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by
N. Lauzon, J. O’Toole, C. Saville and K. Staley
Comments:

You state “At first glance, of those who reported drinking >2 cups/daya higher frequency of anxiety was given. However, this initial observation is not conclusive, because similar results were found for those who were not anxious.”

This is confusing. Higher than what? I think that the format of this table is, for me, a major source of confusion. And so- here is a conversion of Table 1 to absolute probabilities (i.e. they add up to 1.0):
	
	x=0
	x=1
	Pr[Y=y]

	y=0
	0.1046
	0.0250
	0.1296

	y=1
	0.0884
	0.0133
	0.1017

	y=2
	0.1885
	0.0471
	0.2356

	y=3
	0.1826
	0.0412
	0.2238

	y=4
	0.2622
	0.0471
	0.3093

	Pr[X=x]
	0.8262
	0.1738
	


Table 2. Estimates of joint probabilities and marginal probabilities obtained from Table 1

From the given marginal probabilities, we can construct what the joint probabilities would be if various associated events are statistically independent. This is given in Table 2. 
	
	x=0
	x=1
	Pr[Y=y]

	y=0
	0.1071
	0.0225
	0.1296

	y=1
	0.0840
	0.0117
	0.1017

	y=2
	0.1947
	0.0409
	0.2356

	y=3
	0.1849
	0.0389
	0.2238

	y=4
	0.2555
	0.0538
	0.3093

	Pr[X=x]
	0.8262
	0.1738
	


Table 3. Products of the marginal probabilities

Now, we would like to know whether a person is anxious or not, given that the person has drunk a specified amount of coffee:
                                  
[image: image1.wmf]]

Pr[

]

Pr[

]

|

Pr[

y

Y

y

Y

x

X

y

Y

x

X

=

=

Ç

=

=

=

=

.
(1)

The question of whether the events [X=x] and [Y=y] are statistically independent events can be expressed as a question of whether the following equality holds:
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Equivalently, we can assess whether the following equality hold:
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(3)

Of course, since we have only estimates of the probabilities in (3), the equality will never hold exactly. Nonetheless, we would like to make a declaration as to whether it holds, even though we do not know the exact values of the quantities involved. Table 4 below includes the various estimates of (3). It was obtained by simply dividing the entries in Table 2 by those in Table 3. 
	
	x=0
	x=1
	Pr[Y=y]

	y=0
	0.8538
	1.1111
	0.1296

	y=1
	1.0524
	1.1368
	0.1017

	y=2
	0.9682
	1.1516
	0.2356

	y=3
	09876
	1.0591
	0.2238

	y=4
	1.0262
	0.8755
	0.3093

	Pr[X=x]
	0.8262
	0.1738
	


Table 4. Estimates of the ratio, 
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, defined in (3).
Some of the numbers in Table 4 are closer to 1.0 than others. The challenge is to develop a measure of closeness that can be used to declare whether or not a number is close enough that one can conclude that the related events are, indeed, independent. The numbers in Table 4 are estimates of true unknown values. Hence, the problem amounts to an investigation of the uncertainty of the estimators that yielded these estimates.
The natural approach is to obtain an estimate of 
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, and then, if that estimate is close enough to one, we will announce that we believe (3) holds. As our estimator of 
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, we will use relative frequency estimates of the associated probabilities in (3). Specifically, we will perform the action of asking n persons how many cups of coffee they drink daily, and whether they feel anxious afterwards. We can represent this action as 
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. Furthermore, we will assume that each person’s response is independent of the response of all other persons. 
Now, for chosen numerical values (x,y) we will estimate the probabilities involved in (3) in the following manner.

Define the 2-D Bernoulli random variable, (U,V) in the following way:

                                     U=1 if X=x     and V=1 if Y=y
(4)

It follows immediately from (4) that
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(5)
Remark. Having the joint and marginal probability estimates in Table 2, allows us to estimate the probabilities in (5). For each chosen ordered pair (x,y), we will have to recomputed them. 
Now, for a chosen (x,y) we are in a position to describe in more detail how we will estimate the probabilities involved in (3) using the n independent and identically distributed (iid) 2-D Bernoulli random variables 
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, where each 2-D random variable in this collection has the same probability structure given by (5). There are three probabilities involved in (3). We will now describe our procedure to estimate each of them.

Estimation of 
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: In words, we count the relative number of (x,y) responses. In terms of the 
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 we define yet another collection of  Bernoulli random variable: 
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It follows from (5) that 
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Then our estimator of the above probability is 
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Estimation of 
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Estimation of 
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It follows that our estimator of the ratio (3) is
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(7)
Recall that for a collection of n iid Ber(p) random variables, their sum is a a Binomial(n,p) random variable. Having the estimators (6), our estimator, (7),  of (3) is simply a function of three Binomial random variables. 

Viewed another way, since we are actually taking averages of these Binomial random variables, then our estimator (6) can be viewed as a function of three averaged Binomial random variables. This viewpoint is worth noting, since the Central Limit Theorem states that, for sufficiently large n (i.e. n > 30), the average of any collection of iid random variables has a distribution that is normal with mean equal to the mean of any of them, and with a variance that is 1/n times the variance of any of them. [Note: since they all have the same (i.e. identical) distribution, then they all have the same mean and the same variance.] So, for such large values of n, our estimator (7) is essentially a function of three normal random variables. 

The problem with either viewpoint is that we do not know whether the three random variables are independent or not. If X and Y are, indeed, independent, then U and V are independent, and hence, 
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and 
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are independent. Still, the question remains:

                 If U and V are independent, then is either of them independent of W?
Let’s rephrase this question in terms of the original events related to the chosen (x,y). 

If the event [X=x] is independent of the event [Y=y], then are either of these events independent of the event 
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To answer this question, recall that events A and B are independent if 
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while 
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The only way that (8a) can equal (8b) is if 
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. Since both cases are anomalies, it follows that neither U nor V are independent of W.

And so, whether we view the three random variables used to obtain our estimator (7) as Bernoulli of normal random variables, even if U and V were to be independent, it would be a formidable task to arrive at the distribution of the estimator mathematically. 
For the purpose of gaining insight into the distribution of (7) we will resort to simulations of the 2-D Bernoulli random variable (U,V). Suppose we choose the associated probabilities such that they are close to our estimates derived from Table 2, but we tweak them so that we force U and V to be independent. Having these p-values, we can then run n simulations of this 2-D variable, or, equivalently, one simulation of the iid collection 
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. Having numerical values for these, we can then proceed to compute 
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, and putting these into (7) results in one numerical value for the estimator (7). Repeating this procedure, say, 10,000 times should result in a reasonably accurate description of the probability structure of (7). 
Once the probability structure (PFD) for 
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has been obtained for the case where one has forced U and V to be independent, then one can conduct the following hypothesis test:
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 (the null or default hypothesis)
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The goal is to announce one of these two hypotheses. The idea is that if 
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is not sufficiently close to 1.0, then one would announce the alternative hypothesis (i.e. U and V are NOT independent.). One popular way to identify just how far from 1.0 
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is allowed to be and still declare the null hypothesis is to specify a “false alarm probability”. It is the probability that one declares the alternative hypothesis to be true, when, in fact, the null hypothesis is true. 
The “rule” for making any declaration regarding the independence/dependence of U and V is called the decision rule. In this problem, the decision rule is:

                                  If 
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to be true.
The false alarm probability is then the probability of the event 
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has the PDF associated with independent U and V.

If the false alarm probability is specified, then one can find the numerical values for 
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