12.1

Lecture 12     Probabilities Associated with Random Variables
The material in this lecture is included, in part, in Chapter 5 of the textbook. This is Lecture 12, however, it is also in my manuscript included as Chapter 3. For this reason, the sections, definitions, etc. will be numbered in that context. 

The purpose of this material is to highlight the concepts related to probability. We started with the notion of a random variable and its associated sample space. We then brought in the concept of an event, which is, simply, a subset of the sample space. Now we will complete the picture with an overview of probability. Once one has identified an event of interest, it is natural to ask: what is the probability that this event will occur? And so, in a way, the probability of an event is a kind of measure of the size of the event. But it is not size in the typically interpreted manner. We will begin this chapter with a discussion of what is meant by the term size, as related to the probability of an event. We will then proceed to more formally develop the notion of a probability measure associated with a random variable. 

.

3.1 Probability as a Measure of Size

When most people think of the size of an object, they think of physical size. Size is an indicator of how small or large an object is. When the object is a subset of n-dimensional Euclidean space, 
[image: image1.wmf]n

Â

, then size is easily quantified; that is, it can be assigned a number. For example, consider an n-dimensional cube whose side has length, λ. It’s Euclidean size is then 
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. For n=1, this is simply a line of length λ. For n=2 it is a square with area 
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. In 3-dimensional space it is a cube with volume 
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. For n>3 it can no longer be visualized, but we can extend the notion of size, and call it a hyper cube with “volume” 
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. Okay. So, what are some fundamental properties of this entity called size? Well, we typically require size to be non-negative. Also, if a set is contained in another set, then the size of the former can be no bigger than the size of the latter. Still another reasonable property to require is that the size of two or more nonintersecting sets must equal the sum of the sizes of the individual sets. Now we are in a position to list the properties that the measure of size called probability must have.

Definition 3.1 A measure of the size of events contained in the field of events, 
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, associated with a random variable, X, call it Pr(▪), is a probability measure if it satisfies all of the foloowing properties:

(P1) For any event, 
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(P2)For any two disjoint, or non-intersecting sets 
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The first thing to note is that the operation Pr(▪) operates on the elements of the field of events, which are sets. And so, it is a measure of the “size” of a set. It does not measure the size of an element of the sample space, since the elements of the sample space are not sets. Finally, defining property (P3) simply requires that the “size” of the empty set be zero, and the “size” of the entire sample space be one; for, to allow the probability of an event to be greater than one (or 100%, if you like) is ridiculous. 

Conceptually then, this is all there is to the notion of probability. And if someone gave you a specific formula for this set measure, Pr(▪), then the computation of the probability of an event, A, is an exercise in mathematics. If you felt that you did not have the mathematical skill to carry it out, then you could try to find someone who could. But realize that lack of this computational skill should not be interpreted as a lack of conceptual understanding of the concept of probability. Your conceptual understanding of probability will take you much further in life than your ability to perform mathematical computations. For, it is relatively easy to find a person who has this ability. But it is not at all easy to find a person who can formulate the probability problem to be solved. And this view holds true in many areas of life. Once a problem is sufficiently well-defined, it is often relatively easy to identify a person who can contribute to solving  it. But when a problem is poorly defined, then it is not at all easy to even identify a person who might be able to aid in a solution. 

Very often no one will give you a specific formula for Pr(▪) . In this case, however, one often has a significant amount of data. And this data can guide one to a reasonable formula. This is where an understanding of concepts surrounding this conceptually simple entity, Pr(▪) ,  is needed. We will discuss these concepts shortly. But first, let’s look at some simple examples that will, hopefully, demonstrate how conceptually simple the entity Pr(▪) is, if one is given a specific formula.

Example 3.1 Machinery condition monitoring (CM) has, and continues to play a major role in safety. CM systems are used in all types of transportation systems, from automobiles to aircraft. They are also used in power generation systems, and in particular, in nuclear power plants. It was the failure of a CM system at the Chernobyl nuclear power plant in Ukraine that resulted in a melt down, resulting in thousands of deaths and long term illnesses. Let X denote the measurement of the condition of a nuclear reactor cooling pump. Furthermore, suppose that the sample space for X is 
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. Finally, suppose that, based on experience with a large number of pumps, we have Pr({0})=0.95, Pr({1})=0.04, and Pr({2})=0.05. Things to note here are that Pr(▪) is specified based on numerical probabilities associated with the singleton sets, {0}, {1} and {2}. A nice way to visualize this is to place “lumps” of probability above these values in a graph format:
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      Figure 3.1 Graph of the probability structure associated with X.
Some things to note:

· The total probability sums to 1.0

· The sample space, 
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,  is discrete,  hence, so is X.

· Even though 
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 is discrete, we can graph it over the entire real line, 
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.  So, from this graph, it may not be clear that 
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 is discrete. One could argue that, because there are no lumps of probability at any locations other than {1,2,3}, then this must correspond to the sample space for X. And there is merit in this argument. However, just because there is not a lump of probability at some location , x, this does not necessarily mean that x is not contained in 
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. It only means that the probability associated with the singleton set {x} is zero. The main point here is: 
Even though 
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={1,2,3}, we can “extend it” to include the entire real line, 
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; but with the understanding that all of the probability associated with X is concentrated  in 
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Also, the heights of arrows representing the “lumps” of probability, mathematically, do NOT  have any meaning. We can draw them in such a way that they appear to reflect the assigned values. In this sense, they DO have meaning. But to see that, strictly speaking, mathematically, they DO NOT have meaning, let’s consider events of the form:
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In words, for any chosen 
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, the above event is, simply, all the elements in 
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 that are less than or equal to x. But note that, here again, we are allowing ourselves to consider values of x that are not necessarily in 
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.  And as we increase x this event accumulates more and more values of y to the left of x. In fact, it should be clear that as 
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. Hence, from the above property (P3), 
[image: image26.wmf]1

)

Pr(

]

Pr[

®

®

£

X

S

x

X

. Now, let’s graph this accumulating probability corresponding to Figure 3.1. To this end, we begin by imagining very small values of x. We see that for any value of x less than zero, there is no probability lying to the left of x. When we increase x just enough so that x=0, then the amount of probability less than or equal to x is simply the lump of probability lying at zero. And so, at this point, our accumulating probability jumps from zero to 0.95. Okay. So now let’s continue to slide x to the right. Well, there is no more probability to be accumulated until x=1. And so, until this value for x, our accumulated probability holds steady at the value 0.95. But, again, when we have increased x so that our event includes everything up to and including x=1, we now have accumulated that second lump of probability lying at x=1. At this value, then, our accumulating probability graph increases. By how much? Well, if your imagination is on track, then you should be seeing an increase in the amount 0.45, so that now we have accumulated a total of 0.995 of the total probability that is 1.0. When x=2 our accumulating probability graph jumps one last time, since now it equals 1.0. Thus, as we slide x further to the right, our graph will remain at the value 1.0. Again, if your imagination is on track, then you should have constructed a mental picture like the one shown below.
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      Figure 3.2 Graph of the accumulating probability structure associated with X.
Since this accumulating probability is clearly a function of x, we can treat it like any other function of x. One thing to note about this particular mathematical function of x, is that it has steps in it. These steps occur wherever there are lumps of probability. And between the steps this function is perfectly flat. And you may recall from grade school mathematics that the slope of a flat line is zero. But what is the slope of this function at the jump points? Well, if you have ever been on a ski slope, you might say it’s a vertical jump, or a huge slope. In fact, one could say that the slope at the jump locations is infinite. It is this slope information that will now explain why, mathematically, the heights of the arrows in Figure 3.1 are really not the values of the function plotted in Figure 3.1. Let’s plot the slope information just gleaned from Figure 3.2. From this figure, we see that the slope of this accumulating probability function is zero everywhere except at the jump locations corresponding to the lumps of probability, where it is infinite. And you might say, a function that equals zero everywhere except where it is infinite is, indeed, a strange or ill-behaved function. In fact, mathematically, it is not a well-defined function, at all!


∞
∞
∞


   Slope of 
[image: image28.wmf]]

Pr[

x

X

£

   







              




x

2 1
2

  Figure 3.3 Graph of the slope of the accumulating probability structure associated with X.
The only information about the probabilities associated with X in Figure 3.3 is that there are lumps of probability at the locations x=1, x=2, and x=3. The sizes of these lumps are not reflected in this figure. But if we modify this figure, so that the heights of the arrows correspond to the lumps of probability, then we do have this information. But we then have Figure 3.1. It must be emphasized, however, that our modification was one of convenience. The heights of the arrows in Figure 3.1 are not, mathematically, the values of that graph on the vertical axis of the plot. ♫

3.2 The Cumulative Distribution Function 

The above example includes the essence of a major concept associated with probability theory. And so, if you feel you have a reasonably good grasp of it, then you should sing for joy. The accumulating probability function for a random variable, X, plays such a major role in probability and statistics for two reasons. One reason is that it is a mathematically well-defined function for any random variable. The second reason is that, from it, we can compute the probability of any event you desire. Because of its prominence in probability and statistics, it is given a special notation. We now introduce this notation, in the contest of a formal definition of the accumulating probability associated with an n-dimensional random variable.

Definition 3.1 Let X be a random variable whose sample space, 
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, is n-dimensional. Then for any 
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, the cumulative distribution function (cdf) for X is defined as
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(3.1)

We have already discussed this author’s aversion toward the cryptic and ambiguous notation of an event such as 
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 in the last chapter. However, it is such an ingrained notation in the field that the reader who would ever find the need or desire to pick up another text book in probability and statistics should get used to it. It is for this reader that we have used it in the upper right hand expression in (3.1). But the lower right hand expression is far less cryptic and ambiguous. For, it defines an event or subset of 
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 in a clear and precise manner. It is simply the set of points in 
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, such that the first component of each point must be less than 
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, and the second component must be less than 
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, and so on, and so on. These “ands” are italicized to emphasize the fact that they are joint conditions that must all be satisfied simultaneously. They are, in fact, equivalent to the commas separating each of the inequalities in either of the right hand expressions of (3.1). But recall, as well, from the last chapter, that an “and” also has the meaning of an intersection of sets in set theory. So, the upper right hand defined equality in (3.1) may also be expressed as
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(3.2)

The cryptic nature of this alternative expression lies in the meaning of an event such as 
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. To the uninitiated this expression will mean little. In contrast, the set 
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is clear, once the mathematical symbols 
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 (“contained in”, or “is an element of”), 
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(“the real line”), and | (“such that”, or “under the condition that”) are known. And these symbols are so commonly used in other areas of mathematics, even in high school mathematics, that it is likely that the uninitiated to the field of probability and statistics would have no difficulty in seeing that this is a subset of the real line, consisting of everything to the left of 
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 is that it says nothing about the dimension of the event. In fact, it suggests that it is a 1-dimensional event related to 
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, and is the set of all points on the real line to the left of the point 
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. Now, if there were no other random variables lurking in the background, then this would be correct. But there are n-1 other random variables in (3.2). And so, if one interprets the event 
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 as the set of all points on the real line to the left of 
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. And extending this line of reasoning to all n of the random variables would lead one to conclude that the event 
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is simply all the points on the real line to the left of the smallest of the values 
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. The flaw in this reasoning is that it presumes that only one and the same real line is related to all n random variables. The fact is, each one of them has their own unique real line in which their sample space is embedded. Hence, the need for Theorem 2.1 (a.k.a. the Embedding Theorem). For example, the event 
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# , signifying that it is really the event 
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. It may seem to some readers, both novices and initiated alike, that this discussion regarding notation is unduly prolonged and unnecessary. And to some, it may be. But after years of teaching both undergraduate and graduate courses in probability and statistics, it is this author’s belief that notation is a major stumbling block to a strong conceptual grasp of the field. A weak grasp may be acceptable if the student simply does not have the mental ability to digest concepts. But when the student judges that he/she does not have this ability, and the problem is, in fact, one more related to notation than anything else, the result is disservice to the student and the field, alike.

In-Class Problem 3.1 If you have purchased enough music CDs, either for your own enjoyment, or for your work as a DJ (as this author has done), then you are probably aware of the fact that there are usually no more that two really popular songs on a CD. Furthermore, the top hit(s) will not generally be positioned as the first track(s) on the CD. Now, if you cannot afford to listen to every track on a CD before you decide to purchase it, then you need to have a rationale for choosing the few tracks that you will choose to listen to. If you like the tracks, you will buy the CD. This problem is a precursor to this decision process. Suppose that a given CD contains 10 tracks, and that one of the tracks is the “hit” song of the CD. We are interested in the probability that this hit is located at the kth track. Let X denote the track that the hit is at. 

(a) Based on your experience with CDs, graph a probability “model” for X. To this end, begin by 

asking yourself: “What is 
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?”. Because, this set will be contained on the horizontal axis of your graph. The vertical axis will relate to the corresponding “lumps” of probability.


Figure 3.4 Graph of your probability model for X=tack containing the “hit” song.

(b) Using your graph, graph the cdf, 
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 on the same figure.

(b) Does your probability structure satisfy property (P3) of Definition 3.1?  ◄

Before we leave this section, let’s test your confidence in this material by considering a 2-dimensional random variable. The concept is no different, but one must now think a little bit deeper about exactly how lumps of probability are accumulated, since we must increase not one x–variable, but two.

Example 3.2 Two major causes of diabetes are (i) glucose and fat metabolism malfunction (leading to obesity), and (ii) pancreas and liver malfunction resulting from excess caffeine, alcohol, and stress. In order to evaluate a person’s likelihood of developing this condition, one could begin by measuring the person’s weight (
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), and stress level (
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). Let 
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Furthermore, suppose that the sample space for weight is {0=below normal, 1=normal, 2= overweight, 3=obese}, and that the sample space for job stress is {0=low, 1=average, 2=high}.

Then the sample space for X is 
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, for a grid that includes a total of 12 points shown below. Arrows show the “lumps” of associated probabilities at these points, qualitatively.
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                               Figure 3.5 Probability “model” associated with 
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Even though this 3-D plot easily conveys how the probability is distributed over the sample space, it has its drawbacks, when it comes to computing and graphing the cdf. For this purpose, the alternative presentation is more desirable to many.
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Table 3.1 Probabilities associated with the 
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 are enclosed in a bold box in the top table. The bottom table includes the cumulative probabilities to the left of and below the point 
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In-Class Problem 3.2 How were the numbers in the top row and right column of the upper table of Table 3.1 obtained, and what do they represent? ___________________________________________________________________________

___________________________________________________________________________

3.3 The Probability Density Function
Even though the cdf, 
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, associated with a random variable, X, is always mathematically well-defined, it is seldom plotted or used to directly study X. If one places the values of the “lumps” of probability beside the arrows, as is done in Figure 3.1, then this type of plot is, generally, far more appealing, since it shows the probabilities associated with values of X directly. In contrast, having a graph of 
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, one is forced to perform subtractions at the jump locations in order to arrive at this information.  We noted that, mathematically, the use of arrows and attendant numbers to represent the size of these “lumps”, was not well-defined, but that it is, nonetheless, very intuitively appealing and informative. But what if the random variable contains no discrete “lumps” of probability? An example of such a random variable might be the measurement of pump vibration that resulted in the discrete random variable in Example 3.1. In a vibration sensor that can measure a continuum of vibration levels is used, as is often the case, then the sample space for this random variable will be an interval, and not a set of discrete points. In this case, if there are no lumps of probability anywhere, then the cdf, 
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 will be a continuous function of x; that is, one could graph it without ever having the pencil leave the graph paper, and without any vertical lines. Now, recall, again, that 
[image: image85.wmf])

(

x

F

X

 is well-defined for any random variable. Recall, further, how for the discrete random variable in Example 3.1 we were able to get Figure 3.1 from the graph of 
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 in Figure 3.2. We computed the slopes; which in this example were simple. They were either zero or infinity. But, more generally, it is, indeed the slope information associated with 
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, itself. Now, a line has a constant slope; that is, no matter where you measure the “rise over the run” (i.e. the slope) on the line, you will get the same number. But if you have a curve, then the slope will depend on where on the curve you choose to compute it. So, suppose that 
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           Figure 3.6 An example of a cdf, 
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, corresponding to a continuous sample space.

In-Class Problem 3.3 Even though 
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 in Figure 3.6 was drawn more or less as a continuum of curves and wiggles, there are certain conditions that need to be met, in order for it to be a valid cdf. What are they? [Hint: This is a function that accumulates more and more probability as x goes from left to right. And, of course, probability is a positive quantity.]

If you noted in your answer that as x increases, 
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 must, itself increase; or, at the very least, it cannot decrease. But this is equivalent to requiring that the slope of 
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 at any location, x, must be greater than or equal to zero. Now, graphically, it is easy to measure the slope of 
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 at any location, x, you choose to measure it at. You simply take a ruler and draw a straight line that touches 
[image: image96.wmf])

(

x

F

X

 at this location, but nowhere else in the small region surrounding this chosen point; unless, that is, this entire local region has the same slope (i.e. looks, locally, like a straight line). As visually appealing and instructive as it is to use this ruler approach, there are an awful lot of x-values to be reckoned with; far too many for the patience of this author. And so, if one is given a mathematical formula for 
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, then we can use this formula to obtain a formula for the slope at any location, x. Now, since the slope as “the rise over the run” is taught in grade school and high school, we will use this knowledge to estimate the slope at x as:
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(3.3)

Here, Δ is just a small amount, so that we get a good approximation of the slope at exactly x. But then if we could let 
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Definition 3.2 For a random variable, X, with a cdf 
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(3.4)

assuming it exists, is called the probability density function (pdf) associated with X. Those who have had a course in introductory calculus should note that (3.4) is called the derivative of 
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The most popular pdf, and one familiar to many who have not had even a single course in probability and statistics, is the bell curve. This pdf is, technically, referred to as a Gaussian, or normal pdf. It is characterized by two parameters, namely, the mean of X, μ, and the standard deviation of X, σ. The sample space for any random variable,  X, having a normal pdf is the entire real line; that is, 
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         Figure 3.7 . Graph of the pdf for a unit normal random variable.

In addition to the bell curve shape pdf, 
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 is also shown in this figure. Note that this curve is accumulating probability. It is zero for vary small values of x, since there is very little probability to the left of these values. But as x gets larger and larger, it accumulates more and more probability, and approaches a limiting value of one by the time 
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Now, we are faced with an interesting question, namely: What information about probability related to X is provided by the pdf, 
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? All too often, the novice in probability and statistics will answer: “The value of 
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 at the location x is just the probability that X=x.”  Afterall, since the pdf is far more commonly addressed than the pdf, one would think that it provides such information directly. Unfortunately, this is not true. To see why, let’s pick a small interval, Δ. Then 
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, this difference also goes to zero. The only reasonable conclusion then, is that there is no probability at the point x. But then, what is the use of 
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. And the subtraction of one value from another is about as easy as things can get here. To get this probability from 
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Note that the left equality in (3.5) is exact,; whereas the right equality is approximate due to the fact that the slope in the region 
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 is not constant throughout this region.  Finally, let’s look a little closer at the rightmost quantity in (3.5). If  this region is small enough, then one could argue that 
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Given any event 
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In-Class Problem 3.4 In view of the discussion associated with Figure 3.6 in relation to key properties of a cdf, 
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, as a mathematical function, can never take on a negative value. [Hint: It is the slope of the cdf.]

______________________________________________________________________________

In-Class Problem 3.5 The evolution of compact, high speed computers has, and continues to rely of development of integrated circuits (ICs), and their placement on silicon wafer material. In order to pack more and more circuits on a wafer, it is necessary that the wafer surface be smoother and smoother. A standard method of polishing a wafer involves the use of a polishing pad, in conjunction with a slurry. Hence, this method is known as chemical-mechanical polishing (CMP). If you look at any surface closely enough, you will find that it is rough, in the sense that there are many peaks and valleys. The peaks are called asperities. Let X denote the height of any asperity.

(a) Find the value of β that makes it a valid pdf    _________________________

(b) Overlay the cdf for X on the pdf. Use the right vertical line for the cdf axis.
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Figure 3.8  Plot of the pdf associated with measured asperity height, X.

(c) After polishing for an amount of time, say, t, the large asperities will be ground down to some height, λ<30. Thus, at this time, the Pr[
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]=0. All the asperities that had height greater than λ will, at this time, have heights equal to λ. What this means is that the amount of probability Pr[
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]. Overlay the pdf and cdf at this time t, on the ones above. ▼
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