16.13

Lecture 16         A Summary of Key Concepts Related to Random variables
Definition 1 A random variable is a quantity that (prior to observation) can be thought of as dependent on chance phenomena.

My Take: This definition is vague. What is meant by a ‘quantity’? After it is observed, what is it? What is a chance phenomenon?

Definition 1’: A random variable is an action (i.e. operation, function, mapping, algorithm, etc.) which when performed, results in a number (or n-tuple of numbers in the case of an n-D random variable). In this sense, one could label it a ‘variable’. It is ‘random’ in the sense that the number it yields is not perfectly predictable.
Before embarking on a summary of probability concepts related to a random variable, it is appropriate to address the notion of an event.
Definition 2. The sample space, SX, associated with a random variable, X, is a set. The set SX included all of the possible measurable values of X. A subset of SX is called an event.

Example 16.1 To understand the events, or subsets of SX one must clearly understand the nature of the action that is X. Suppose we are interested in the event [X = 1]. This event is ambiguous without knowledge of the dimension X, as is illustrated by the following different settings, in relation to the random variable that we will call X1. 
(i)  X1 is a 1-D action: In this case, the event [X1 = 1] is simply the set {1}.

(ii): X=( X1 , X2 ) is a 2-D action: In this case [X1 = 1] is { (x1,x2) | x1 = 1 }

Clearly, the two sets are different. One includes the number 1, while the other includes a collection of ordered pairs, with the condition that the first element of any ordered pair equal 1. □
We now consider one particularly popular type of event.

Definition 3. Let X be an n-D random variable with sample space SX. and let 
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is called a cumulative event, denoted as 
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Remark 1. The word cumulative is due to the fact that as the components of x increase, the sets 
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not only get bigger and bigger, but earlier sets are accumulated into later sets. The limit of these accumulating sets is the entire sample space, SX
Remark 2. To say that a scalar-valued variable is less than or equal to a number is clear. For example, if X is 1-D, then the event 
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is simply a collection of numbers that must all be less than or equal to the number x. To say that a 2-D variable is less than an ordered pair of numbers is not so clear. Hence, the notation 
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. Hence, what we gain with such compact notation, we might pay for with lack of understanding of what it really means. 
Example 16.2 First, suppose that X is a 1-D random variable with sample space 
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 for x= -1, 0, 1 are shown below.



x = -1
x = 0
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Next, suppose that 
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 is a 2-D random variable with a sampe space that is the entire plane. The three cumulative events 
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 for x = (-1,-2), (2,0) and (3,3) are shown below.


What we see is that as x increases the set 
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 becomes increasingly larger. The example is intended to highlight the fact that the sequence of sets in each case, is a nested sequence; that is, earlier sets are nested within later sets. □
We are now in a position to discuss the nature of probability associated with cumulative events. Recall, the probability is a kind of measure of the size of a set. Suppose that we choose xa and xb such that xa <  xb . It follows that the event 
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; that is, the left set is contained in (or is a subset) of the right set. It follows that the probability of the left set can be no greater than the probability of the right set. This leads to the following

Definition 4. Let X be an n-D random variable with sample space SX, and let 
[image: image14.wmf]X

n

S

x

x

x

x

Î

=

D

)

,

,

,

(

2

1

L

. Then the subset of SX which is 
[image: image15.wmf]}

,

,

1

|

{

n

k

for

x

u

S

u

k

k

X

K

=

£

Î

is called a cumulative event, denoted as 
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is called the cumulative distribution function (cdf) for X. 
Remark. The reason for the term cumulative should again be clear. The probability accumulates as x increases. 

It follows immediately that the cdf of X has the following basic properties:

P1.     For xa <  xb, 
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Example 16.3 Suppose that 
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 is a 2-D random variable with a sample space that is SX = { (0,0) , (1,0), (0,1), (1,1) }. Since SX contains only 4 distinct points in the plane, let the lumps of probability associated with the singleton sets {(00,0)}, {(1,0)}, {(0,1)} and {(1,1)} be denoted as p00, p10, p01 and p11, respectively. The construction of the cdf for X is shown below. The picture is painted using a brush located at the vertex of my cumulative rectangle.
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We see that FX(x) has only 5 distinct values over the entire plane. Now, let’s consider the cumulative scalar-valued event 
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 Notice that since the three colored regions correspond to three distinct values of 
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 is a subset of the plane, there is no condition on x2. 
Hence, we can plot the above result in terms of only x1.

1.0
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                         Figure 16.1 Plot of the cdf 
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We originally started with the 2-D random variable, X =(X1 , X2), with its corresponding cdf, FX(x). By focusing only on X1 the x2 coordinate of the 2-D sample space was allowed to take on any value. This is why the square colored regions became vertical colored regions above. The resulting plot of the cdf 
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was a natural consequence.  □

Hence, in fact there is no need for the following definition that is so often included in text books on the subject:
An Unnecessary Definition. Given scalar-valued random variables X and Y, with sample spaces SX and SY, and with joint cdf F(X,Y)(x,y), the marginal cdf FX(x) is defined as 
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As we have illustrated above, the equality 
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is a natural consequence of restricting our attention to only X. It is only the meaning of the term marginal that might require any explanation. This is a marginal cdf in the sense that it considers only X marginally (i.e. without concern for Y). This is a much easier and more natural definition than the mathematical one given above, which so many students fail to grasp or recall in examination. 
A second point that was illustrated in the above example is that if the sample space of X contains only discrete points, then its cdf will have a stair case appearance. This is because the probability is distributed as lumps at these discrete points. Hence, as x is increased, the cumulative event 
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 will only accumulate the elements of SX in a discrete fashion. One should be careful when imagining or drawing the event 
[image: image35.wmf]]

[

x

X

£

. It is not the set 
[image: image36.wmf]}

|

{

x

u

u

£

; rather, it is 
[image: image37.wmf]}

|

{

x

u

S

u

X

£

Î

. Even though the cdf , FX(x) is defined for an arbitrary value of x, this is only for convenience. For example, if 
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 is the singleton set {0}. In summary, we offer

 Definition 5. If the sample space, SX is discrete, then X is said to be a discrete random variable. If SX is a continuum (or a collection of the same), and if every singleton set {x} has probability equal to zero (i.e. there are no lumps of probability), then X is said to be a continuous random variable. If X is neither discrete nor continuous, then it is said to be a mixed random variable.
The term continuous is certainly related to the continuous nature of an interval. However, by not allowing any point in that continuum to have non-zero probability does not make the interval any less continuous. What does become discontinuous is the cdf. In fact, a lump of probability, say p, at a location x will cause the cdf to increase (i.e. jump) by an amount p at x. Thus, at the extreme, a non-zero probability at a single point, x, will result in an infinite slope in FX(x). More generally, if the slope of FX(x) is very large in the region of x, then it must be that there is a significant amount of probability lying in this region. Since FX(x) is accumulating probability as a function of increasing x, the slope of FX(x) is the rate at which it is accumulating probability locally, about the point x. 
Consider the case of a cdf FX(x) as given below.



FX(x+Δ)


FX(x)



x    x+Δ
A reasonable estimate of the slope of FX(x) is:
slope of FX(x) at the location x is 
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It is clear in the above plot that there is a well-defined slope at the location x. Hence, as we choose successively smaller values for Δ, we should get a better approximation of it. This leads to the concept of a probability density function.

Definition 6. For a random variable X with cdf FX(x), the quantity
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is defined as the probability density function (pdf) for X.
Remark Students who have had a course in calculus may recognize that 
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for a random variable, X, is just that- a definition. Mathematically, it can happen that, formally, that this derivative of 
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 does not exist at certain x-values. Figure 16.1 is one such example. There, the derivative is undefined, or, if you will, infinity at the values x=0 and x=1. This is because there are ‘lumps’ of probability at these locations. In fact, any discrete random variable, because its sample space consists of discrete points, will have only lumps of probability. Consequently,

Fact 1: If X is a discrete random variable, then formally speaking, it does not have a pdf, since 
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equals zero, except for x-values that are in the discrete sample space for X.

Even so, we will presently expand our definition of a derivative so that 
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always exists. To be able to do this depends on

Fact 2: The cdf, 
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, exists for any random variable, X.
Definition 7. Define the sequence of functions, 
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Then, the Dirac Delta function, δ(x)
1
is defined as 
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Remark. The Dirac Delta function, δ(x) is the limit of a sequence of triangles whose bases are getting small and whose peaks are getting higher in such a way that the area of every triangle equals 1.0. Hence, 
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for any ε > 0. It follows that if  g(x) is any well-behaved function, then when it is multiplied by δ(x) and then integrated, we obtain  
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for any ε > 0. For this reason, δ(x) is also called a sifting function, since it “sifts out” the value g(0). 
Notation. Graphically, a Dirac delta function, multiplied by a constant, c, is represented by an upward arrow of height equal to c, as shown below. Note, however, that in reality, δ(x) has infinite height. Hence, the value c represents its 
area. This is illustrated below.
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The most popular pdf, and one familiar to many who have not had even a single course in probability and statistics, is the bell curve. This pdf is, technically, referred to as a Gaussian, or normal pdf. It is characterized by two parameters, namely, the mean of X, μ, and the standard deviation of X, σ. The sample space for any random variable,  X, having a normal pdf is the entire real line; that is, 
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Figure 16.3 . Graph of the pdf for a unit normal random variable.
In addition to the bell curve shape pdf, 
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 is also shown in this figure. Note that this curve is accumulating probability. It is zero for vary small values of x, since there is very little probability to the left of these values. But as x gets larger and larger, it accumulates more and more probability, and approaches a limiting value of one by the time 
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 is nearly zero in these regions. Furthermore, if you take a ruler and try to approximate the slope of 
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 at the location x=0, you should find that this slope, which is the value of 
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Now, we are faced with an interesting question, namely: 
What information about probability related to X is provided by the pdf, 
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All too often, the novice in probability and statistics will answer: “The value of 
[image: image78.wmf])

(

x

f

X

 at the location x is just the probability that X=x.”  After all, since the pdf is far more commonly addressed than the pdf, one would think that it provides such information directly. Unfortunately, this is not true. To see why, let’s pick a small interval, Δ. Then 
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, which is simply the singleton set {x}, has zero probability. But what about the probability of a small set, such as the interval 
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(16.1)

Note that the left equality in (16.1) is exact,; whereas the right equality is approximate due to the fact that the slope in the region 
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 is not constant throughout this region.  Finally, let’s look a little closer at the rightmost quantity in (16.1). If  this region is small enough, then one could argue that 
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 in this region. This leads us to a very important and fundamental fact concerning the pdf, 
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Given any event 
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In-Class Problem 16.1. Explain why a pdf, 
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, as a mathematical function, can never take on a negative value. [Hint: It is the slope of the cdf.]
Ans. Because it gives the rate at which probability is being accumulated. A negative rate would imply the cdf is becoming smaller as x increases. This is impossible.
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