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Lecture 8                              Fourier Transforms and Application to the PSD 

 

Definition 1. Let ( ) ; ( , )x t t   be a deterministic function that satisfies | ( ) |x t dt





  . Then its Fourier 

Transform is defined as ( ) ( ) ( )( )i tX x t e dt x 
 





  . 

Theorem 1. The inverse Fourier transform of ( )X   is 
11

( ) ( ) ( )( )
2

i tx t X e d X t 


 




  . 

Proof: Begin with 
( )1 1 1

( ) ( ) ( )
2 2 2

i t i i t i tX e d x e d e d x e d d    

   

       
  

    

  

    

   
    

   
     . 

Let s t  . Then ds d and s t   , so that 

 

1 1 1
( ) ( )

2 2 2

i t i s

s

X e d x s t e d ds 



  
  

  



  

 
   

 
    

We now need to compute the inner integral. Rather than using a limit-based argument associated with the infinite limits of 

integration, we will use the following method: 

 

The Fourier transform of ( )s is ( ) 1i s

s

s e ds






 . Hence, the inverse Fourier transform of 1 is 

1
1 ( )

2

i s

s

e d s  








  . But this gives 2 ( )i s

s

e d s  






 . Hence: 

 

1
( ) ( ) ( ) ( )

2

i t

s

X e d x s t s ds x t  


 

 

    . This completes the proof.   □ 

 

Remark 1. As a result of this proof, we have discovered the following Fourier transform pairs: 

 

                                            ( ) 1t       and     1 2 ( )  . 

 

 

Remark 2. The units of  are typically radians/second, though radians per hour, day or year are also common. Let 

/ 2f   have units of cycles/second (i.e. Hz). Then the Fourier transform pair becomes:  

                                        
2( ) ( ) i f tX f x t e dt







         and       
2( ) ( ) i f tx t X f e df





  . 

 

The Fourier Transform of the Autocorrelation Function-  
 

Example 1. Consider a Gauss-Markov random process with 
| |( )xR e    . Then using calculus,  

 
0

( ) ( )
| | ( )

2 2

0 0

1
( )( ) 2 2 2 2 2

( )

i i
i i

x

e e i
R e e d e e d e e e e

i i i

     
       

  
       

     
   

 

        
                                  

   
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Hence, 
2 2

2
( )( )

(2 )
xR f

f



 
 


in units of power/Hz. □ 

Definition 2. For a wss random process with ( ) ( )( )x xS R 


  is called the power spectral density (psd) for ( )x t . Even 

so, its units are in power per Hz; not power per rad/sec.  

 

NOTE 1: The reason for this ‘weirdness’ of the units stems from the  1/ 2 factor included in the inverse Fourier 

transform. It is that factor that changes the units from power per rad/sec. to power per Hz.] 

NOTE 2: One might well ask about the use of the term ‘power’. After all, the units of ( ) [ ( ) ( )]xR E x t x t 


  is the 

square of the units of ( )x t . The answer is that often the squared units of ( )x t are related to the units of power. For 

example, if ( )x t is the voltage across a resistor having resistance R, then the power associated with this voltage is 

2( ) /x t R , which has units of volts2/Ohm. If 1R   , then the numerical value of the power is 
2( )x t .] 

 

Example 1 continued.  For 0.5  , 
2

1
( )

0.25
xS 





. 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 1. The autocorrelation and psd functions for a GM process with 0.5 / secrad  . 

 

 

Example 2. Continuous-time white noise has 
2( ) ( )xR      where ( )  is the Dirac-delta function. Hence, the psd is 

2( )xS   for all ( , )   . Since the total power is the area associated with 
2( )xS   , the white noise process 

has infinite variance. The parameter 
2 is called the variance intensity. Clearly, such a process does not exist. On the 

other hand, consider band-limited white noise that has ( )xS c  for all ( , )bw bw    . We will now recover ( )xR  for 

this process. 

 

21
( )

2 2 2 2

bwbw bw bw bw bw

bw bw

i i i ii
i

x

e c e e c e e
R ce d

i i i

        


 


 

     
 

      
       

     
 . 

Recalling that sin
2

i ie e

i

 




 gives
sin( )

( ) sin( ) ( )bw bw bw
x bw bw

bw

c cc
R Sa

   
    

    

 
   

 
.  

 

Notice that 
01

(0) (2 )
2 2

bw

bw

i bw
x bw

cc
R ce d








 

  


   . Hence, for a specified
2(0)xR  , the psd constant is  

2 / bwc    . We can also write this as 
2 2/ 2 / 2bw bwc f f     .  
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Hence, the constant c has units of pwr/Hz and the two-sided 

bandwidth 2 bwf has units of Hz. A plot of ( )xR  for 
2 1   

and 5bw  is shown at right. Notice that the first null in 

( )bwSa    occurs when 
bw   , or when / bw   . 

Hence, the wider the bandwidth, the narrower the 

autocorrelation function and the larger (0)xR .   □ 

 

 

 

 

      Figure 2. Plot of ( )xR  for 5bw  . 

 

From Example 2, we have the following Fourier transform pair: 

 

                                                 
0 0

| |
( ) ( ) ( )

0

a for a
X x t Sa t

otherwise

  
 




  


. 

 

 

Example 3. The ( )Sa ax function described in Example 2 is an extremely important function. It is called the sinc 

function. For this reason, we will pursue it in more detail in this example. Specifically, we will develop the Fourier 

transform of 
| | / 2

( )
0

a for t T
x t

otherwise


 


: 

 
/2/2 /2 /2 /2 /2

/2 /2

2 2
( ) sin( / 2)

2

TT i t i T i T i T i T
i t

T T

e e e a e e a
X a e dt a a T

i i i

    
 

   

  


 

      
         

     
 . 

Writing this as 
2 sin( / 2)

( ) sin( / 2) ( ) ( ) ( / 2)
/ 2

aT T
X T aT aT Sa T

T T


  

 
  , we have the Fourier transform pair: 

                                     
| | / 2

( ) ( ) ( ) ( / 2)
0

a for t T
x t X aT Sa T

otherwise
 


  


.   □ 

 

 

 

The Importance of the Rectangular Window and Its Fourier Transform- the Sinc Function- 

 

To appreciate the importance of the rectangular window and its Fourier transform, it helps to understand the following 

property of Fourier transform pairs: 

 

Property 1: Multiplication in one domain is equivalent to convolution in the other domain. 

 

Example 4. A random process { ( ); ( , )}x t t   can only be observed over a finite time [0, ]T . Let 

1 [0, ]
( )

0

for t T
w t

otherwise


 


denote a rectangular window of length T and height 1.0. We can then write the finite-time 
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observation of { ( ); ( , )}x t t   as { ( ) ( ) ( ); ( , )}wx t x t w t t    . In words, we have assumed that ( )wx t equals zero 

for [0, ]t T . It follows from Property 1 that ( ) ( )wX X W   , where  

 

          

/2 /2 /2
/2

0 0

1 2
( ) 2 ( / 2)

2

TT i t i T i T i T i T
i t i T

t

e e Te e e
W e dt TSa T e

i i T i

    
  

  

   
 



  
     

  
 .  

 

Now suppose that 
0( ) sin( )x t A t  where ~ [0,2 )Uniform  . Then 

 

                                       0 0( ) sin( ) sin( )i t i tX A t e dt A A t e dt   
 

 

 

     . 

Recalling the identity sin ( ) / 2i ie e i    gives 

 

 

                    
0 0

0 0

( ) ( )
( )

( )
2 2

i t i t i
i t i ti t i t i te e e

X e dt e e dt e e dt
i i

 
   

     
  

  

 
   

 
   . 

 

Use the Fourier transform pair relation 0

02 ( )
i t

e
      gives 

 

                                                 0 0( ) ( ) ( )
ie

X
i


      



    . 

 

This can be simplified by noting that 
/2cos( / 2) sin( / 2) ii i e     . Hence, 

 

                                                ( /2)

0 0( ) ( ) ( )iX e            . 

It follows that 

 

                          ( /2)

0 0( ) ( )( ) 2 2 ( ) ( )i

wX X W e W W              . 

 

Note: the 2 factor is the appropriate scale factor in this convolution theorem.     □ 

 

In words, the effect of the rectangular window on the Fourier transform of the sinusoid is that the two delta functions have 

been replaced by two sinc functions. Effectively, the spikes have smeared out. For a small window the smearing effect 

will be large; whereas for a large window it will be more localized. 

 

Remark 3. We have just alluded to what, more generally is known as the Heisenberg Uncertainty principle: The more you 

attempt to localize in one domain, the more uncertainty you have in the associated Fourier transform domain. □ 

 

 

Example 5. The ‘ideal’ low pass filter (LPF) is the rectangular frequency window 
1 [ , ]

( )
0

bw bwfor
W

otherwise

  


 
 


. 

Applying it gives ( ) ( ) ( )wX X W   . Its effect in the time domain is: 
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                                                                         ( ) (1/ 2 )( )( )wx t x w t   

 

This time domain convolution will smear out the details in ( )x t . To 

demonstrate this consider discrete-time white noise with sampling 

interval equal to 1 second. The analysis bandwidth is then 

[ , )    . We will apply an ideal LPF having a bandwidth 

frequency / 4bw   to this white noise. The results are shown at 

right. As expected, the details of the white noise have been reduced 

(i.e. smeared out).  □ 

 

 

 

 

 

 

 Figure 3. Plots of unfiltered and filtered white noise. 

 

 

 

 

The Unbiased Versus the Biased Lagged-Product Autocorrelation Estimator- 
 

The unbiased and biased lagged-product estimators of  ( )xR     are: 

 

                         
( )

0

1
( ) ( ) ( )

T

ub

XR x t x t dt
T



 




 
       and     

( )

0

1
( ) ( ) ( )

T

b

XR x t x t dt
T



 


   

 

Using the linearity of E(*) it is easy to show that: 
 

                         ( ) ( ) ( )ub

X XE R R          and     ( ) | |
( ) ( ) ( ) ( )b

X X T X

T
E R R w R

T


   

 
     

 
. 

 

The window 

| |
[ , ]

( )

0
T

T t
for t T T

w t T

otherwise


 

 



 is a triangular window of width 2T. In fact, it can be obtained by 

convolving the rectangular window 
1 [ / 2, / 2]

( )
0

for t T T
w t

otherwise

 
 


 with itself. Hence, by the convolution theorem we 

have  
2

( ) 2 ( / 2)TW TSa T   . The effect of convolving this window with the PSD ( )xS  is to smear out the 

detail in ( )xS  . In other words, it decreases the spectral resolution. 

 

Remark 4. In addition to decreasing the spectral resolution, the rectangular window also changes the nature of 

deterministic random processes. They are converted to regular random processes. For example, recall from 

Example 4 that for the deterministic random process 0( ) sin( )x t A t  0( ) sin( )x t A t  where 

~ [0,2 )Uniform  we found that  ( /2)

0 0( ) ( ) ( )iX e            . Hence, it is natural to assume the 
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corresponding psd will include these two delta functions. We then found that 

 ( /2)

0 0( ) 2 ( ) ( )i

wX e W W          . And so, once again, it is natural to presume that the corresponding 

psd will no longer include these delta function. Rather, it will be more well-behaved, in the sense that this psd is actually a 

function of frequency; as opposed to the delta function that is not a regular function at all. Recall that the psd is a [power 

spectral density. Its units are power/Hz. The psd is analogous to a force density, which we call pressure. The units of 

pressure are force/unit-length. One need to compute force by integrating pressure over a given length. If that length 

includes a single point, this integral is zero.   □ 

 

We will now address one of the most important theorems in relation to computation of the psd: 

 

My Version of the Wiener-Kinchin Theorem. Let ( )x t be any regular random process with psd ( )xS  . Let 

( ) ( )Tx t  be a windowed version of ( )x t , where the time window as width T. We showed that its psd is: 

                                              ( ) | |
( ) ( ) ( ) ( )b

X X T X

T
E R R w R

T


   

 
     

 
. 

For convenience, denote this triangular-windowed autocorrelation function as ( ) ( )T

xR  . The corresponding psd 

is:                                                           ( ) ( )( ) ( )

T

T T i

x x

T

S R e d  



  .  (1) 

On pp.71-72 of the book it is shown that: 

2

( ) ( )1
( ) ( )T T

xS E X
T

 
 

  
  

. (2) 

This expression for the windowed psd is my version of the Wiener-Kinchin Theorem. 

 

The relation (s) gives an alternative to taking the Fourier transform of the lagged-product autocorrelation 

function. Suppose that the window length T can be partitioned into n smaller windows, each having length Δ. 

Denote the process associated with the kth window as ( ) ( )kx t . Its Fourier transform is ( ) ( )kX  . We can then 

estimate (2) via the average: 

 

                                                    ( ) ( ) 2

1

1 1
( ) | ( ) |

n
T k

x

k

S X
n

 





 .  (3) 

 

If we do not partition T and use the entire window, we have: 

 

                                                             ( ) 21
( ) | ( ) |T

xS X
T

  . (4) 

The estimator (4) is called the periodogram. In words, you simply compute the Fourier transform of 

{ ( ); (0, )}x t t T , and then take its magnitude-squared as the estimator of the psd. Now, an average of one is nothing to 

write home about. By partitioning T and taking an average of n mod-squared Fourier transforms we can significantly 

reduce the uncertainty of the psd estimator. However, this comes at a price. The sinc function associated with a window of 

size /T n  will be wider than the sinc function associated with a window of size T by a factor of n. In words, 

we reduce the spectral resolution of the estimator. It must be emphasized: 

 

                                          The periodogram (4) is a horrible estimator of the psd! 
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The challenge is to determine the value of n such that the estimator will have acceptably low uncertainty, while 

at the same time having reasonable spectral resolution.  

 

Finally, it should be mentioned that this problem has been around for a long time, and that many methods of 

attacking it have been proposed. One method is to use a specified overlap of the sub-windows. For a 50% 

overlap, the second half of a given window would be the first half of the next window. Having more sub-

windows allows one to use a larger sub-window size. Matlab offers this method (as well as others). It is known 

as Welch’s method, and is the code pwelch.m. 

 

 
 

CONCLUSION: This lecture was packed with elements of psd analysis. There are entire graduate courses on this topic. 

You should not be discouraged if your head is now spinning. Re-read these lecture notes again and again. Go to Google to 

help improve your understanding. The psd is an indispensable topic in analysis of random processes. For this reason, we 

will return to it in the context of our next topic, which is linear systems. 

 

 

Footnote (10/11/19): Consider the three Fourier Transforms: 

(i): ( ) ( ) i tX x t e dt






    ;     (ii) 

/2

/2

1
( ) lim ( )

T

i t

T
T

X x t e dt
T

 




  ;       

/2

/2

1
( ) lim ( )

T

i t

T
T

X x t e dt
T

 




  . 

The form (i) is the correct one for deterministic absolutely integrable ( )x t . 

The form (ii) is the correct one for a regular wss random process ( )x t . 

The form (iii) is the correct one for a periodic ( )x t . 

 

QUESTION: Suppose we have ( ) ( ) sin(2 )tx t e w t t   . Which transform is appropriate for ( )x t ? 

 

 

 


