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Lecture 7
A Discussion of Q Plots and Q-Q Plots

Suppose that we have measurements of a random variable, X,  that we have ordered from smallest to largest in numerical value: 
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. We want to use these measurements to estimate probabilities associated with X. And so, without resorting to interpolation (to be discussed later), the probability values that we are restricted to when using relative frequency as the estimate of them, are in increments of 1/n.
Why?  Because recall the construction of a histogram. For any specified interval (a,b) to estimate the probability that a future measurement of X would fall into that interval, we simply not the number, say, m, of the n measurements at hand that fall inside that interval. Then, our relative frequency-based estimate of the probability that a future measurement of X would fall into the interval (a,b) is simply m/n. Well, the smallest possible value for this probability is zero (for m=0). The next smallest is 1/n (for m=1). The third smallest possible value is 2/n (for m=2). And the largest possible value is one (for m=n). Notice that these probabilities are in increments of 1/n. 
Remark 1. On p.78 of the book, the authors define the p-th quantile of a data set 
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in the following way: 

If 
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for a specified positive integer, 
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, then the p quantile of the data set is defined as the ith smallest number, 
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What is the meaning of 
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 in relation to estimated probabilities for X? Well, if we consider the case there none of the elements of the data set 
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are repeated (hence, the inequality signs can be replaced by strict inequalities), then the number 
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is that number, such that i of the n numbers comprising the data set are less than or equal to it. Hence, one estimate of the probability that a future measurement of X would fall in the interval 
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 is simply p=i/n. The problem with this estimate of probability is that, if we consider the interval 
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, our estimate of the probability that a future measurement of X would fall into this interval would be one (or 100%). But this is the same as saying that it must be no greater that 
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. However, remember that our measurement set 
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is just that: a collection of n measurements of X. And were we to collect another n measurements of X, it is likely that the value of the largest number, 
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, would be different; and even greater than the current value. Hence, to make such a strong statement of probability in relation to X is just not reasonable. It is safer to use the estimate 
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since, now, for i=n, our estimate of the probability that a future measurement of X would fall in the interval 
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 is not one, but, rather, 
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. For large n this value will be close to one. But it allows us to recognize that a future measurement of X could be a number greater than 
[image: image17.wmf]n

x

.
Remark 2. What if we have repeated numbers in the set 
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? Well, note carefully the set 
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. The right endpoint of this interval is included in it. In words, this interval is “the set of all possible values that X could take on less than or equal to 
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. So, the question to be address is: How many of the n measurements are less than or equal to 
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? One estimate of the probability that a future measurement of X would fall into the interval 
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 would be to take the largest value of i that includes all the replicates of the number, and use that i-value in (1) above to estimate this probability. 
Example 7.1. Consider the following 10 measurements of a random variable, X:

                                  {2, 4, 5, 5, 7, 11, 14, 15, 16, 18}.

Since 4 of the 10 measurements were less than or equal to 5, our estimate that a future measurement of X would fall into the interval 
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. Now, let’s see how such a repeated number affects the quantiles of this data set. Recall, the definition of the p-th quantile given on p.78:
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If we use (2) and ignore the fact that the number 5 is repeated, then we obtain
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. In words, we are saying that, on the one hand, our estimate of the probability that a future measurement of X falling into the interval 
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 is 0.25, but then again, it is 0.35. This is a ridiculous statement. So, which is the better estimate of this probability? Well, since 4 of the 10 numbers fell into this interval, 0.35 is the better estimate. In fact, with a little bit of thought, it should be clear that we do not have a 0.25 quantile number in the data set. As noted in the book, to obtain quantiles not in the data set, one can draw straight lines to connect the given quantiles, and then interpolate to obtain the desired quantile.   ☺
THE KEY CONCEPT RELATED TO A Q-PLOT-
KC 7.1
For a random variable, X, equation (2) above for a specified number, 
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, gives an estimate, p, of the probability that a future measurement of X would fall into the interval 
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Q-Q Plots

Suppose we have two random variables, say, X and Y, as well as associated data sets 
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and 
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. Note that, for simplicity we have assumed the data sets each have the same number, n, of measurements. Suppose further, that there are no repeated values in either data set. Then, for a given value, i, and associated p-value given by (2), this value of p is an estimate of each of the following two probabilities:

(i) the probability that a future measurement of X will fall in the interval 
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, and

(ii) the probability that a future measurement of Y will fall in the interval 
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In the book, on p.85 the authors state: “It is often important to compare the shapes of two distributions. Comparing histograms is one rough way of doing this. A more sensitive way is to make a single plot... a Q-Q plot.” Unfortunately, up to that point in the book, the notion of a distribution has never been discussed in any meaningful way. One might assume that, since a histogram reveals a distribution of the measurement values associated with a data set, that this is what is meant by the term distribution. While this assumption is essentially correct, this interpretation of the term distribution lacks conceptual meaning. Furthermore, comparisons of two histograms, as well as Q-Q plots can be confounded, if not ridiculous, when blindly computed without due recognition of the underlying random variables X and Y, as well as the sets of all possible values 
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that they can take on, respectively. 
For this reason, we will resort to addressing these random variables explicitly. 

Notation: Let 
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denote the probability that a measurement of the random variable, X, will fall in the interval 
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.  The function 
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has a special name. It is called the cumulative distribution function for the random variable X.
Using this terminology, we can restate the above key concept.

KEY CONCEPT
KC7.1’

For a random variable, X, equation (2) above for a specified number, 
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It follows then, that a Q-plot for X is simply an estimate of 
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, based on measurements 
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. Similarly, a Q-plot for Y is an estimate of 
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based on measurements 
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. With this in mind, the question to be addressed in a Q-Q plot is:

How closely does the shape of 
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resemble the shape of
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Answer: If the Q-Q plot is linear, then 
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have the same general shape. 

Well, one might reasonably ask: Why do 
[image: image50.wmf])

(

x

F

X

and 
[image: image51.wmf])

(

y

F

Y

have the same “general” shape if the Q-Q plot for the random variables X and Y is linear? A more basic question might be: What does it mean to say that two objects have “generally the same shape”?  
Let’s address the second question first. It is important to note that for given random variables X and Y, the associated data sets 
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and 
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.are separate data sets, not a single paired data set. We make a paired data set from these two sets by paring the x-y numbers that are the same quantiles; for chosen p-values. If this  pairing exhibits a linear relationship, then for any 
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. Hence, in the sense of this pairing, we can write 
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so that the random variable Y is a shifted (by an amount b) and scaled (by an amount a) version of the random variable X. We will presently show that the effect of the shift factor, b, is to shift the position of the of 
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by an amount b, and the effect of the scale factor, c, is to stretch 
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  by an amount a for 
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, and to shrink it by an amount a for 
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