Property 1)

                 = a Cov(X , W)    +   b Cov[(Y , W  ).   □                     ;(Definition 19.2)

Remark We could have endeavored to prove a more general version of Property 2, namely,
Property 3:
   Cov(aX+bY+c, dV+eW+f) = adCov(X,V) + bdCov(Y,V) + aeCov(X,W) + beCov(Y,W)
However, this property is a bit more involved, and is not needed at this time. And so, we chose the simpler Property 2. In nay case, it is valuable to notice that, here as well, additive constants can be ignored in covariance relations. 
19.2 Linear models Re-visited
We are now in a good position to better understand both linear and nonlinear prediction models. We will begin with the simple situation of the 2-D random variable (X, Y), where we desire a linear prediction model 
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Condition 1: 
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Condition 2: Cov(W,X) = 0 , where 
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is the prediction error.
The first condition demands that the predictor be unbiased. The second condition demands that the model capture all of the correlation between X and Y, so that what remains has no correlation with X. The above two conditions are sufficient to solve for the two model parameters m and b. We will use Property 2 in relation to Condition 2 to first find m:

0 = Cov(W,X) = Cov(Y – mX – b, X) = Cov(Y,X) – m Cov(X,X). Hence,
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We will now use Property 1 in relation to Condition 1 to find b:
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Remark. Typically, the means and covariances in (4) are not known, and must be estimated by sample means and sample covariances. If the data-based sample means and covariances are substituted into (4), one finds that equations (4) become the Least Squares  (LS) estimates of the parameters. In contrast to the use of calculus required in the LS approach, however, the above approach uses the two given conditions and the two given properties.
Before going further, it is appropriate to inquire as to how good of an estimator is 
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where
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and where
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Hence, (5a) becomes
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We can gain more insight into the expression (6) by the following

Definition 19.4 The correlation coefficient between X and Y is defined as

                                           
[image: image41.wmf]Y

X

XY

XY

s

s

s

r

D

=

.
Hence, (6) can be expressed as
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Notice also that
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And so
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or,
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From (7) and (8), we see that 
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It is for this reason that 
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(for which the data-based estimate is denoted r2 in Chapter 4 of the text) is interpreted as that fraction of the variability in Y that is captured by 
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Remark The relation (9) might appear to be a bit too ‘clean’ to some readers. Is it simply a coincidence that it turned out to be so simple? The answer is no. A careful look at (5c) reveals that 
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+W is the sum of the variance of 
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and of W. In fact, this is the case. And it is of such value that we now state it as a special case of a more general important property.

Property 3: Let W = aX + bY + c. Then 
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Once again, to highlight the value of Property 2, we give a proof of this.

Proof:
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Hence, 
                                
[image: image56.wmf]XY

Y

X

W

ab

b

a

s

s

s

s

2

2

2

2

2

2

+

+

=

      □          ; (algebra)
Special Case 1 (b=0): Var(aX + c) = a2Var(X)
Special Case 2 (σXY = 0): Var(aX + bY) = a2Var(X) + b2Var(Y)

Special Case 3 (a=b=0 & σXY = 0): Var(X + Y) = Var(X) + Var(Y)

19.2 Nonlinear Models
We will finish this lecture with an example of a nonlinear prediction model.
Example 19.2 Very often, engineers assume that a spring has a linear force-displacement relationship; that is, F = kX. This assumption relies on the assumption that the spring will not be stretched too far (i.e. an amount that is on the order of the total length of the coils, for example). In order to obtain a model for a newly designed spring that can be used over a large range of displacements, 100 springs were selected. Each spring was subjected to a randomly chosen amount of displacement, and the resulting force was recorded. A scatter plot of the results is shown below.
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Figure 19.2 A scatter plot of the force-displacement data for 100 springs.

(a) Consider first the following linear model:  
[image: image58.wmf]X

k

F

=

)

. Notice that this model includes a slope parameter, but no force-intercept parameter. This is because physics dictates that for zero displacement there must be zero force. To obtain an estimate of the spring rate, k, we will require that 
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The condition (10a) results in 
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(10b)

If we assume that we have no prior knowledge of the means, then we must estimate them from the data. We will use the sample means for this purpose. Thus, our estimator of k is:
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  where 
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From the given data, we obtain the estimates 
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Figure 9.3 Plot of the model 
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Remark. We could just as easily restricted our model to the region of the scatter plot that appears to suggest a linear relationship between X and F.

(b) We now consider the quadratic model 
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. Notice that we have chosen here to include the constant, c, expecting that the model will be good enough that we will find 
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. This additional parameter will allow us to use the more standard approach to arriving at the model parameter estimate.

Our approach will appeal to the conditions given at the beginning of this lecture. To this end, we define 
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Condition 1 gives:
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(11a)

Condition 2 gives:

Cov(F,X) = Cov(aY+bX,X) = aCov(X,Y) + bCov(X,X)
(11b)

Condition 2 in relation to Y gives

Cov(F,Y) = Cov(aY+bX,Y) = aCov(Y,Y) + bCov(X,Y)
(11b)

Equations (11b) are 2 equations in the 2 unknowns a and b. They may be expressed in matrix form as
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The solution of (12) is:
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(13a)

Having (12b), the solution of (11a) is:
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The Matlab code that first computes (13a) based on estimates of the covariances, and then computes (13b) based on estimates of the means results in the following figure. The model is
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(14a)

The model used to generate the simulation (see code) is

                                     
[image: image81.wmf]2

10

X

X

F

+

=


(14b)

Clearly, the model does much better than the linear model, and in fact, for n=100 springs it is very accurate. 

Having this nonlinear model allows one to linearized it for specified regions of displacement, if need be.
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       Figure 19.4 Plot of the model 
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□

% PROGRAM NAME spring.m (11/20/08)
% Linear and Nonlinear Spring Models
%====================================
% Generating the displacement/force data
m=1000; n=100;
x = 5*rand(m,n); % Displacement
ftrue= 10*x + x.^2; %True Force Relation
df=0.5*randn(m,n); % Force variability
f = ftrue + df;
%====================================
% Linear Model: Fhat = kX , k = E(F)/E(X)
X = x'; F = f';
mF = mean(F); mX = mean(X);
khat = mF./mX;
figure(1)
db = 0.1;
bvec = 12.85:db:13.75;
H = hist(khat,bvec);
fkhat = (n*db)^-1 * H;
bar(bvec,fkhat)
xlabel('k')
ylabel('f_k_h_a_t(k)')
title('Estimated PDF of f_k_h_a_t(k) for n=100 Springs')
pause
% Use khat from first simulation for model 
x1 = X(:,1);
f1 = F(:,1);
k1 = mean(f1)/mean(x1);
xvec = 0:5/n: 5 - 1/n;
f1hat = k1*xvec;
figure(2)
plot(x1,f1,'*')
hold on
plot(xvec,f1hat,'k','LineWidth',2)
xlabel('Displacement (in.)')
ylabel('Force (lb_f)')
title('Linear Spring model')
pause
%===================================
%Quadratic Model: Fhat = aX + bX^2 + c
% Write as Fhat = aX + bY + c
% The 3 unknowns (a,b,c) are solved via;
% ++++++++++++++++++++++++++
% cov(FX) = a cov(XX) + bccov(XY)
% cov(FY) = a cov(XY) + bcov(YY)
% c = E(F) - aE(X) - bE(X^2)
%+++++++++++++++++++++++++++
y1 = x1.^2;
C = cov([x1 y1 f1]);
Cxy = C(1:2,1:2);
cfxy = [C(1,3);C(2,3)];
ab = Cxy^-1 * cfxy;
ahat = ab(1) 
bhat = ab(2)
chat = mean(f1) - ahat*mean(x1) - bhat*mean(y1)
f1hat = ahat*xvec + bhat*(xvec.^2);
plot(xvec,f1hat ,'r','LineWidth',2)
title('Linear model black) and Nonlinear Model (red)')
hold off
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The joint probability of the square centered at the point (x,y) is 
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