18.4

Lecture 18                 The Expectation Operator
Definition 18.1 Let 
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 be an n-D random variable with sample space SX and with pdf 
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. The expectation operator E(*) is defined as 
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(1)
The integral (1) is an n-D integral (or sum, if 
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is discrete). It could be argued that (1) is the only equation one might need in order to understand anything and everything related to expected values. In this lecture we will attempt to convince the reader that this is the case. 
The standard approach to this topic is to first define the mean of X, then the variance of X, then the absolute moments of X, then the characteristic function for X, etc. Then one proceeds to investigate expected values related to the 2-D random variable (X,Y). Then one extends the approach to expected values related to the n-D random variable, 
[image: image7.wmf])

,

,

,

(

2

1

n

X

X

X

X

L

r

=

. Then (if the reader is still enrolled in the class () expected values of functions of these random variables are addressed. Often, students become a bit overwhelmed with all the definitions and apparently new concepts. Indeed, all of these concepts are contained in (1). To be sure, (1) is a ‘dense’ concept. However, if the student can understand this one concept, then he/she will not only feel entirely comfortable with all of the above-mentioned concepts, but the student will be able to recall and expand upon it for years to come. Our approach to engendering a solid understanding of (1) will proceed by considering it in the 1-D setting, then the 2-D setting, then the n-D setting.
Expected Values of Functions of 1-D X\

Consider the following examples of the function g(*):

(i) g(x) = x: 
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This is called the mean value for X.
(ii) g(x) = x2 : 
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This is called the mean squared value for X.

(iii) g(x) = (x – μX)2 : 
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This is called the variance of X.
(iv) g(x) = eiωX : 
[image: image11.wmf])

(

)

(

)

(

w

w

w

X

S

X

X

i

X

i

X

dx

x

f

e

e

E

F

=

=

D

ò

.
This is called the characteristic function for X.

(v) Suppose that g(x) = ax2 + bx + c: 
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. However, here we can simplify this expression in terms of the above defined parameters:
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Hence, we obtain
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The above examples all follow the same procedure; namely, to compute E[g(X)], you simply integrate g(x) against fX(x). To test your level of understanding, see if you can use (1) to prove the following result:
Result 1.         
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Proof:

Example 1. Suppose that we are given X, with mean μX and standard deviation σX. Let Y = X2. From equation (7) of Lecture 17, we have


[image: image16.wmf])

(

)

(

]

Pr[

]

Pr[

)

(

y

F

y

F

y

X

y

y

Y

y

F

X

X

Y

-

-

=

£

£

-

=

£

=

D

. (2)

In that example, we proceeded to assume the special cases: 

case 1: X ~ Uniform[-100 , 100]   and   case 2: X ~ Normal( 0 , 33.332).
For the uniform case, we found  fY(y) to be:
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We can use this to directly compute μY:
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 = 3,300
Alternatively, we can use (1) with g(x) = x2 :
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= 3,330.

Remark. In general, if we are only interested in the expected value of Y = g(X), we do not need to compute fY(y). We can use (1) directly.
In case 2 where we have the normal assumption, we can simply use Result 1 above:
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