11.6

Lecture 11  DESCRIBING RELATIONSHIPS BETWEEN DATA (Ch.4)
4.1 Fitting a Line by Least Squares
Suppose that we have a 2-D data set, 
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, and that we desire to predict yk from xk using a linear prediction model. We will denote this predictor as 
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Notice that in (1) we did not include the subscript k anywhere. This is because there may be interesting x-values that are not included in the x-data, 
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. In fact, it is this setting that often is of most importance. We consider the following example to illustrate this.

Example 11.1 The weekly price of oil and gasoline from January 3, 1993 to September 28, 2008 are shown in Figure 1, below.
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Figure 1. World average price of oil ($/barrel) versus USA nationwide price of gasoline (¢/gallon) for the period January 3, 1993 to September 28, 2008.
http://tonto.eia.doe.gov/dnav/pet/hist/mg_tt_usw.htm
http://tonto.eia.doe.gov/dnav/pet/hist/wtotworldw.htm
QUESTION: What are some problems that one might want to consider in relation to the data?
ANSWER: _____________________________________________________________________
Definition 1. To apply the principle of least squares to 2-D data set, 
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, in an effort to arrive at a linear prediction model, 
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, the model parameters 
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are chosen to minimize the total squared error
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Hence, the principle of Least Squares (LS) entails a minimization problem. Specifically, it entails finding the values of unknown variables
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. Notice that, in contrast to similar problems in mathematics and engineering, here, the collection 
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are not variables; rather, they are known numbers. 
We now carry out this minimization. To begin, substitute (1) (augmented by the subscript k) into (2). Then, (2) becomes
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Recall from calculus that a minimum or maximum can be found by setting the derivative equal to zero. Since (3) entails two variables, 
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, we will set the partial derivatives equal to zero. 
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The factor -2 in (4) can be ignored, since the right side is zero. It is now useful to recall some properties related to sums:

Property 1: 
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Property 2: 
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Application of these properties to (4) gives
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If we divide both sides of (5) by n, and use the simplified notation 
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Equation (6) includes the two unknowns 
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. The second needed equation to solve for them is:
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Again, we can simplify things by defining 
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Solving for 
[image: image24.wmf]0

b

in (6), and substituting that result into (7) gives 

                                               
[image: image25.wmf]y

x

x

x

x

x

y

=

+

-

1

1

)

(

b

b

.
(9)

Solving (9) for 
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Notice that in (10a) we have defined the sample variance, 
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Most computational software includes line fitting code. However, rather than using canned software, it is more instructive to use the Matlab command cov.m. This command computes the sample variances and the covariance associated with a 2-D data set, 
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. Specifically, the command cov(x,y), where these are column vectors, gives the matrix:
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Similarly, the command mean([x , y]) gives the row vector 
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. These two commands, followed by equations (10) are not much more difficult than calling a single canned program. Furthermore, they highlight how the LS parameter estimates are connected to data means, variances, and covariance items.
Example 11.1 (continued) Use the Matlab command cov.m to obtain the LS model for predicting gas price from oil price.

Solution. Our x variable is oil, and our y variable is gas. And so, the command: cov(oil, gas) gives the following result:

>> cov(oil,gas)

ans =   1.0e+003 *

    0.6823    1.9152    Hence, 
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    1.9152    5.6305.

>> mean([oil,gas])   
ans =    37.6760  186.1111   Hence,   
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And so, the LS model to predict gas price from oil price is approximately:
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(12)
This model predicts that the price of gas will increase 2.8 ¢ for each $1.00 increase in a barrel of crude oil. If one ignores the range of validity of this model, then it also states that even if the oil was free, gas would be 80¢/gal. The prediction model (12) is shown in Figure 2, below.
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Figure 2. Overlay of least squares linear prediction model (12) for the price of gas, based on the price of oil.
The model seems to perform better for oil price in the range[10, 50], and to over-estimate gas price in the range [80, 140].To get a better idea of how well the model (12) predicts, we will plot the prediction errors.
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Figure 3. Plot of the prediction error of (12) in relation to the price of oil.

From Figure 3, we observe that the prediction error seems to be negatively biased for low and high oil prices, and positively biased for oil prices in the range [30, 80]. Ideally, one would like a prediction model that exhibits no biases. Hence, one might conclude that the linear model is not well-suited for the oil/gas problem. 

The “Time Series” Structure of Oil & Gas Prices
A time series is a time-indexed collection of measurements. The oil and gas time series are shown in Figure 4, below.
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Figure 4. The time series associated with oil and gas prices.
Note that a time series is a collection of measurements, or data. There are no random variables that need to be associated with it. The beauty of the theory of random variables is that the investigator is free to choose them to suit his/her purposes.

Suppose that we are interested in the prediction of the next week’s price of gas, using the present and past weeks’ prices. Surely, one would also want the prediction to utilize present and past oil prices, as well. We limit ourselves to only gas prices for the moment, in order to keep things simple. Otherwise, the concept of linear models might lost in the level of required mathematics.

Let’s let X denote the price of gas for any given week, and let Y denote the price of gas in the following week. Notice that, ignoring X, then Y is also simply the price of gas for any given week. And so, we will begin our investigation by developing an understanding of the random structure of X (or, equivalently, Y). 
QUESTION: What are some basic properties associated with the random variable, X?

ANSWER: ________________________________________________________________________

Lecture 11-B (After posting the above on the course website)
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Figure 5. Unscaled histogram of weekly gas price for the weeks from 1/3/97 through 9/28/08 (n=613). This figure provides basic information related to X (and also Y).
We see that the pdf of X is highly skewed toward lower prices. This reflects the early years of the price data.

Next, let’s investigate the relationship between X and Y. 

The estimated covariance matrix for the 2-D random variable (X, Y) is:
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Cov(X,Y) =  0.5585    0.5599   =   
                    0.5599    0.5634

Note that, theoretically, we have assumed that X and Y have exactly the same variance. The reason they are different in this matrix (.5585 versus .5634) is that the former uses gas prices for weeks 1 through 612, while the latter uses prices for weeks 2 through 613. We will ignore this small difference.
� EMBED Equation.3  ���
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