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Lecture 17     STAT 305  [NOTE: This lecture is Section 7 of my ongoing manuscript]

                                             7. FUNCTIONS OF RANDOM VARIABLES

We begin this topic by reminding the reader, once again, of the nature of a random variable.

Definition 7.1. An n-dimensional (n-D) variable, 
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is a composite action, composed of n individual actions, that, when performed, yields a vector measurement value 
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. The set of all measurable values that X can take on is called the sample space for X. If the sample space includes more than a single element, then X is said to be an n-D random variable.

It must be stressed that X is an action, and that x is a vector of numbers. If this distinction is kept in mind, then whenever numbers are presented, one is more likely to ask the question: what actions resulted in these numbers? As the title of this discussion notes, we are here concerned with functions of random variables; which might pose the following question: What is a function? In fact, a function is also an action. The terms action, function, algorithm, etc. are fairly synonymous. They are operations that, when performed, yield viewable results. With this in mind, we state what some might consider to be obvious:
Because a function of a random variable is an action, and the random variable itself is an action, a function of a random variable, being a composite action, is, itself, a random variable.
Numerous examples of functions of Bernoulli random variables were given in the notes on n-D Bernoulli random variables. In this set of notes, we will look at functions of other random variables. In an effort to tie this topic to the topic of distribution models for random variables, we will begin by looking at how one might simulate them. This will entail a rather strange looking function of a random variable.

7.1 Simulation of Measurements of a Random Variable
WHY?   Because when you design strategies based on measurements alone, if a strategy does not perform well it is not always clear as to the reason(s) for poor performance. 
Example 7.1. You want to design a course performance evaluation procedure. If you design it based on exam and homework performance data for a limited sample size, the statistics used in the procedure (e.g. mean, variance, PDF) may entail notable uncertainty. This could result in a procedure that is not well-suited to the next class. Or, it could be that the procedure itself is flawed. 

Simulation of 1-D Random Variables using a U(0,1) Random Number Generator
Case1: X is a Discrete Random Variable with a finite Sample Space
Recall how the uniform random number generator, U, was used to simulate a 2-D Bernoulli random variable, 
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. Since the sample space includes only four elements, with probabilities 
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, having specified these probabilities, it was straightforward to simulate X. While it may not have seemed so, we had, in fact, defined X  to be a function of U. Specifically, we defined it via equivalence of the following events:
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This same procedure can be used to simulate any discrete random variable. Consider the following example.

Example 7.2 Suppose that you want to simulate the grades of a class of 20 students, where the possible grades are A=4, B=3, C=2, D=1, and F=0. Suppose further, that you specify the following probabilities associated with this X: 
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The five values that X can take on will be dependent on the values that U~Uniform[0,1] takes on. The equivalent events can be chosen to be
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The Matlab code for a simulation of X is given in the Appendix. Below are 3 simulations obtained from that code.
>> ex71

c =     0     2    10     5     3

>> ex71

c =     1     1    11     6     1

>> ex71

c =     0     1     8     7     4
What is the value of such simulations?
By showing someone who is not familiar with probability and statistics the above results, they can more easily see the possibilities, either over multiple semesters of the same course, or of three courses with the same probability model in a given semester. This type of information can be useful in budget planning (e.g. how many students might retake the course), and in predicting program success outcomes. 
Case 2: X is a Continuous Random Variable
We will begin this section with a function of a random variable that is useful in simulating measurements.

Using the Uniform Random Number Generator to Simulate Measurements of a Continuous Random Variable

Recall that the cdf of a U(0,1) random variable, U, is 
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Notice that the U(0,1) random variable cdf has the unique defining property (1); that is, the quantity on the right side of the inequality is exactly the same quantity that the probability of that event is equal to.

Now let X be a random variable with CDF 
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QUESTION: What do equations (1) and (2) have in common?

ANSWER: Both are the cdf of a U(0,1) random variable. In (1) it is U, and in (2) it s 
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Remark. The right equality in (2) merits some discussion. First, the fact that 
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Figure 17.1  Because 
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Notice that by performing exactly the same operation 
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, which is, in my opinion, a strange looking event. Specifically, the quantity 
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If we define the random variable 
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, then (2) is identical to (1). Hence, we can conclude that for any given CDF 
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(3)

From (3) we see that each number u corresponds to a unique number x, such that the probability relation (3) is maintained. 
Example 7.2 Use (3) to simulate 1000 measurements of 
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It follows from calculus that the cdf is:
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To find function, or algorithm,
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(5)
A scaled histogram of the simulation, overlaid against the model pdf is given in Figure 2. The Matlab code is given in the Appendix.
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Figure 2. Comparison of the scaled histogram and the theoretical pdf for 
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Example 17.3 Very often in engineering, it is the square of a measurement that is of interest. For example, in studying the power consumption associated with a solar panel, it is the square of voltage that is pertinent. In the case of wind resistance experienced by an automobile traveling against the wind at ~50 mph it is the square of the relative wind speed that represents the force on the vehicle. [Although, at higher speeds this square law becomes a fourth power law.] Hence, in this example our interest is in the cdf and pdf of the random variable

Y = X2. To begin, let’s assume that the sample space for X is the entire real line: 
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. Furthermore, we will assume that X  is a purely continuous random variable. We will begin by addressing cumulative events, since these are directly related to cumulative probability. It should be clear that the following two events are one and the same: 
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We may also write this as
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An example of the two sets for y=4 is shown below.
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Again, while the first expression is more compact, the second does not require that the reader know the difference between an upper case quantity (i.e. a random variable), and a lower case quantity (i.e. a number).

It follows immediately that
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The leftmost equality in (7) is simply the definition of a cdf. The rightmost equality is due to the simple fact that the probability contained in the interval 
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 . [Note that, because we have assumed that X is a purely continuous random variable, it makes no difference if we replace any of the above inequalities by strict inequalities; that is to say, 
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We have essentially completed the conceptual part of the problem. For any chosen cdf for X, we see from (7) that the cdf for Y is given as the difference between two cdf values for X. What remains is mathematics. It can be as simple as a picture, or as complicated as calculus, depending on our assumed form of the cdf for X. We now demonstrate each of these cases.

Case 1: Assume that X ~ Uniform[-100 , 100]. The pdf for X is 
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.  The sample space for Y = X2 is SY = [0 , 104].  From (7) we have
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The pdf for Y is the derivative of (8a). Specifically, we find that
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Plots of (8) are given below. Notice that since 
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Figure 3. Plots of the cdf (top) and the pdf (bottom) corresponding to (8a) and (8b), respectively.

Remarks. It is worth noting that the pdf of Y approaches infinity as y approaches zero. Even so, it is a valid pdf. The behavior of the pdf for larger values of y is consistent with the behavior of the cdf. Specifically, notice that the cdf is accumulating probability at a relatively constant rate for larger values of y. The slope is approximately (1 – 0.7) / (10000-5000), or ~6(10-5). This is consistent with what we see in a zoomed version of the pdf:
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Figure 4. A zoomed region of the pdf for Y, in comparison to the cdf-estimated slope of ~6(10-5).

The point here is to emphasize the fact that the pdf is a rate function: it is a measure of the rate at which probability accumulates as x increases.
One final remark concerning this case is in order. The fact that calculus was used to obtain the pdf expression (8b) should not cause those with no calculus background any great concern. As was shown above, an estimate of the pdf in the interval (5000, 10000) was obtained using only the definition of a slope (i.e. the rise over the run). The cdf was obtained directly from the knowledge of events. No calculus (or even algebra) was used. From the cdf one could proceed to get a good idea of the shape of the pdf by simply measuring the slope at a variety of x-values, and then drawing a smooth curve through those points.   
To simulate Y we can compute the inverse function associated with (8a):
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And so, to simulate a measurement of Y, we first simulate a measurement of U ~ Uniform(0,1), then we multiply that measurement by 100 and square the result. Alternatively, we could begin by simply simulating a measurement of X. Since X ~ Uniform(-100, 100), we can express it as 
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So, to simulate a measurement of Y, we would first simulate a measurement of U. Next, we would transform it to a simulation of
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. And finally, we would obtain Y = X2. The histogram-based (using 10,000 simulated measurements) and the true, 8(b), pdf’s are compared in Figure 5 below.
This figure validates the pdf expression 8(b). Note that since 8(b) was computed only at the bin centers (and then interpolated), it was not computed for values of y < 500.
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Figure 5.  histogram-based (using 10,000 simulated measurements)(blue) and the true, 8(b), (black) pdf’s.
Case 2: Assume that X is Normal( 0, 
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(9)

In contrast to (8a), there is no closed form for (9). It is for that reason that almost every textbook on the subject provides a table of cdf values for the N( 0, 1) random variable. Such a table could be used, along with (7), to obtain the value of the cdf for Y at a variety of y-values, and then connect the points with a smooth curve. Having the cdf, the pdf could then be approximated in a manner exactly as was described in Case 1. 
We will now obtain the form of the pdf for Y using calculus. To begin, we will differentiate (7):
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Now, using the chain rule for differentiation, we have
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Hence, we have 
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Similarly,
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Hence, (10) becomes
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Special Case: Suppose that we now define the random variable 
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Just as we did above, we can apply the chain rule to obtain the pdf for W:
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Notice that 
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, where Z ~ Normal(0 , 1). Hence, (12) is the pdf of the square of the standard normal random variable, Z. The random variable W = Z2 has a name. It is called the chi-squared random variable with one degree of freedom.
We will complete this example with a comparison of the pdf for Y = X2 under the assumption that X  has a Uniform[-10,10] pdf versus that X has a zero mean normal pdf with 
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. The reason for this comparison is that very often it is assumed that random variables have a normal pdf. However, if one has no information about X other than it has an essential range of [-10, 10], then the uniform pdf is a more logical choice. The two pdf’s are shown in Figure 6.
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Figure 6. Comparison of pdf’s for Y = X2, assuming X ~Uniform[-10,10] (blue) versus assuming X ~Normal(0,3.332). The top plot includes the entire pdf’s, and the lower two are zoomed regions.
We see that the differences between the pdf’s are dramatic. Under the normal assumption the majority of probability is concentrated below y=25. In contrast, under the uniform assumption, probability is much more evenly distributed over the entire region [0, 10,000]. In statistical jargon, one would observe that the tail associated with the uniform pdf assumption is much fatter than that resulting from the normal assumption. As we will see, a fat tail can result in a much larger than expected mean value. 
The difference in model tail thicknesses, itself, can be crucial in obtaining reliable probabilities of extreme events. For example, from lowest plot in Figure 6, we have two model-based estimates of Pr[9000 < X < 90100]: The uniform-based estimate is ~ (5x10-6)(10) = 5x10-5. Since the normal-based pdf value is ~ 1/10th that of the uniform in this region, the normal based probability is ~ 5x10-6; that is, these two models differ by an order of magnitude in their prediction of the probability of a tail event. □
APPENDIX

% PROGRAM NAME: ex71.m
p=[0.05 0.10 0.35 0.3 0.2]; % Grade probabilities

%==================================

F=[p(1) zeros(1,4)]; % CDF for X

for k=2:5

    F(k)=F(k-1)+p(k);

end

% ================================

N=20; % Number of students taking the test

x=zeros(1,N);

c=zeros(1,5);

u=rand(1,N);

for n=1:N

    if u(n) < F(1)

        x(n)=0;

        c(1)=c(1)+1;

    elseif u(n) < F(2)

        x(n)=1;

        c(2)=c(2)+1;

    elseif u(n) < F(3)

        x(n)=2;

        c(3)=c(3)+1;

    elseif u(n) < F(4)

        x(n)=3;

        c(4)=c(4)+1;

    else x(n)=4;

        c(5)=c(5)+1;

    end

end

% PROGRAM NAME: expsim.m
theta=0.2

% COMPUTE THE Exp PDF OVER THE INTERVAL [0,10]

x=0.1:0.01:1;

fe=(1/theta)*exp(-theta^-1*x);

% ========================================

% SIMULATE 1000 MEASUREMENTS OF X  

u=rand(1,1000);

xsim=-theta*log(1-u);

% COMPUTE SCALED HISTOGRAM

bw=0.1; % Bin width

bvec=bw/2:bw:1-bw/2;

N=hist(xsim,bvec);

fh=(bw*1000)^-1 *N;

% ========================================

figure(1)

bar(bvec,fh)

hold on

plot(x,fe,'bl')

xlabel('x')

ylabel('PDF Estimate')

title('Comparison of Scaled Histogram and Exp(0.2)PDFs')

pause

% Since the fit is not very good, shrink a to make it less exponential

a1=1.3*a;

b1=.7*b;

fg1=gammapdf(x,a1,b1);

plot(x,fg1,'r')
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